OpenMP Programming on Intel® Xeon Phi
Coprocessors: An Early Performance Comparison

Tim Cramer*, Dirk Schmidl*, Michael Klemm!, and Dieter an Mey*
*JARA, RWTH Aachen University, Germany
Center for Computing and Communication
Email: {cramer, schmidl, anmey } @rz.rwth-aachen.de
TIntel Corporation
Email: michael klemm@intel.com

Abstract—The demand for more and more compute power
is growing rapidly in many fields of research. Accelerators,
like GPUs, are one way to fulfill these requirements, but
they often require a laborious rewrite of the application using
special programmmg paradigms like CUDA or OpenCL. The
Intel® Xeon Phi' coprocessor is based on the Intel® Many
Integrated Core Architecture and can be programmed with
standard techniques like OpenMP, POSIX threads, or MPI.
It will provide high performance and low power consumption
without the immediate need to rewrite an application. In this
work, we focus on OpenMP*-style programming and evaluate
the overhead of a selected subset of the language extensions
for Intel Xeon Phi coprocessors as well as the overhead of
some selected standardized OpenMP constructs. With the help
of simple benchmarks and a sparse CG kernel as it is used in
many PDE solvers we assess if the architecture can run standard
applications efficiently. We apply the Roofline model to investigate
the utilization of the architecture. Furthermore, we compare the
performance of a Intel Xeon Phi coprocessor system with the
performance reached on a large SMP production system.

I. INTRODUCTION

Since the demand for more and more compute power is
growing ever since, new architectures have evolved to satisfy
this need. Accelerators, such as GPUs are one way to fulfill
the requirements. They often require a time-consuming rewrite
of application kernels (or more) in specialized programming
paradigms, e.g. CUDA [1] or OpenCL [2]. In contrast,
Intel® Xeon Phi coprocessors offer all standard program-
ming models that are available for Intel® Architecture, e.g.
OpenMP* [3], POSIX threads [4], or MPI [5]. The Intel Xeon
Phi coprocessor plugs into a standard PCle slot and provides
a well-known, standard shared memory architecture. For pro-
grammers of higher level programming languages like C/C++
or Fortran using well established parallelization paradigms
like OpenMP, Intel® Threading Building Blocks or MPI, the
coprocessor appears like a symmetric multiprocessor (SMP)
on a single chip. Compared to accelerators this reduces the
programming effort a lot, since no additional parallelization
paradigm like CUDA or OpenCL needs to be applied (although
Intel Xeon Phi coprocessors also supports OpenCL).

However, supporting shared memory applications with only
minimal changes does not necessarily mean that these applica-
tions perform as expected on the Intel Xeon Phi coprocessor.

To get a first impression of the performance behavior of the
coprocessor when it is programmed with OpenMP, we did
several tests with kernel-type benchmarks and a CG solver
optimized for SMP systems. These tests were done on a pre-
production system, so the results might improve with the final
product. We compare the results to a 128-core SMP machine
based on the Bull Coherence Switch (BCS) technology and
elaborate on the advantages and disadvantages of both.

The structure of this paper is as follows. First, we shortly
describe the systems used in our tests in Section II and present
related work in Section III. We then describe our experiments,
first with kernels to investigate special characteristics of both
machines (Section IV) and second with a CG type solver as it
is used in many PDE solvers (Section V). We break down the
CG solver into several parts and detail on the performance
behavior of each part, comparing the performance of the
coprocessor to the BCS-based big SMP machine. We also
compare the results on both systems with an estimation of the
theoretical maximum performance provided by the Roofline
model [6]. Section VI concludes the paper.

