
Latency-optimized Collectives for High
Performance on Intel’s Single-chip Cloud Computer

Adán Kohler and Martin Radetzki
University of Stuttgart, Department of Embedded Systems

Pfaffenwaldring 5b, 70569 Stuttgart, Germany
{kohleran, radetzki}@informatik.uni-stuttgart.de

Abstract—The Single-Chip Cloud Computer (SCC) is a re-
search chip of Intel Labs featuring 48 processor cores on a
single die. Having no hardware support for cache coherence, the
SCC resembles a distributed on-chip system that uses message
passing over an on-chip network of switches for inter-core com-
munication. The low latency of on-chip message passing allows
algorithms to scale beyond the limits of macroscopic computer
clusters. In addition to point-to-point communication, parallel
message passing applications often use collective operations that
involve all or a set of the available processes. Consequently,
collectives should be tuned for low latency, too, in order to
achieve fair application performance. To support this, we present
optimized versions of collectives that outperform the fastest
implementations currently available for the SCC by factors of
1.6x up to 2.5x. For a thermodynamics application, the use of
these optimized routines results in a speedup of 42%.

Index Terms—Message passing, MPI, collective communication

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) is a research
chip developed by Intel Labs that features 48 x86-compatible
processor cores on a single die. The chip is a tile-based
design, where 24 homogeneous tiles, each containing two
processor cores, are arranged into a 6×4 mesh. The tiles
are connected with each other and off-chip resources over
a fast on-chip network. To this end, a tile includes a mesh
interface unit and 16 KB of local memory that is primarily
intended for message-passing. Since the SCC has no hardware
support for cache coherence, it can be seen as a distributed
on-chip system. This notion is also supported by the native
communication library RCCE [1], which provides MPI-like
functions for passing point-to-point messages in a blocking
manner. In contrast to a computer cluster, passing a message
through an on-chip network involves very low latency, typi-
cally in the order of 50 clock cycles [2]. As communication
costs decrease in relation to computation, applications can be
parallelized at a finer scale and among a higher amount of
cores to make use of the chip’s available transistors. In addition
to point-to-point communication, such applications generally
use collective communications like Broadcast to distribute
initial data to cores, or Reduce for collecting intermediate or
final results. Consequently, having both low-latency point-to-
point and collective operations is important for reaching high
application performance.

With the example of an application computing thermody-
namic properties, we have developed a set of optimizations

for the existing message-passing libraries and evaluted their
effect on the latency of individual collective calls, as well as
on the performance of the complete application.

II. PREVIOUS WORK

The first approach for porting the thermodynamics applica-
tion to the SCC was based on RCKMPI [3], an MPI imple-
mentation customized for the SCC. This MPI stack is derived
of MPICH and uses the SCC’s on-chip network as commu-
nication channel. While cross-compiling the application and
linking it against RCKMPI worked without modififcations
to the source code, the RCKMPI version available at that
time was known to have some scalability issues. Thus, in
a second step, we replaced it by the small and lightweight
library RCCE provided by Intel. As RCCE is missing efficient
implementations for collective operations, we complemented it
with RCCE comm [4], a library implementing collectives with
RCCE primitives. Compared to RCKMPI, this combination
roughly doubled the achieved application performance.

At a later stage, RCKMPI was superseded by a new
version called RCKMPI2 [5] that fixes the scalability issue
and increases the communication efficiency significantly com-
pared to its predecessor. Benchmarks showed that RCKMPI2
outperforms its older version in nearly every respect, but still
performs worse than RCCE comm (see results in Section IV).

As will be shown later, the performance of RCCE comm
can be improved further by using non-blocking send and
receive primitives instead of the blocking ones provided by
RCCE. The iRCCE library [6] can be used to provide the
required functionality as it adds MPI-like support for issu-
ing non-blocking send and receive requests, accompanied by
functions to cancel pending requests or to wait for requests to
complete. However, the introduction of unnecessary features
in functions acting as primitives may result in significant
overhead that limits performance [7]. Thus, we have inves-
tigated steps to reduce such overheads in order to obtain
fast implementations of collectives [8]. In this paper, we will
elaborate on these points and compare their efficiency against
RCKMPI2, a representative for full MPI solutions, and against
RCCE comm on top of RCCE as lightweight solution.

