Analysis of Power Management Strategies for a
Single-Chip Cloud Computer

Robert Eksten’, Kameswar Rao Vaddina*', Pasi Liljeberg! and Juha Plosila
*Turku Center for Computer Science (TUCS), Joukahaisenkatu 3-5, 20520 Turku, Finland
TDepartment of Information Technology, University of Turku, Turku, Finland
Email: {roekst, vadrao, pakrli, juplos}@utu.fi

Abstract—The 48-core SCC allows us to test and analyze
the efficiency of power management algorithms in a multicore
environment. In this paper we explain how we implemented
these algorithms on the Intel SCC and how they performed
in comparison to each other. Two of the algorithms, Core-Pool
and PAST, were introduced in previous research articles and
one algorithm, Derivate, was developed in this research project.
The benchmark chosen to test these algorithms was a NASA
Advanced Supercomputing benchmark that was imported to the
platform. We analyzed the algorithms according to the execution
time of the benchmark and the average power consumption while
the test was running. The algorithms were compared against
each other and reference values while having the benchmark
running at constant power level. Through this analysis, we were
able to determine that Core-Pool gives the best results in power
efficiency with PAST close behind with almost as promising
results. Derivate on the other hand proved to be still lacking,
and in need of redesign in order to provide results that are
comparable to the other power management algorithms.

Index Terms—power management algorithms, the single-chip
cloud computer, multicore power management, dynamic voltage
and frequency scaling.

I. INTRODUCTION

HE market for battery powered consumer electronics is
growing rapidly. These appliances have very stringent
constraints on the amount of power dissipation of their com-
ponents. As the complexity and performance of the systems
increases by the ever increasing user demand, reducing power
dissipation becomes a primary concern of the system designer.
Excessive power dissipation leads to increase in on-chip tem-
peratures which increases the cost and noise for complex cool-
ing solutions. Novel low-power design methodologies [1][2]
have been suggested for chip-level designs. But more often
than not electronic systems are more complex than a single
chip. Today’s mobile phones and laptop computers often
consist of tens or sometimes hundreds of components with
each components having a different power dissipation profile.
Managing such complex array of components in modern
systems need complex power management techniques.
Future complex systems would have multicores at their
heart. These multicore systems can be either homogeneous or
heterogeneous systems and may use different communication
paradigms like Network on a chip. Some simpler methods of
fine grain power management techniques for multicore systems
have been proposed by researchers from Intel [8][9]. Some
of the techniques they suggest include, 1) turning of idle

cores to save leakage power, 2) providing each core with two
supply voltages and two sleep transistors to select a supply
voltage and 3) providing each core with a frequency divider
to select the frequency of operation. This greatly simplifies the
design and power delivery mechanism. On the other hand any
power management in a network is difficult, because power
management techniques like clock gating or sleep-transistors
may incur wakeup latency thereby impacting the performance
of the system [8][9]. Although, in a network on a chip,
cores with smaller area give more performance throughput
at lower power envelope, they increase the network power
consumption. So, a holistic approach is necessary in order
to study the system power and performance as the field of
power-aware architectural design and optimization becomes
important for many-core designers because of the immense
and unique challenges involved. In this work we implement
various power management techniques to control the power
dissipation of Intel’s single chip cloud computer.

Previous research done by [6] indicates that power manage-
ment algorithms can have an impact on the power efficiency
of the system which was demonstrated with promising results.
This algorithm is one of the algorithms that will be tested and
run through our benchmark in order to see how it performs
under our conditions

The 48-core Single-chip Cloud Computer (SCC) provides
a platform for implementation and capabilities for power
management. Previous work done by Shi Sha et al. and
Pollawat Thanarungroj et al. has researched the energy and
power efficiency of different modes of operation on the SCC in
addition to the relation between power consumption, execution
time and the number of cores executing the task [10][11].

In this paper we will go over the power management
capabilities of the SCC and how they are used in a power
management program. Power management algorithms were
implemented on the SCC built to use the power management
capabilities that are present on the SCC. Finally, the perfor-
mance of each algorithm is analyzed in order to determine
their effectiveness.