II. ENVIRONMENT
A. Intel Xeon Phi Coprocessors

Intel recently announced the Intel® Xeon Phi coprocessor
platform [7] that is based on the concepts of the Intel Architec-
ture and that provides a standard shared-memory architecure.
The coprocessor prototype used for the evaluation has 61
cores clocked at 1090 MHz and offers full cache coherency
across all cores. Every core offers four-way simultaneous
multi-threading (SMT) and 512-bit wide SIMD vectors, which
corresponds to eight double-precision (DP) or sixteen single-
precision (SP) floating point numbers. Fig. 1 shows the high-
level architecture of the Intel Xeon Phi coprocessor die. Due
to these vectorization capabilities and the large number of
cores, the coprocessor can deliver 1063.84 TFLOPS of DP
performance. In the system we used, the coprocessor card
contained 8 GB of GDDRS memory and it was connected via
PCI Express bus to a host system with two 8-core Intel®
Xeon' E5-2670 processors and 64 GB of host main memory.

Due to the foundations in Intel architecture, the coproces-
sor can be programmed in several different ways. We used

Ring network

Ring network

Fig. 1. High-level overview of the Intel Xeon Phi coprocessor [8].

two different ways for our experiments: 1) cross-compiled
OpenMP programs natively on the coprocessor and 2) the
Intel® Language Extensions for Offload (LEO) [9]. Several
other ways are possible, like using MPI to send messages
between the host and the coprocessor, but they have not been
investigated in this work.

1) Native Execution on Intel Xeon Phi Coprocessors:
All Intel Xeon Phi coprocessors execute a specialized Linux
kernel providing all the well-known services and interfaces to
applications, such as Ethernet, OFED, Secure Shell, FTP, and
NFS. For native execution, we logged into the coprocessor and
executed the benchmark from a standard shell. To prepare the
application, the Intel® Composer XE 2013 on the host was
instructed to cross-compile the application for the Intel Xeon
Phi coprocessor (through the —mmic switch).

2) Language Extensions for Offload: The Intel Language
Extensions for Offload offer a set of pragmas and keywords
to tag code regions for execution on the coprocessor. Program-
mers have additional control over data transfers by clauses that
can be added to the offload pragmas. One advantage of the
LEO model compared to other offload programming models is
that the code inside the offloaded region may contain arbitrary
code and is not restricted to certain types of constructs. The
code may contain any number of function calls and it can
use any parallel programmingr model supported (e.g. OpenMP,
POSIX Threads, Intel® Cilk — Plus).

B. BCS System

For comparison we used a 16-socket 128-core system from
Bull (refer to Fig. 2). The system consists of four bullx s6010
boards. Each board is equipped with four Intel Xeon X7550
(Nehalem-EX) processors and 64 GB of main memory. The
Bull Coherence Switch (BCS) technology is used to combine
those four boards into one SMP machine with 128 cores and
256 GB of main memory. Although this system and the Intel
Xeon Phi coprocessor both contain a large number of cores
accessing a single shared memory, there is a huge difference
between them. The Bull system consumes 6 HU in a rack
whereas the coprocessor is an extension card in the host
system. Because of that, the Bull system contains much more
peripheral equipment like SSDs, Infiniband HCAs and so on.
Another important difference is the amount of main memory—
the coprocessor has 8 GB of memory while the BCS System

Fig. 2.

High-level overview of the BCS system [10].

has 256 GB and it can easily be extended to up to 2 TB.
However, many applications are tuned for these kind of SMPs
and we want to investigate and compare if such applications
can run efficiently on Intel Xeon Phi coprocessors. Although
the BCS system contains two years old processors, both tested
systems use a high number of cores and can deliver nearly the
same floating point performance of about 1 TFLOPS, which
makes the comparison valuable.

III. RELATED WORK

The effort for porting scientific applications to CUDA or
OpenCL can be much higher compared to directive-based pro-
gramming models like OpenMP [11]. Early experiences on In-
tel Xeon Phi coprocessors revealed that porting scientific codes
can be relatively straightforward [12], [13], which makes this
architecture with its high compute capabilities very promising
for many HPC applications. While [12] concentrates on the
relative performance of the Intel® Knights Ferry prototype for
several applications chosen from different scientific areas, we
focus on absolute performance of a preproduction Intel Xeon
Phi coprocessor, especially for memory-bound kernels. Hei-
necke et al show that the Knights Ferry prototype efficiently
supports different levels of parallelism (threading and SIMD
parallelism) for massive parallel applications. It has been
shown that memory-bound kernels like sparse matrix vector
multiplication can achieve high performance on throughput-
oriented processors like GPGPUs [14] (depending on the
matrix storage format), but only little knowledge is present
of what the performance will be on Intel’s upcoming many-
core processor generation. Many applications use OpenMP
already to utilize large shared memory systems. To make use
of these NUMA machines, data and thread affinity has to
be considered in order to obtain the best performance [15].
Taking these tuning advices into account, applications can
scale to large core counts using OpenMP on these machines,
like TrajSearch [16] and the Shemat-Suite [17] do.

