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Abstract—To simplify program development for the Single-
chip Cloud Computer (SCC) it is desirable to have high-
level, shared memory-based parallel programming abstractions
(e.g., OpenMP-like programming model). Central to any similar
programming model are barrier synchronization primitives, to
coordinate the work of parallel threads. To allow high-level bar-
rier constructs to deliver good performance, we need an efficient
implementation of the underlying synchronization algorithm. In
this work, we consider some of the most widely used approaches
for barrier synchronization on the SCC, which constitutes the
basis for implementing OpenMP-like parallelism. In particular,
we consider optimizations that leverage SCC-specific hardware
support for synchronization, or its explicitly-managed memory
buffers. We provide a detailed evaluation of the performance
achieved by different approaches.

Index Terms—Barrier synchronization,
Manycores, OpenMP, Performance Evaluation.
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I. INTRODUCTION

It is nowadays clear that the huge number of transistors
that can be integrated on a single chip (1 billion today and
continuously growing) can no longer be effectively utilized
by traditional single-processor designs. Multi-core technology
has been succesfully adopted for the past seven years, and
is currently in the many-core era, where hundreds of tightly-
coupled simple processor cores are integrated in the same on-
chip system.

As the complexity of systems-on-chip (SoCs) continues to
increase, it is no longer possible to ignore the challenges
caused by the convergence of software and hardware de-
velopment [1]. In particular, the challenge for effective pro-
gramming models at these scales is renewed, as the software
stack is nowadays responsible for making effective use of the
tremendous peak performance that these systems can deliver,
assuming that all the processors can be kept busy most of the
time.

Shared memory-based programming models have proven to
be very effective at simplifying application development, since
they provide the notion of a global address space, to which
programmers are accustomed. OpenMP [2] has emerged as

a de-facto standard for shared memory programming, since it
provides very simple means to expose parallelism in a standard
C (or C++, or Fortran) application, based on code annotations
(compiler directives). This appealing ease of use has recently
led to the flourishing of a number of OpenMP implementation
for embedded MPSoCs [3] [4] [5] [6] [14].

OpenMP (and most related shared memory-based program-
ming models) relies on a fork-join execution model, which
leverages a barrier construct to synchronize parallel threads.
Barriers — implicit or explicit — are central constructs to the
OpenMP execution model and to any shared memory parallel
program.

With the longer-term goal of supporting full-OpenMP par-
allelism, in this paper we present a study of several imple-
mentations of OpenMP-like barrier algorithms for the Single-
Chip Cloud Computer (SCC). The aim of this work is to gain
insight into the behavior of different barrier algorithms in the
OpenMP context in order to determine which of them is most
appropriate for a given scenario. In particular, we consider
barrier optimizations that leverage SCC-specific hardware sup-
port for synchronization, or its explicitly-managed portion of
the memory hierarchy (i.e., message passing buffers). Our
experimental results section provides a detailed evaluation of
the performance achieved by different approaches.

The rest of the paper is organized as follows. The spec-
ification of the target system SCC is presented in Section
II. Section III describes the target barrier model within the
OpenMP fork-join mechanism. Different barrier algorithms are
described in Section IV. Section V discusses the experimental
results. Finally, our conclusion and future works are given in
Section VI.

II. TARGET DESCRIPTION

The SCC [8], has been designed to explore the future of
many-core computing by Intel. The architecture of the SCC
resembles a small cluster or “cloud” of computers. The Intel
SCC is composed of 48 independent Pentium cores, each with
16KB data and program caches and 256KB L2 cache. Fig 1