II. THE INTEL SINGLE-CHIP CLOUD COMPUTER
A. Architecture

The Single-Chip Cloud computer is a 48-core research chip
developed by Intel [5]. The chip contains advanced features,
such as the ability for fast communication between cores and

(o

DIMM

[Svstem mtertoce |

Fig. 1. The Single-chip Cloud Computer Layout [5].

the ability to alternate the frequency and voltage level of
different parts of the chip. We also have the capability of
reading the exact amount of instructions executed as well
as the total number of cycles executed by the core. These
values can be read through the model specific registers. These
features allow us to implement and analyze different power
management algorithms and measure their effectiveness on
this platform. The SCC is built out of tiles containing two
Intel P54C processors laid out in a six by 4 grid totaling 48
cores as shown in Figure 1. Communication between the tiles
is enabled by routers at each tile that connect the cores to the
network. This network allows cores to communicate with each
other and the four Memory Controllers (MC) that connect the
cores to the Dual In-line Memory Modules (DIMM). [4]

An off-chip FPGA module is used to control the chip,
such as booting operating systems or loading programs. The
FPGA module uses the System Interface to connect to the
SCC. Access to the module is granted through a Management
Console PC (MCPC). This same module also gives us to the
ability to analyze power consumption, as we have access to
the voltage level and current drainage numbers for the whole
chip. Furthermore, these same values can also be read from
the cores, which allows our programs on the SCC to monitor
power consumption.

B. Power management capabilities

The SCC contains a Voltage regulator controller (VRC)
component. Voltage is adjusted in steps of 0.1 volts in the
range between 0.7 and 1.1 volts. Frequency is controlled by a
frequency divider with values between 2 and 16 operating at
a global frequency of 1600 MHz. All but the highest voltage
level imposes restrictions on what frequency dividers are
accepted. The voltage and frequency levels can be controlled
by directly adjusting the values in the registers of the VRC,
but this can be dangerous, as faulty values can lead to breaking
the chip. In order to prevent this, a dedicated library has been
developed to provide these power management functions in
addition to other features. [4]

Calling the power management functions alters the power
level of the domain after a short delay. Altering the frequency

level only takes a couple of clock cycles before taking effect,
but altering the voltage level will take a couple milliseconds
before taking effect. The program typically requests a new
frequency divider, and while it is possible to change frequency
without altering voltage if the voltage level is sufficient, it
is more typical to adjust the voltage level so that it is the
minimum required voltage level for the new frequency divider.
This means that voltage and frequency are typically adjusted
in tandem, changing one will cause the other to react as well.

The tiles of the SCC are divided into six different power
domains. Each power domain consists of a two by two grid of
tiles. Because the tiles are laid out in a six by four grid, the
domains are laid out in two rows; the top and bottom half each
contains three power domains. One of the cores in the power
domain is called the power domain master; only it is capable of
calling the power management functions successfully. Should
any core other than the power manager attempt to utilize these
functions, they will simply execute without actually having any
effect on the state of the domain.

C. RCCE-library

With this library we can utilize the advanced and proprietary
features of the platform. Some of these features are functions,
such as using the MPB or power management functions, but it
also provides other “background maintenance”, such as cache
coherency because the SCC does not maintain its own cache
coherency protocol. The library provides a basic interface as
well as a advanced interface for advanced users. The advanced
interface has a more detailed interface that allows for greater
control over the functions of the library. [3]

The library also contains an interface for shared memory
initialization in case the cores require shared memory with
one another or the MPB is insufficient in size or not practical.
Though when utilizing shared memory, it is important to prop-
erly synchronize the access in order to avoid inconsistencies.

The RCCE-library advanced interface also contains the
power management functions used to handle all dynamic
voltage and frequency scaling. The power domain master of
each power domain can call these functions that provide a
safe way of writing into the registers of the VRC. With these
functions we can implement different power management
algorithms and test their effectiveness on the platform.