N
w1
o

©200 r
-2
2 /4.;
£ 150 / A=
= /
T
§ 100 / /.
| /-4'/
c 4
£ %
o 50
0 5 ‘ : : : : ‘
1 2 4 8 16 32 64 128 256
Threads

=-BCS, scatter #-BCS, compact

coprocessor, balanced -®-coprocessor, compact

Fig. 3. Memory bandwidth of the coprocessor and the BCS system for
different numbers of threads and thread-binding strategies.

IV. BASIC PERFORMANCE CHARACTERISTICS

To get a first impression of the capabilities of the Intel Xeon
Phi coprocessors, we evaluated basic performance characteris-
tics** with kernel benchmarks. In the evaluation, we focus on
the native coprocessor performance and exclude the offload
model. First, we investigated the memory bandwidth of the
coprocessor with the STREAM benchmark [18]. Since the
memory bandwidth is the bottleneck in many sparse linear
algebra kernels, this can give us a hint on the performance
we can expect from the CG solver investigated in Section V.
Second, we investigated the overhead of several OpenMP
constructs with the help of the EPCC microbenchmarks [19].
Since the overhead of OpenMP constructs can be essential
for the scaling of OpenMP applications and since applications
have to scale up to hundreds of threads on the Intel Xeon
Phi coprocessor, these benchmarks can give a first insight into
the behavior of OpenMP applications. We compare the results
with measurements on the BCS system.

A. STREAM

As described above, we use the STREAM benchmark to
measure the memory bandwidth that can be achieved on
each system. We use Intel Compiler XE (version 13.0.1.117)
and to ensure a good thread placement we evaluate different
strategies for the KMP_AFFINITY environment variable. To
get meaningful results on the BCS system and its hierarchical
NUMA design, we initialize the data in parallel in order to
get a balanced data distribution across the NUMA nodes. We
use a memory footprint of about 2 GB on both systems.

Fig. 3 shows the measured memory bandwidth for different
numbers of threads and placement strategies on the coproces-
sor and on the BCS system. On the Intel Xeon Phi coprocessor
we cross-compiled the benchmark and started it natively on
the coprocessor. To get a good performance we needed to set
compiler options in order to enable software prefetching.

On the BCS machine, we observe a difference in the binding
schemes. The compact binding only yields small bandwidth
improvements for small numbers of threads. This is because
the binding first fills a whole socket before the next socket is
used and so measurements with 1, 2, 4, and 8 threads only

use the memory controller of one processor chip. For the 128-
threads case all sockets are used and we see good performance
of about 210 GB/s. With the scatter placement the sockets
are used as soon as possible. With 16 threads all sockets and
memory controllers of the system are used. We observe a
fast increase of the bandwidth at the beginning, but for larger
numbers of threads a plateau is reached and even slight drops
are observed.

The Intel Xeon Phi coprocessor exhibits a similar behavior.
The curve of the compact placement rises very slowly at the
beginning and goes up at the end. The compact placement
first fills the hardware threads of one physical core before
going to the next. Hence, the Intel Xeon Phi achieves the best
memory bandwidth when all cores are utilized. Although this
seems to be quite natural, it is not the case for the Intel®
Xeon' = X7750 of the BCS machine. Here using 4 of the
available 8 cores is enough to saturate one chips total memory
bandwidth.