III. OPTIMIZATIONS

The considerable performance improvement by switching
from RCKMPI to RCCE comm and RCCE motivated a closer
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Fig. 1: Bucket algorithm

look at the distribution of runtime spent in each of the appli-
cation’s functions. Profiling revealed that the highest amount
of communication time falls upon the Allreduce collective.
Allreduce is an operation that combines one operand value of
each process into a single result value by means of a binary
operator. In the following, we assume this to be the addition
operator “+”, but in general any associative binary operator
can be used. Formally, having p processes supplying operand
vectors with n elements each, let vk[i] denote the i-th element
of process k’s operand vector (0 ≤ i < n, 0 ≤ k < p). After
collectively calling Allreduce, all processes should have a copy
of the result vector res, with ∀i : res[i] =

∑p−1
c=0 vc[i].

For operand vectors exceeding 512 double precision floating
point values, the Allreduce implementation of RCCE comm
uses Barnett’s bucket algorithm [9]. This algorithm splits the
operand vectors into p parts (“buckets”) and distributes the
computation of the individual buckets among the involved
cores. It is organized into rounds, where in each round, a core
sends its intermediate result of the previous round (its initial
bucket in the first round) to its right neighbour (cf. Fig. 1a).
Consequently, all cores receive a bucket of their left neighbor,
which they combine element-wise with the corresponding
elements of their local input operand (Fig. 1b). These actions
are repeated in future rounds (Fig. 1c) until each core has
computed one bucket of the result vector.

A. Relaxed synchronization
An analysis of the application’s call graph profile showed

that most of the time spent in Allreduce is used by RCCE’s
send and receive functions. For both of these functions, the
sub-function RCCE_wait_until, which performs inter-core
synchronization by waiting on flags to be manipulated by
remote cores, accounted for roughly 15–40% of their runtime.

The reason why the bucket algorithm synchronizes this
much can be found in its structure. The important points to
notice here are the circular traffic pattern (cf. Figs. 1a and
1c), and the fact that cores both need to send and to receive
a bucket each round. Since the send and receive primitives
of RCCE are blocking, they can both return only after their
matching counterpart has been called at the remote side. This
requires cores to post the send and receive in a specific order
to avoid deadlocks. In RCCE comm, this is taken care of by
the odd-even pattern that lets odd-numbered cores first call
receive, followed by send, while even-numbered cores perform
the calls in reverse order (cf. Alg. 1).

In addition to the overhead caused by branching on the
process number, this forces the operations to finish in the given

Input: bi: bucket index; left, right: IDs of neighbor cores

1 if RCCE_comm_size() mod 2 = 0 then
2 if RCCE_comm_rank() mod 2 = 0 then
3 RCCE_send(result[bi], bucket size, right);
4 RCCE_recv(recv bucket, bucket size, left);
5 else
6 RCCE_recv(recv bucket, bucket size, left);
7 RCCE_send(result[bi], bucket size, right);

8 else
9 if RCCE_comm_rank() mod 2 = 1 then

10 RCCE_send(result[bi], bucket size, right);
11 else if RCCE_comm_rank() > 0 then
12 RCCE_recv(recv bucket, bucket size, left);

13 if RCCE_comm_rank() mod 2 = 1 then
14 RCCE_recv(recv bucket, bucket size, left);
15 else
16 RCCE_send(result[bi], bucket size, right);

17 if RCCE_comm_rank() = 0 then
18 RCCE_recv(recv bucket, bucket size, left);

19 result[bi] := result[bi] + recv bucket;

Algorithm 1: Allreduce round with blocking primitives

order, as synchronization occurs after the first and after the
second call (cf. Fig. 2a). This order can force a core to wait
on data, even when the data in question is already available
at its left neighbor. For a core ranked p this is e.g. the case
when its left neighbor p−1 must perform the receive first, but
p− 1 itself is waiting for data of its left neighbor p− 2. Such
wasting of time can be avoided by the use of non-blocking
operations, which allow the send and receive to complete in
any order. In that case, cores synchronize only once per round,
i.e. on the completion of both the send and receive operations
(cf. Fig. 2b).