III. ARCHITECTURAL POWER MANAGEMENT
ALGORITHMS

Power management algorithms read load values from the
cores and take advantage of intermittent idle time in the cores
that enable us to lower the frequency level of the core while
having a minimal effect on the execution time of the program
running on the core. The implementation of each of these
algorithms is explained in the later parts of this paper, here
their approach and behaviour is introduced.

A. Core-pool

IBM has developed a power management algorithm for
multicore systems that scales well as the number of cores

increases [6]. In addition, the algorithm has the ability to take
into account idle cores. The algorithm functions by filtering
out idle cores, and then attempting to separate the remaining
cores into two pools, cores that are active and cores that have
slack. The ratio between the numbers of cores in the pools is
then used to make power management decisions.

Core-Pool-algorithm reads the current load in percentage as
a decision metric. The algorithm has two thresholds according
to which each core is categorized. Should the load value be
above a certain activity threshold, it is added into a pool of
active cores. Afterwards, the load value is tested against a
slack threshold. Slack has the meaning that the core is above
the activity threshold, but the core still has so much idle time
that it can tolerate a lower clock frequency. Should the core be
above the activity threshold but below the slack threshold, it is
added in the pool of cores with slack. Should the load be below
the activity threshold, it is not added into the computation. This
process is repeated for each core in the domain.

When all cores in the domain have been processed, the
active and slack counters are used to calculate a slack ratio
by dividing the slack counter with the active counter. This
slack ratio is then used as a combined metric of load for all
the cores. The more cores that are in the slack region, the
closer will slack ratio be to 1. On the other hand, the more
cores that are above the slack threshold, the closer will slack
ratio be to zero. The slack ratio will then be tested against an
upper threshold and a lower threshold. If slack ratio is between
the upper threshold and 1, will frequency be decreased and
if the slack ratio is between zero and the lower threshold,
will frequency be increased. If the slack ratio is somewhere
between the upper and lower threshold, will the frequency
remain the same.

More information on how IBM deployed this algorithm and
the practical results discovered can be found in [6].

B. PAST

PAST is a power management algorithm that is based on
one assumption; future load can be predicted by the previous
load. This means that the load in the previous interval is used
to determine the appropriate frequency and voltage level for
the next interval. [7]

The load in this interval will be measured first. The Million
of Instruction per Second (MIPS) value for each core is read
and then tested for a small idle threshold. This is used to
not include any idle cores when considering what frequency
divider is appropriate. After all active cores are known, they
are averaged in order to get a load metric for the whole
domain. This load metric is then designated to a corresponding
load region. Depending on what load region the current load
fits into, the frequency and voltage levels are changed to
correspond to match it. The same process is repeated at the
next measurement interval.

C. Derivative

Derivative is an algorithm that was developed in this re-
search. First, all load values are read from the model specific
registers in the cores and we filter out all idle cores. After all

idle cores are filtered out, we average the load value so that
we get an average MIPS value that represents the activity level
in the domain. MIPS values are used to determine whether the
power level will be altered. Comparing percentile load values
between two different power levels can lead to undesired
activity. If all cores are idle, the frequency and voltage levels
are put at the lowest possible.

If there are cores that are not idle, the load value from
this interval is compared to the previous load in the previous
interval to determine if load has increased or decreased. Should
the current load be higher in comparison to the last load, the
frequency level will be increased. On the other hand, if the
current load is lower than the last load, will the frequency
level be decreased. Afterwards, the current load is written into
memory as it will be needed in the next interval.

IV. DEPLOYMENT

The SCC is used to serve as a platform for the power
management program. The program was written using the Intel
C compiler and the RCCE-library.

A. Power Management Program

The program separates the power domain master from the
rest of the cores in the domain. The power domain masters
read the load values from the other cores in the domain and
reacts to them according to the power management algorithm
in use.