shows the cores connected with a 4x6 2D mesh. The SCC
has 24 dual-core tiles connected to a router. Each tile contains
two cores, a Mesh Interface Unit (MIU) and two test-and-set
registers. The cores are connected via a mesh network with
low latency and high bandwidth (256 gigabytes per second).
The SCC does not use any cache coherency between the
cores, but rather offers a special hardware in terms of Message
Passing Buffer (MPB) or Local Memory Buffer (LMB) for
explicit message-passing between cores. The MPB (16KB) is
small but fast memory buffer, shared by all the cores to enable
fast message passing between cores. Each core has a 8KB
partition of MPB space. The SCC architecture provides a new
instruction called CLIINVMB and a new memory type called
MPBT, to provide the coherence guarantee between caches
and MPBs. The MPBT data is not cached in the L2 cache,
but only in the L1 cache. Of course, when reading the MPBs,
a core needs to clear the L1 cache. As the SCC cores only
support a single outstanding write request, a Write Combine
Buffer (WCB) has been added to combine adjacent writes up
to a whole cache line which can then be written to the memory
at once. It is used only for writes to memory typed MPBT.
When a core wants to update a data item in the MPB, it can
invalidate the cached copy using the CLIINVMB instruction
[9]. Since explicit management of MPBs for message passing
is quite burdensome, Intel provides an MPI-like message
passing interface, called RCCE [10]. It is a small library
for message passing tuned to the needs of many-core chips
such as SCC. The communication between cores occurs by
transferring data from the private memory through the L1
cache of the sending core to the MPB and then to the L1 cache
of the receiving core. The MPB allows L1 cache lines to move
between cores without having to use the off-chip memory.
There are also four DDR3 memory controllers on the chip,
which are connected to the 2D-mesh as well. Each controller
supports up to 16GB DDR3 memory, resulting in a total
system cacpacity of 64GB. Each core is able to access only
4GB of memory because it is based on the IA-32 architecture.
Therefore there must be a way to tell which parts of memory at
the controllers belongs to which core(s). To solve this problem,
Intel has come up with Lookup Tables (LUT). Each core has
a LUT, which is a set of configuration registers that map the
cores’ 32-bit physical addresses to the 64GB system memory.
In addition, an external programmable off-chip component
(FPGA) is provided to add new hardware features to the proto-
type. The off-chip FPGA in SCC has additional registers which
could used by cores to notify each other; Atomic Increment
Counters (AIC) and Global Interrupt Registers (GIR) [11]. The
SCC’s cores are able to send an interrupt to another core by
writing a special value to the configuration registers of that
core by using GIR.

III. THE OPENMP FORK-JOIN MODEL AND THE TARGET
BARRIER

The cores of our system SCC can execute only one process
at a time, therefore in the rest of the paper, we consider
core and thread as equivalent. OpenMP adopts the fork-join
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Fig. 1: Layout and tile architecture for the SCC

execution model. Here, the program executes serially within
a single thread, referred to as the Master thread. The Master
thread executes sequentially until it encounters a #pragma omp
parallel directive. Here, a parallel region is created, and a
number of threads (slaves) is involved, which execute the code
inside the region (parallel construct). At the end of the parallel
construct the slave threads synchronize on a barrier, then only
the Master thread resumes execution.

One common way to implement parallel regions is to create
new threads on the fly relying on standard threading libraries
such as Pthreads. However, Pthreads on SCC would require
dedicated abstraction layers to allow threads on different cores
to communicate. Therefore, our approach relies on a custom
micro-kernel code [12] [14] executed by every core at startup.
To minimize the cost associated to dynamic thread creation we
assume a fixed allocation of the Master and slave threads to
the processors. Master and slave threads execute different code
based on their core ids. After system initialization, the Master
core jumps to the execution of the parallel program, while
the slaves wait on the barrier. When the Master encounters a
parallel region, it invokes the runtime system, points the slaves
to the parallel function, then releases them from the barrier. At
the end of the parallel region, a global barrier synchronization
step is performed. The Master continues executing sequential
parts of the application, while the slaves come back on the
barrier, thus implementing the join mechanism. Our imple-
mentation is based on the work from Marongiu et al. [7].

IV. BARRIER ALGORITHMS

There are several implementations of OpenMP for MPSoCs
that adopt a centralized shared barrier [3] [4] [5]. This kind
of barrier relies on shared entry and exit counters, which are
atomically updated through lock-protected write operations.
In a centralized barrier algorithm, each processor updates a
counter to indicate that it has arrived at the barrier and then
repeatedly polls a flag that is set when all threads have reached
the barrier. Once all threads have arrived, each of them is
allowed to continue past the barrier. A serious bottleneck arises
with this algorithm because busy waiting to test the value of
the flag occurs on a shared location [12]. Moreover, in non-
cache coherent systems such as SCC, the updates to barrier



structures (e.g., control flags, counters) in shared memory must
be explicitly kept consistent.

In the RCCE native programming model [10] there is a sim-
ple barrier algorithm based on a local-put, remote-get approach
for message passing. Namely, a flag based synchronization
only touches the MPB at that core, which has initiated an
update. Consequently, the release cycle requires remote polling
of the Master core, repeatedly for all following cores. At least,
this approach avoids a centralized structure.

We exploit a Master-Slave barrier scheme and implement
several algorithms on SCC as described below, as part of
an effort to investigate ways in which OpenMP and its
implementations may scale to large thread counts.