To accelerate Allreduce, we included the iRCCE library and
replaced the blocking calls within RCCE comm by iRCCE’s
non-blocking equivalents. As a side effect, the use of non-
blocking primitives allows to issue the start of the send
and receive in an arbitrary order. Consequently, the odd-even

Input: bi: bucket index; left, right: IDs of neighbor cores

1 iRCCE_isend(result[bi], bucket size, right, &sndreq);
2 iRCCE_irecv(recv bucket, bucket size, left, &rcvreq);

3 iRCCE_isend_wait(&sndreq);
4 iRCCE_irecv_wait(&rcvreq);

5 result[bi] := result[bi] + recv bucket;

Algorithm 2: Allreduce round with non-blocking primi-
tives
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Fig. 2: Signaling sequence of one Allreduce round

pattern is no longer required, allowing a considerably simpler
implementation of the message exchange phase (cf. Alg. 2).

B. Overhead minimization
While evaluation of non-blocking based Allreduce showed

an absolute increase in performance, the percentage of time
spent for communication management, like setting up and
scheduling a data transfer, actually increased compared to
the blocking primitives of RCCE. This is due to the fact
that when communication calls do not block until finished,
multiple pending send or receive requests can be active at
the same time. iRCCE supports this by storing incoming
requests inside a linked list and processing them in the order of
their arrival. In addition to communication initiation, iRCCE
contains functions for waiting on the completion of a particular
request or for canceling its execution.

While these features are very comfortable seen from an
application developer’s perspective, they come at the cost of
significant overhead. For operations like Allreduce that make
heavy use of communication primitives, this overhead can be
a limiting factor for performance. Since implementations of
many collectives are organized into rounds during which at
most one message is being sent and received simultaneously,
this overhead is caused by functionality that is not even used.
As a consequence, we have implemented our own set of non-
blocking primitives as a RCCE extension called RCCEnb that

limits the maximum number of active transmissions to at most
one for each direction (incoming and outgoing messages). This
way, list-keeping can be omitted completely, and also the re-
maining management (e.g. communication setup) is simplified
significantly. Measurements have shown that replacing iRCCE
with our own set of non-blocking primitives effectively halves
the latency of an Allreduce call (see Section IV).

C. Fair load balancing

When two cores are synchronized with each other, this
usually means that the core reaching the synchronization point
in its code first must wait on the other core catching up. In
case of collective operations organized in rounds, cores have
to wait for incoming data, which is subsequently forwarded or
processed locally. If – like in case of the bucket algorithm –
all cores are synchronized with each other, e.g. by a circular
traffic pattern (cf. Fig. 1), the amount of work to be done each
round should be equal for all cores in order to minimize the
waiting times imposed by synchronization.

In the bucket algorithm, the amount of work to be done
directly corresponds to the bucket size. Since each core
processes a different bucket, all buckets should ideally contain
the same number of elements. RCCE comm determines the
bucket size by performing an integer division of the input
vector’s element count by the number of cores, i.e. bn/pc. If
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n is not a multiple of p, the remaining n mod p elements are
added to the first bucket. This can lead to a serious imbalance
in bucket sizes, as the remainder of the integer division can
be larger than the result. Consider the example of Fig. 3a: For
575 elements, the general bucket size is 11 elements. Until the
next multiple of 48 (i.e. 576) is reached, further elements are
simply added to the first bucket, thereby linearly increasing the
imbalance. At the worst point of 575 elements, the remainder
of the integer division is 47, resulting in the first bucket
containing 11 + 47 = 58 elements while all other buckets
comprise just 11 elements. The ratio of the first bucket’s size
to that of other buckets is about 5.3 : 1 here, meaning that the
core processing the first bucket runs about five times as long
as the other cores each round, effectively slowing them down
by synchronization.

We adapted the bucket sizing method such that the remain-
ing elements of the integer division are distributed among a
set of buckets instead of assigning all to the first one, hence
providing a more even distibution. Particularly, the first n
mod p buckets are assigned one additional element to take
up the non-evenly distributable elements. This can be seen in
Fig. 3b: For the worst-case situation described in the previous
paragraph, the first 47 buckets are assigned one extra element
each such that they have 12 elements in total. Identical to the
old sizing method, the last bucket still comprises 11 elements.
This distribution has a balance ratio of roughly 1.1 : 1, which
is a considerable improvement.