Accessing load values is achieved through programming the
Model Specific Registers (MSR). With the Intel P54C MSR’s,
we can read the total number of executed instructions as well
as the total number of cycles the core has executed. These,
along with accurate timer measurements from an off-board
FPGA, can be used to calculate the load in percentages, in
addition to calculating the MIPS value. An off-board FPGA
is mandatory for accurate time measurements because our
Dynamic Voltage and Frequency Scaling (DVFS) renders all
timer measurements done by our core to be unreliable. This
is due to the fact that the timers in cores fail to take in
to account the alternating frequency level and thus fail to
provide accurate timer measurements. With load values we
get a load measurement that is always relative to the domain
frequency, while analyzing the MIPS values gives us an
absolute value of the domain load through different power
domains. Of the 8 cores that belong in each power domain, 7
cores, that are known as the power domain slaves, perform the
previously mentioned tasks and write the results in a shared
memory buffer. The power domain master does not execute the
previously mentioned tasks. The power domain master reads
the load values from the shared memory buffer. Now that the
power domain master has all the load metrics from each core
in the domain, it is left up to the power domain master to
analyze these metrics and behave accordingly.

If the whole power domain is not in use, the algorithms are
prepared to handle this. All algorithms are scaled to operate
even in power domain sizes under 7, and the size of the power
domain can be determined at runtime.

In addition to this, there is one designated core that mea-
sures the power consumption at steady intervals. This is done
by multiplying the voltage and current consumption at any
given moment in order to calculate the power consumption.
These values represent the power consumption of the whole
chip. By calculating the power consumption at fixed intervals
and adjusting it so that power consumption is only read when
at least some load is present on any one core, we can accu-
rately measure the duration and average power consumption of
the program running with the power management algorithm.
This allows us to analyze the effectiveness and refine the
algorithms for future runs. The interval value is expanded later
in this paper.

B. Implementation of Algorithms

The previously introduced power management algorithms
have been implemented on the SCC. The description of these
algorithms left a lot of details unspecified, many variables had
to be tried and tested to find out values that work on the
SCC. The SCC frequency divider does allow the frequency to
be scaled between values of 2 and 8. The global frequency
is set at 1600 MHz, which gives us a maximum frequency
of 800 MHz and a minimum frequency of 200 MHz. The
frequency divider of the SCC does go down to 16, down to
a frequency of 100MHz, but as the lowest frequency dividers
between 9 and 16 offer little change in frequency and power
consumption, and climbing up from the lowest frequency
divider of 16 would lead to our implementations being slow
to respond to changes in load. The maximum and minimum
level for the frequency divider where inserted into the pro-
gram by defining the constants MAX_FREQ_DIV_LEVEL
as 8 and MIN_FREQ_DIV_LEVEL as 2. In addition, some
implementations use the variable powerLevel that is set as the
MAX_FREQ_DIV_LEVEL at the start of the program. The
function powerChange(int newFrequencyDivider) is called by
all algorithms and it sets the frequency level as the one
specified by newFrequencyDivider and adjusts the voltage to
the minimum value that is accepted by the new frequency
divider.

C. Implementation of Core-Pool

The implementation of this algorithm is illustrated in Algo-
rithm 1. First the power domain master reads the percentile
load values of the other cores in the domain. Percentile load
was chosen in order to easily manage all load metrics from
different power levels. Handling MIPS values would have been
highly impractical, as we would have to handle load values
differently in each power level. Each load is then compared
against the constant ACTIVE_THRESHOLD, which has been
set at a low value of 5. These values has been chosen, as
typical the benchmarks constantly have load that is above
this value and when no program is running, the threshold is
exceeded only in special circumstances. Should the load be this
high, the counter for active cores in increased and the load is
tested against the constant SLACK_THRESHOLD which has
been set at a value of 17. The reason for this value is partly
because the load generated by our benchmark programs is

Algorithm 1 Core-Pool implementation

1: i < 0, activeCount < 0, slackCount < 0
2: while i # domainSize do
load < buf ferWithLoads|i] # Reads load in percentages
if load > ACTIVE_THRESHOLD then
activeCount + +
if load < SLACK_THRESHOLD then
slackCount + +
end if
end if
10: i+ +
11: end while
12: if activeCount > 0 then
13: slackRatio + slackCount/activeCount
14: if slackRatio > SLACK_RATIO_UPPER then