1) Shared algorithm (SB) This is the baseline imple-
mentation of the barrier algorithm, which allocates the
flags in local shared memory (Master’s MPB) and every
core is responsible to initialize its own flag therein. We
have used the MPB to allocate flags and the approach
of RCCE programming model as a baseline, since this
memory region is fast and accessible by all cores without
any coherency issue and mainly used for message-
passing between the SCC cores in an explicit way.

2) Master-Slave algorithm (MSB) The Master-Slave form
of the barrier algorithm [12] [14]. In this approach the
Master core is responsible for locking and releasing the
slave processors. This is accomplished in two steps.
The Master core is responsible for gathering slaves at
the barrier point. This operation is executed without
resource contention, since every slave signals its status
on a separate flag. After this notification step slaves enter
a waiting state, where they poll on a private location. In
the release phase of the barrier (that has been imple-
mented as a separate function to allow doing indepen-
dent work before releasing the slaves) the Master broad-
casts a release signal on each slave polling flag. The
Master-Slave barrier algorithm removes the contention
for shared counters. However, the traffic generated by
polling activity is still injected through the interconnect
towards shared memory locations, potentially leading
to congestion. This situation may easily arise when a
single processor performs useful work while the others
wait on a barrier. Marongiu [14] exploited a distributed
implementation of the barrier algorithm to address this
issue by allocating each of the slave poll flags onto
their local memory and using a message passing-like
approach for signaling.

3) Shared-Master-Slave algorithm (S-MSB) The same as
MSB, but instead of allocating each of the slave’s poll
flag onto their local memory this scheme uses local-
get, remote-put approach. During the gather phase the
Master core polls on memory locations through which
slaves indicate their arrival from their own MPB.

4) Shared-Master-Slave-Interrupt algorithm (S-MSBI)
The SCC has an FPGA as shown in Fig 1, which is
directly connected to the on-die mesh interconnect and
allows for adding new hardware features. Reble [15]

used exponential backoff and AIC for Lubachevsky bar-

rier implementation. This implementation significantly

reduces the contention and leads to promising results.

Also, he implemented another approach based on AIC

and MPB, only by using a single AIC to indicate in-

coming threads and MPB located flags to release waiting

threads. An S-MSBI uses a GIR to release the slaves, and

the same approach of gather phase in S-MSB. Petrovic

[16] presented the broadcast algorithm based on GIR to

address the problem of the delay using MPB polling for

notification. We exploited this technique to reduce the

time consumption in the release phase of MSB by using

the user-space library for interrupt handling. The slave

core waits until it receives the interrupt signal from the
Master.

5) MSB-Interrupt algorithm (MSBI) It is a same ap-

proach of MSB, but using GIR to terminate the slaves.

Listing 1 and Listing 2 show the software implementation of

barrier algorithms based on the Master-Slave approach (similar

implementations have been done for the other barriers).

Listing 1: The barrier code executed by the Master core to
gother and release Slaves.

void Wait () /1 Wait ()
{
int counter;
while (counter != (nCores — 1))
do{
CLIINVMB () ;
}while (*xMASTER_FLAG( counter) != 0);
CL1INVMB () ;
*MASTER_FLAG( counter) = 1;
FLUSH_MPB () ;

counter ++;

}

void Release () /1 Release ()

{
unsigned char old_val;
int i;
CLIINVMB () ;
old_val = *xSLAVE_FLAG(myCorelD );
CLIINVMB () ;
for (i = 1; i < num_threads; i++)

«*SLAVE_FLAG(i) = old_val + 1;

*SLAVE_FLAG(myCorelD) = old_val + 1;
FLUSH_MPB () ;
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Fig. 2: Cost of barrier algorithms with increasing number of cores

Listing 2: The barrier code executed by the Slave Core to
notify the Master core

// Slave_Enter ()

void Slave_Enter ()

{
CLIINVMB () ;

volatile unsigned char old_val;

old_val = xSLAVE_FLAG(myCorelD );

/+ Upadted Master_flag pointer

and fool WCB to write to MPB. x/
CLI1INVMB () ;
*MASTER_FLAG(myCorelD) = 0;
FLUSH_MPB () ;
do{
CLI1INVMB () ;
}while (*SLAVE_FLAG(myCorelD) == old_val);

V. EXPERIMENTAL RESULTS

In this section we present the experimental setup and the
results achieved. All the experiments have been conducted
under the default SCC settings: 533 MHz tile frequency,

800 MHz mesh and DRAM frequency and standard LUT
entries. We use sccKit 1.4.2.2, running a custom version
of sccLinux, based on Linux 2.6.32.24-generic. In order to
perform timing analysis, Intel RDTSC (Read Time Stamp
Counter) instructions [17] are inserted before and after the
barrier algorithm for 100,000 iterations and then the difference
between their values is computed. The time measurement is
only performed and printed on the Master core.