The balanced placement [9] on the coprocessor does
nearly the same as the scatter placement on the BCS
system but the numbering of the threads is optimized, so
that threads on the same core will have neighboring num-
bers whereas the scatter placement distributes the threads
round-robin. The balanced placement achieves the best re-
sult for 60 threads, when a bandwidth of more than 156 GB/s is
observed. With an increased number of threads the bandwidth
goes down slightly to about 127 GB/s for 240 threads.

Overall the BCS system achieves in total an about 40 %
higher memory bandwidth than the coprocessor, but of course
it uses 16 processors and 16 memory controllers to do so.
The coprocessor achieves a better bandwidth than 8 of the
Xeon X7550 processors on a single chip which is quite an
impressive result.

The memory available on the BCS system is much larger
than that on the Intel Xeon Phi coprocessor, and for larger
data sets the comparison would need to take into account data
transfers through the PCI Express bus.

B. EPCC Microbenchmarks

The EPCC Microbenchmarks [19] are used to investigate
overheads of key OpenMP constructs. The micro-benchmarks
assess the performance of these constructs and provide a data
point for potential parallelization overheads and the scaling be-
havior in real applications. Here we focus on the syncbench
that measures the overhead of OpenMP constructs that require
synchronization. Of course we expect the overhead to increase
with growing numbers of threads, since more threads need
to be synchronized. The overhead of the OpenMP constructs
can be critical for the scaling of OpenMP applications and
thus it is worthwhile to take a look at the performance on
the coprocessor and to compare it to the BCS system while
running with a similar number of threads. Table I shows the
overhead of the OpenMP parallel for, barrier and
reduction constructs. The experiments were done on the
BCS system and on the coprocessor with the original EPCC
benchmark code. We cross-compiled the code for the Intel

BCS System

#Threads | PARALLEL FOR BARRIER REDUCTION
1 0.27 0.005 0.28
2 8.10 2.50 7.34
4 9.55 4.69 9.75
8 18.63 8.52 27.18
16 22.78 8.83 37.46
32 25.16 12.34 42.47
64 43.56 15.57 60.63
128 59.04 20.61 80.79

Intel Xeon Phi coprocessor (native / offload)

#Threads | PARALLEL FOR BARRIER REDUCTION
1 2.01/72.41 0.08 7 0.10 2317259
2 432/7.17 1.28 / 1.70 4.28 17.77
4 7.63 / 8.86 249/ 3.47 7.39 7 10.08
8 12.24 / 11.60 4.56 / 4.56 12.39 / 12.68
16 13.81 / 12.59 5.83/6.46 21.60 / 22.42
30 15.85/ 16.86 8.20 / 8.34 24.79 1 27.88
60 17.71 / 21.19 9.96 / 9.96 29.56 / 35.33
120 20.47 / 24.65 11.79 / 12.28 | 34.61/41.70

240 27.55 /30.39 13.36 / 16.66 | 48.86/52.17
TABLE 1

OVERHEAD IN MICROSECONDS FOR OPENMP CONSTRUCTS MEASURED
WITH THE EPCC MICROBENCHMARK SsYNCBENCH ON THE BCS SYSTEM
AND AN THE INTEL XEON PHI COPROCESSOR. HERE, THE BENCHMARKS
WERE RUN NATIVELY ON THE COPROCESSOR AND STARTED WITH AN
OFFLOAD DIRECTIVE FROM THE HOST SYSTEM.

Xeon Phi coprocessor and started it natively on the device. We
also measured a slightly modified version of the code using
LEO to offload all parallel regions.

The first thing to note is that there is no big performance
difference between the native coprocessor version and the
hybrid version using LEO. On both investigated systems the
overhead is in the same range, although the scaling is slightly
better on the Intel Xeon Phi coprocessor. Comparing for
example the results of 128 threads on the BCS system with 120
threads on the coprocessor, we observe that the coprocessor
achieves faster synchronization for all constructs investigated.
It is obvious that the physical distance on the BCS system
is much higher than the distance on the coprocessor chip.
Overall, this is a sign that applications scaling on the big
SMP system might also scale well on a coprocessor since
synchronization is cheaper there.