R A

15: if powerLevel # MAX_FREQ_DIV_LEV EL then

16: power Level + + # Frequency div. is increased
17: powerChange(power Level)

18: end if

19: else if slackRatio < SLACK_RATIO_LOW ER then

20: if powerLevel # MIN_FREQ_DIV_LEV EL then

21: power Level — — # Frequency div. is decreased
22: powerChange(power Level)

23: end if

24: end if

25: else

26: powerLevel = MAX_FREQ_DIV_LEVEL
27: powerChange(power Level)

28: end if

29: return b

quite low and partly because it has shown positive results in
our testing environment. Should the load be lower than this, the
core is marked as having slack by increasing the counter for
cores with slack. Once every core in the domain is processed
and these two values have been computed, the counter for
slack cores is divided by the counter for the cores that are
active. Should the resulting value be close to one, it means
that most or all of the active cores in the domain have low
load. On the other hand, if the resulting value is close to zero,
it means that most of the cores in the domain are above the
slack threshold, and the frequency should be increased. The
constant SLACK_RATIO_UPPER is a value that was set at
0.6. This value was chosen because in a full power domain
we have seven cores in computation, which translates to 5
cores needing to have slack for the power level to decrease.
This enforces the power domain to stay in higher frequency
for a longer time, even if only a few cores have high load.
On the other hand the constant SLACK_RATIO_LOWER has
been set at 0.4, with the same idea that we can easily react
to alternating load values to find a correct power level while
disallowing a single core to dictate the power level of the
domain. With this threshold values, 5 cores need to be above
the slack threshold in a 7 core domain for power level to
increase.

On the other hand, if the number of active cores is zero, we
will simply go to the lowest power level .

D. Implementation of PAST

The Implementation of this algorithm can be seen in Al-
gorithm 2. Each power domain master reads the MIPS value
from each core in the power domain. MIPS give us an ability
to use a unified way of measuring load through across all

Algorithm 2 PAST implementation

i < 0, numberO fSamples < 0, currentLoad < 0
while ¢ # domainSize do

currentLoad+ = load Buf fer[i]

numberO fSamples + +

i+ +
: end while
. averageLoad < currentLoad/numberO fSamples
. if currentLoad < 10 then
powerChange(8)
10: else if currentLoad < 30 then
11: powerChange(7)
12: else if currentLoad < 50 then
13: powerChange(6)
14: else if currentLoad < 70 then
15: powerChange(5)
16: else if currentLoad < 90 then
17 powerChange(4)
18: else if currentLoad < 110 then
19: powerChange(3)
20: else
21: powerChange(2)
22: end if

R A N

Frequency div. is 8 etc.

power domains. The MIPS-number is calculated by dividing
the number of millions of instructions with the time elapsed
since the last measurement interval. The time since the last
interval is calculated through the timers of the off board FPGA.
With these values the power domain master can calculate the
average load in the power domain and adjust power levels
accordingly. Each MIPS region is mapped to one power level,
and the power domain master will simply switch into the
appropriate power level until the next measurement interval.
Rapid changes in load will cause PAST to rapidly switch to a
power level that is appropriate for the current load.

E. implementation of Derivate

Algorithm 3 Derivate implementation

1: numberO fSamples < 0,1 + 0, currentLoad < 0
2: while i < domainSize do
3: coreLoad + loadBuf fer|i] # Reads load in MIPS
4: if load > ACTIVITY_THRESHOLD then
5: numberO f Samples + +
6: currentLoad < currentLoad + coreLoad
7: end if
8 i+ +
9: end while
10: if numberO f Samples > 0 then
11: currentLoad < currentLoad/numberO fSamples
12: if currentLoad > lastLoad then
13: power Level — — # Frequency div. is decresed
14: powerChange(power Level)
15: else if currentLoad < lastLoad then
16: power Level + + # Frequency div. is increased
17: powerChange(power Level)
18: end if
19: lastLoad < currentLoad
20: else