D. Data flow optimization
Since the on-die local memory (i.e. the MPB) is very limited

in its size, cores usually store working data in their private
off-chip memory partition. In order to transport data between
cores, the sending core copies the data from this private
memory into its local MPB and sends a signal to the receiving
core. As soon as the receiving core receives this signal, it
copies the data from the sender’s MPB into its own private
memory (“pull”-style communication). While this procedure
works well if received data is to be processed further locally,
collective operations often use cores as “relay nodes” that
simply have to forward received data to the next core with
little or no local processing. In this case, the frequent copying
of data into and out of the MPB can be avoided by allowing
in-transit data to be kept inside the MPB.

For our example of Allreduce, each round of the bucket
algorithm moves operand data as shown in Fig. 4a. At the start
of a round, a core receives a remote bucket by calling (i)recv.
Internally, this function uses the memcpy_get routine to copy
the data out of the sender’s MPB into private off-chip memory.
In the computation phase, both the received operands and the
local ones are read from off-chip RAM and are combined
subsequently. The results are written back to private memory.
At the start of the next round, the result vector must be sent to
the right neighbor, which is done by calling (i)send. Similar to
the receiving case, this uses memcpy_put internally to copy
the data from off-chip memory into the local MPB. Since the
results of a round have to be transferred to the right neighbor in
the next round, but are never used locally again, the overhead
of copying can be avoided by keeping them inside the MPB.

The simplified approach is shown in Fig. 4b for one round.
Assume that core 47, i.e. the left neighbor of core 0, has the
intermediate result of the previous round (or its local operand
vector in case of the first round) stored in its MPB. Then,
core 0 can directly read the remote operands from core 47’s
MPB, combine it with its local operands, and store the result in
its local MPB. This procedure omits the two copy operations
involved by the send and receive calls and requires only a
single access to off-chip memory. As MPBs are filled by their
local core and read by the right neighbors simultaneously, a
double buffering approach is used where the MPB is split in
half as indicated by the dashed lines in Fig. 4b. While one
half contains the results of the previous round, acting as a
read buffer for the right neighbor’s remote operands, the other
half serves as storage for the current round’s results. At the
end of a round, cores are synchronized with each other, and
the roles of the buffers are swapped afterwards.

IV. EXPERIMENTAL RESULTS

We applied the proposed optimizations to six collective
operations of RCCE comm, namely Allgather, Allreduce,
Alltoall, Broadcast, Reduce, and ReduceScatter. Then we
evaluated the effect of the different optimization steps on
the latency of individual operations, and on the runtime of
a complete application. To this end, we configured the SCC
with the standard preset, clocking the cores at 533 MHz, the
network and DRAM at 800 MHz. On the software side, we
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used sccKit 1.4.1.3 and the latest available versions of the
communication libraries, specifically RCCE 1.1.0, iRCCE 1.2,
and both RCKMPI2 as well as RCCE comm in revision 303
of the public SVN repository [10].

Fig. 5 shows the latency of individual operations. Nearly
all graphs of RCCE-based implementations show spikes with
a period of four elements, which matches the size of an L1
cacheline. As RCCE performs an extra synchronization for
the transmission of bytes that do not fill a whole cacheline,
the transfer of messages not being a multiple of the L1’s
line size takes longer than a transfer of messages consisting
only of complete cachelines. As RCKMPI2 uses its own
method for data transmission, it does not suffer from this issue.
Consequently, its latency graphs display a smoother behavior.

With the exception of Allgather, RCCE comm outperforms
RCKMPI2 in every respect even in its original form and
based on RCCE’s blocking primitives. To provide a fair
comparison, we hence chose the combination of RCCE comm
using RCCE primitives as baseline implementation. Relaxing
the synchronization by switching to non-blocking primitives
gives speedups between 9.5% for Broadcast and a factor of
2.6x for Allgather. The use of more lightweight primitives has
nearly no performance impact on Allgather and Alltoall, but
accelerates the other four collectives by factors between 1.5x
(Reduce) and 2x (ReduceScatter). For Reduce and Allreduce,
the load imbalance issue is clearly visible in form of the ramp-
like latency increments between element counts of multiples of
48. The balanced versions avoid this and increase performance
by more than 60% (Reduce) or 90% (Allreduce) at best, or
around 20% on average. Finally, the data flow optimized
version of Allreduce results in an average acceleration of
an additional 10%. While we initially expected this to have
a much higher impact on performance, the relatively high
latency of local MPB accesses, caused by a workaround for
a bug in the MPB arbitration logic1, reduces the effectiveness
of this optimization step. In spite of the potential we attribute
to a simplified data flow, we hence did not apply this step to
further collectives.