Finally, we extended the original EPCC benchmark set by
a benchmark that measures the overhead of the offload
pragma itself. We applied the same procedure as it is done
for the other constructs. We did a reference run that measured
the overhead of a delay function innerreps times (see
Fig. 4) and then we measured the time to offload and execute
the delay function innerreps times (see Fig. 5).

This allows to calculate the overhead as:

(OffloadTime - ReferenceTime)/innerreps

The overhead we observed for the offload directive on our
test system was 91.1 us. Thus, the overhead of one offload
region is about 3 times larger than that of a parallel for
construct with 240 threads on the coprocessor. The ability of
the coprocessor to handle function calls and other high-level
programming constructs allows to offload rather large kernels

start = getclock ();

#pragma offload target (mic)

for (j=0; j<innerreps; j++){
delay (delaylength);

}

times[k] = (getclock() — start);

Fig. 4. Kernel to compute the reference time of innerreps executions of
delay on the coprocessor

start = getclock ();
for (j=0; j<innerreps; j++){
#pragma offload target (mic)

{
delay (delaylength);
}
}

times[k] = (getclock () — start);

Fig. 5. Kernel to compute the time to offload innerreps times a kernel
that executes the delay function

and helps hide the overhead in the computation.

V. CONJUGATE GRADIENT METHOD

To evaluate the performance of a real-world compute kernel
we use a CG solver [20] that runs natively on the Intel Xeon
Phi coprocessor. The runtime of the algorithm is dominated
by the Sparse-Matrix-Vector-Multiplication (SMXV). For the
performance evaluation we use our own implementation that
uses OpenMP for constructs to parallelize all operations and
we compare it to a version that uses the Intel® Math Kernel
Library (MKL) sparse routines. We use the Compressed Row
Storage (CRS) format to store only the non-zero values and
the sparsity pattern of the matrix and to have a cache-friendly
memory access.

Depending on the sparsity pattern of the matrix an adequate
load balancing is also needed. For that reason we do not use a
static schedule for the distribution of the matrix rows but rather
pre-calculate the number of rows for each thread depending on
the number of nonzero values. On big ccNUMA machines cor-
rect data and thread placement is essential [15], so we initialize
the data in parallel to distribute the pages over the sockets and
bind the threads to the cores to avoid thread migration. Since
the two test systems differ in amount and usability of hardware
threads we use different binding strategies. For the 16-sockets
machine we set KMP_AFFINITY=scatter to fill up the
sockets round-robin and KMP_AFFINITY=compact to place
each thread as close as possible to the previous thread. For
the thread placement on the Intel Xeon Phi coprocessor, we
set KMP_AFFINITY=balanced,granularity=fine to
achieve a more balanced thread placement given the four
available hardware threads on each core and to obtain the best
performance for this kernel. The matrix represents a computa-
tional fluid dynamics problem (Fluorem/HV15R) and is taken

100

=4—0penMP, coprocessor, balanced
MKL, coprocessor, balanced
80 —e—0OpenMP, BCS, scatter ,‘_;
~-OpenMP, BCS, compact
2 60 | ——MKL, BCS, scatter —
g =#MKL, BCS, compact
o 40
=%
wv
20
0
1 4 16 64 256
Threads
Fig. 6. Scalability of the CG kernel on 128-core SMP machine and on the
COpProcessor.
Test case #Threads Serial Minimal
Time [s] | Time [s]
OpenMP, coprocessor, balanced 244 2387.40 32.24
MKL, coprocessor, balanced 244 3014.48 38.46
OpenMP, BCS, scatter 128 1175.89 26.63
OpenMP, BCS, compact 128 1176.81 18.10
MKL, BCS, scatter 128 1024.52 43.72
MKL, BCS, compact 128 1025.99 43.13
TABLE II

SERIAL AND MINIMAL PARALLEL RUN TIME OF 1000 ITERATIONS OF THE
CG METHOD FOR BOTH IMPLEMENTATIONS ON BOTH SYSTEMS.

from the University of Florida Sparse Matrix Collection [21].
The matrix dimension is N = 2,017,169 and the number of
nonzero elements is nnz = 283,073,458, which results in a
memory footprint of approximately 3.2 GB. Hence, the data
set is big enough not to fit into the caches, even on the 16-
sockets machine.