21: power Level < MIN_FREQ_DIV_LEVEL
22: powerChange(power Level)
23: end if

The implementation of this algorithm is shown in Algorithm
3. Each power domain master first reads the MIPS load
values of each core to determine which cores are inactive.
The inactivity threshold is represented by the constant AC-
TIVITY_THRESHOLD with a value of 5. The reasoning for

this value is the same as in the previous algorithm, it is enough
to filter out cores with idle load and when a program is active,
this value is typically exceeded. Any cores that contain a load
value higher than this threshold have their load value added
into a load buffer. Should no cores be above the minimum
activity threshold, the power domain will be set to the lowest
power level. Afterwards this load buffer is divided with the
amount of active cores in order to determine the average load
in the power domain. This load value is then compared against
the load value in the previous interval. Should the load value
be higher in this interval, the domain power level is increased.
If the current load value is below the load value in the previous
interval, will the domain power level be decreased. In both of
these cases, the power level change will increase or decrease
the frequency divider of the power domain, unless it is already
at the highest or lower possible power level.

Finally the current load level is written into a buffer that
will be used in the next measurement interval.

V. RESULTS

Benchmarks created by Nasa Advanced Supercomputing
(NAS) division were used in order the test the effectiveness of
each algorithm. In particular the NAS BT.A.25 was used, as
it provides a good amount of cores to work with and a good
execution time that is not too short or too long. The average
execution time and power consumption were recorded across
multiple runs on each power management algorithm. The
analysis of power consumption and execution time was done
by an individual core reading load values and determining
when the program starts and stops. Power consumption is read
from the registers of the off-board FPGA at a fixed interval.
By default, the power consumption measurement is done at
a slowish speed of about 1 second, which had to be then
shortened in order to better analyze the effectiveness of each
algorithm, as the power level can increase or decrease in a
short time interval. The shortening of the power consump-
tion measurement interval did cause some spikes in current
drainage or voltage to appear when accessing these values,
which then have to be discarded. A 0.2 second interval has
been chosen between power level measurements to give us a
short measurement interval and cause only a minimal amount
of spikes in our measurements.

After the program is completed, the core reports the average
power consumption while the program was running as well
as the execution time of the program. These values are used
to analyze the effectiveness of each algorithm on different
benchmarks. The benchmark was also run separately at the
highest possible frequency and lowest possible frequency in
order to better put our research into perspective.

A. NAS BT.A.25 Benchmark

In Table I we can see the effectiveness of each algorithm
by comparing the algorithms power consumption and execu-
tion time values with each other and the default values of
having the program run at a constant 800MHz and 200MHz,
which are the maximum and minimum frequency values the
algorithms can apply. These results show us that, with these

TABLE I
POWER CONSUMPTION(PC) FIGURES ON NAS BT.A.25

Benchmark Exec. Time H AVG PC H Total PC

Constant 800MHz H 167 Seconds H 89 Watts H 14.9 KJoules
Core-Pool || 252 Seconds [[43.3 Waus || 10.9KJoules
PAST | 293 Seconds || 38.2 Waus [[11.2KJoules
Derivate H 285 Seconds H 50.6 Watts H 14,5KJoules
Constant 200MHz H 387 Seconds H 35.8 Watts H 13.5KJoules

TABLE 11
AMOUNT OF TIME SPENT IN EACH POWER LEVEL ON NAS BT.A.25

Benchmark || 800MHz || 533MHz || 400MHz || 320MHz
Core-Pool 33% [360% [439% [150%
PAST [12% [[00% | 10% [518%
Derivate || 357% || 212% [135% || 75%
Benchmark || 266MHz || 228MHz || 200MHz
CorePool [[18% [[00% || 00%
PAST [142% | 18% [07%
Derivate || 78% || 84% [58%

parameters and benchmark load profile, Core-Pool gives the
best average between power consumption and runtime. PAST
also shows promising results, being closely behind Core-
Pool in total power consumption with a lesser average power
consumption but a longer execution time. On the other hand
Derivate performs the worst of our algorithms by being only
slightly more efficient than having the program simply run at
maximum power level and also being clearly more inefficient
than having the program run at the lowest power level.