To show the impact on the runtime of a complete appli-
cation, we benchmarked a thermodynamics code performing
Grand Canonical Monte Carlo simulation [11]. As Fig. 6
shows, low-latency collectives have a notable effect on this ap-
plication’s performance. The combined optimizations achieve
a speedup of 42% compared to the baseline of RCCE comm
and RCCE, the main contribution (17.8%) being due to
lightweight primitives.

V. CONCLUSION

The low latencies in on-chip networks enable fine-grained
parallelism involving a higher communication rate than tradi-
tional cluster architectures. While point-to-point communica-
tions directly benefit from this, message-passing applications
often use collective operations to distribute and gather data. As
a consequence, collectives should also be subjected to latency
optimizations in order to turn the lower communication latency
into application performance.

1see http://communities.intel.com/docs/DOC-5405
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We have investigated optimizations for collectives that have
been shown to accelerate individual operations by factors
of 1.6x up to 2.5x. For an example application, the pro-
posed optimizations result in a total speedup of 42%, thus
demonstrating the importance of low latency collectives for
application performance.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC
310/1) at the University of Stuttgart.

REFERENCES

[1] T. Mattson and R. van der Wijngaart, “RCCE: a Small Library
for Many-Core Communication,” 2011, (2012, August 30). [Online].
Available: http://communities.intel.com/docs/DOC-5628

[2] “The SCC programmer’s guide,” 2011, (2012, January 20). [Online].
Available: http://communities.intel.com/docs/DOC-5684

[3] I. A. Comprés Ureña, M. Riepen, and M. Konow, “RCKMPI -
lightweight MPI implementation for Intel’s Single-chip Cloud Computer
(SCC),” in Proc. European MPI Users’ Group Conference on Recent Ad-
vances in the Message Passing Interface (EuroMPI), Santorini, Greece,
September 2011, pp. 208–217.

[4] E. Chan, “RCCE comm: A collective communication library for the
Intel Single-chip Cloud Computer,” 2010, (2012, January 20). [Online].
Available: http://communities.intel.com/docs/DOC-5663

[5] I. A. Comprés Ureña and M. Gerndt, “Improved RCKMPI’s SCCMPB
Channel: Scaling and Dynamic Processes Support,” in Proc. 4th Many-
core Applications Research Community (MARC) Symposium, Potsdam,
Germany, December 2011, pp. 1–6.

[6] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz,
“iRCCE: A Non-blocking Communication Extension to the RCCE
Communication Library for the Intel Single-Chip Cloud Computer,”
RWTH Aachen University, Tech. Rep., November 2011, (2012, January
20). [Online]. Available: http://communities.intel.com/docs/DOC-6003

[7] A. Kohler, J. M. Castillo-Sanchez, J. Groß, and M. Radetzki, “Minimal
MPI as Programming Interface for Multicore Systems-on-Chips,” in
Proc. Forum on Specification and Design Languages (FDL), Vienna,
Austria, Sept. 2012, pp. 120–127.

[8] A. Kohler, P. Gschwandtner, T. Fahringer, and M. Radetzki, “Low-
Latency Collectives for the Intel SCC,” in Proc. Conference on Cluster
Computing (CLUSTER), Beijing, China, Sept. 2012.

[9] M. Barnett, R. Littlefield, D. G. Payne, and R. van de Geijn, “Efficient
communication primitives on mesh architectures with hardware routing,”
in Proc. Conference on Parallel Processing for Scientific Computing
(PPSC), Norfolk, VA, USA, March 1993, pp. 943–948.

[10] “MARC SVN repository,” (2012, September 11). [Online]. Available:
http://marcbug.scc-dc.com/svn/repository/trunk

[11] D. Adams, “Grand canonical ensemble Monte Carlo for a Lennard-Jones
fluid,” Molecular Physics, vol. 29, no. 1, pp. 307–311, 1975.