A. Barrier synchronization

In this section we discuss the cost for different approaches
to perform barrier synchronization. The experiments have been
carried out by executing only barrier code on the platform (see
Listing 1 and 2). No other form of communication between
cores takes place, thus allowing to estimate how the algorithm
scales with increasing traffic for synchronization only. The
scalability of the different barriers described in Section IV
is analyzed by varying the NoC topology size. We refer to
the topology size only by the number of cores, however the
topology takes also into account the external off-chip device
( off-chip memory and FPGA register) .

The direct comparison of these barriers is shown in 2. The
SB algorithm provides the worst results as compared to MSB
and S-MSB, as expected. The cost to perform synchronization
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Fig. 5: S-MSB Algorithm

across 48 cores with this algorithm is 20,239 cycles. The
MSB scheme, slightly mitigates the effects of the bottleneck
due to contended resources, allowing to synchronize 48 cores
in 19,800 cycles. Globally, S-MSB results always the fastest
barrier, making it the ideal candidate to perform barrier
synchronization regardless of system size and NoC topology
when no hardware support is provided. This algorithm reduces
the cost for synchronizing 48 cores to 17,500 cycles.

The cost for each of the phases (gather + release) of
the algorithms MSBI and S-MSBI are plotted in Figures 3
and 4 respectively. Comparing Figure 5 with Figures 3 and
4 we can see that, although the S-MSB release phase is
the slowest implementation, the corresponding MSBI and S-

MSBI implementations are among the fastest. The results
indicate that latencies observed by different cores in the release
phase are practically indistinguishable (about 250 cycles). This
implies that the cost for notification using parallel interrupt
is practically constant with respect to the number of cores
notified. The reason for bad scaling of the interrupt mechanism
is contention, as confirmed by Petrovic [16]. There is a number
of steps that a core should perform when receiving an interrupt.
This includes reading from the status register, determining
the sender and resetting the interrupt by writing to the reset
register. Since all the registers related to interrupt handling are
on the FPGA, access to them is handled sequentially.

Therefore, when an interrupt is sent to many cores at
once, they all try to access their interrupt status register at
the same time, but their requests conflict and are handled
one after another, which explains the observed performance
loss. Consequently, this problem increases the overhead of the
barrier.

B. Barrier Algorithm Optimization

The SCC hardware recognizes two types of accesses to its
message passing buffer (MPB): MPBT or non-MPBT. There
is also an (un-cached (UC)) mode; the data read from such
memory is not cached and write operations are directly issued
to the network. Concurrent writes to the same memory line do
not conflict. We could also mix two modes to access the same
physical address as illustrated in [9]. The barrier algorithms
are implemented by using shared bytes and the type of data
used is MPBT. A common implementation for a read-updates-
write operation on these bytes as below:

1.CLIINVMB () ;

2.<read byte(s)>
3.CLIINVMB () ;

4.<write modified byte(s)>
5.FLUSH_MPB () ;

The barrier algorithms exploit UC mode, and we could
avoid extra overhead for invalidating MPBT lines before read
and write operations, as well as the cycles required to flush the
write-combine buffer (WCB). Figure 6 shows that UC mode
allows a 41.5% overhead reduction for the S-MSB algorithm
for 48 threads. It is clear here that the choice of a good barrier
implementation can be memory access mode dependent.

VI. CONCLUSION AND FUTURE WORK

In this paper we discussed several barrier algorithms to
support the OpenMP fork-join execution model on the Single-
Chip Cloud Computer, considering standard implementations
and optimizations specific to SCC (i.e., use of HW support
for synchronization, or explicit allocation of barrier structures
in the MPB for reduced contention). Our experimental results
highlight that we can obtain a significant reduction in overhead
for standard barrier algorithms when using Shared-distributed
busy-wait approaches in UC mode. Regardless of the NoC
topology of SCC and system size, the S-MSB-UC (the im-
plementation based on UC mode access) is the best barrier
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approach, which allows 41.5% faster synchronization than S-
MSB and 48.5% faster synchronization than SB algorithm.
The findings of this paper will constitute the basis for our
future work, namely the implementation of a fully compliant
OpenMP programming model for the SCC. We are currently
dealing with the toughest challenge to support OpenMP data
sharing on SCC: making shared data from main memory
visible to all threads in presence of several OS instances,
each with its virtual memory space. Besides these functionality
issues, we are also dealing with the necessity of ensuring a
consistent view of shared memory in absence of dedicated
hardware cache coherence support.
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