In addition, Table II shows how much time each algorithm
spent in each power domain during the benchmark. The
table shows that the algorithms all behave in a unique way.
Core-Pool spends most of its time in the upper values of
the power level range, but only rarely spends time in the
highest power level. On the other hand PAST spends most
of the benchmark in the middle of the power level range. By
comparing the results from this table and the execution times
in Table I we can see how Core-Pools behaviour to spend
time in higher power levels than PAST directly translates to
a faster execution time. Furthermore, the differences between
the power consumption and execution time of Core-Pool and
PAST become clear when cross-referencing with this table.

The inefficiency of Derivate is not solved by the results in
Table II. From the table, we can see how the algorithm favours
the highest power level, while the execution time is slower
than in Core-Pool and almost as slow as PAST. This shows
that the overall behaviour of Derivate is in need of rethinking
and needs to be severely altered in order for the performance
to be up-to-par with the other algorithms.

The performance figures that NAS.BT.A.25 show a clear
trend in power management algorithm efficiency, and this

same trend has been replicated in other NAS benchmarks.
To our knowledge, no other benchmarks have been imported
to the SCC-platform or they have an execution time that is
too short for our research methods. The amount of research
done on these other NAS benchmarks is not enough to show
any results, but the same pattern as displayed on BT.A.25 has
emerged quite early on these other benchmarks as well.

VI. CONCLUSION

These results show that power management algorithms on
multicore systems can be effective, and the effect they have on
power consumption is noticeable. In multicore environments
where power consumption is an issue, power management
algorithms can be used to help solve these problems.

In our test with the selected parameters for each algorithm,
Core-Pool shows the best results in overall power efficiency
of our algorithms with a slight margin. The improvement in
power consumption in comparison to the other benchmarks
shows that the algorithm is an effective power management
method. PAST comes close behind Core-Pool in efficiency,
but the results it shows might be improved by further fine-
tuning the parameters to better fit this benchmark.

Derivate on the other hand is clearly in need of redesign
and fine-tuning before it shows results that are comparable
to the other two algorithms. The power consumption is only
slightly improved and the execution time is long compared to
how much time it spends in the higher power levels.

REFERENCES

[1] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design.
Norwell, MA: Kluwer, 1995.

[2] J. M. Rabaey and M. Pedram, Eds., Low Power Design Methodologies.
Norwell, MA: Kluwer, 1996.

[3] Intel Labs,SCC External Architecture Specification (EAS) Revision 1.1,
Intel, November. 2010.

[4] Intel Labs,SCC Programmer’s Guide Revision 1.0, Intel, January. 2012.

[5] Intel Labs,SCC Platform Overview Revision 0.80, Intel, January. 2012.

[6] Karthick Rajamani, Freeman Rawson, Malcolm Ware, Heather Hanson,
John Carter, Todd Rosedahl, Andrew Geissler, Guillermo Silva, Hong
Hua, Power-Performance Management on an IBM POWER?7 Server, IBM,
August. 2010.

[7] Stefanos Kaxiras, Margaret Martonosi, Computer architecture techniques
for power efficiency, Morgan And Claypool, 2008. pp. 27-28.

[8] Borkar, S., Thousand Core Chips - A Technology Perspective, 44th
ACM/IEEE Design Automation Conference, 2007, pp.746-749, June
2007.

[9] Canturk Isci; Alper Buyuktosunoglu; Chen-Yong Cher; Pradip Bose;
Margaret Martonosi; , An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power
Budget, Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, pp.347-358, Dec. 2006

[10] Shi Sha; Jiawei Zhou; Chen Liu; Gang Quan; “Power and Energy
Analysis on Intel Single-chip Cloud Computer System”, Department of
Electrical and Computer Engineering, Florida International University,
2012.

[11] Pollawat Thanarungroj; Chen Liu; "Power and Energy Consumption
Analysis on Intel SCC Many-Core System”, Department of Electrical
and Computer Engineering Florida International University, 2011.