Fig. 6 shows the scalability on the 16-socket machine and
on the coprocessor for 1,000 CG iterations. If all 61 cores
are utilized (without SMT) on the coprocessor, it reaches a
speedup of over 53 with our CG implementation (OpenMP).
With all hardware threads the speedup increases up to over
74. Although the speedup curve increases more slowly for
the Intel MKL version, a better speedup is reached if all
hardware threads are used. However, the total elapsed time
to execute 1,000 iterations is 20 % higher than for our cross-
compiled version (also see Table II). The figure shows that the
Intel Xeon Phi coprocessor can reach a very high scalability,
even for this memory-bound problem. In contrast to that, the
speedup of our (OpenMP) implementation on the big SMP
system with the scatter placement strategy only increases
slightly when utilizing all 128 cores without SMT compared
to using only 64 threads. The compact thread distribution
reaches a speedup of 65. It increases from 64 to 128 threads,
because the former case uses only two out of the four 4-sockets
boards and the full memory bandwidth is not available.

The consideration of the speedup does not take the absolute
performance into account. Table II shows the serial and the
minimal parallel runtime for 1,000 iterations of the CG method
for both implementations and the number of threads which
obtain the minimal parallel run time. As the CG method is
dominated by the SMXV and it is also important for many

system #Threads | read bandwidth | write bandwidth

Coprocessor 244 122.1 GB/s 62.9 GB/s

BCS 128 236.5 GB/s 142.2 GB/s
TABLE III

MEMORY BANDWIDTH FOR ONLY READ AND ONLY WRITE OPERATIONS
ON THE BCS SYSTEM AND THE COPROCESSOR CARD.

other sparse algorithms, we focus on the performance of this
operation in the following section.

A. Sparse-Matrix-Vector-Multiplication (SMXV)

To assess the absolute performance, we apply a simplified
version of the Roofline model [6] to the BCS system (Fig. 7)
and to the Intel Xeon Phi coprocessor (Fig. 8). The Roofline
model gives an estimate of the maximum performance in
GFLOPS an algorithm can achieve on a given system de-
pending on its operational intensity. The operational intensity
is the number of FLOPS per byte loaded into the system.
Algorithms that compute many FLOPS per byte are bound by
the peak floating point performance of the system modeled
as a horizontal line in the right part of the diagram. The
rising line in the left part of the diagram shows the maximum
performance an algorithm with low operational intensity can
reach because of the limited memory bandwidth of the system.
The point of intersection of both lines marks the operational
intensity where the algorithm fully utilizes the bandwidth and
the floating point capacity of the system.

We obtained the peak floating point performance of the
systems from the hardware specifications of the Intel Xeon
X7550 processors and the Intel Xeon Phi coprocessor. The
peak memory bandwidth was measured with a STREAM-
like test program. In contrast to the original stream code
used in Sec. IV we calculate the bandwidth for only read
operations and only write operations. The results are shown
in Table III. As you can see on both systems the bandwidth
for read operations is higher compared to the bandwidth for
write operations. This is because the processor needs to load
a cache line first before it can be written, which results in two
transfers through the memory controller for a write operation
whereas only one transfer is needed for read (assuming no
streaming stores). To simplify matters, we assume that the
vectors of the SMXV kernel can be kept in the cache, so
only the matrix needs to be loaded whose elements are stored
consecutively. So, for the Roofline model we used the read
memory bandwidth as basis for the rising left line.

To load one entry of the matrix in CRS format we have to
load the value (double) and index (int) variables, resulting
in 12 bytes to load per entry. One add and one multiply op-
eration is needed per matrix element and each matrix element
is needed only once, so we cannot keep results in the cache to
be reused later on. This leads to an operational intensity (O)
of O = %L %z?tf S = LE %yotf 2 For this operational intensity
the Roofline model shows that the SMXV kernel is bound by
the memory bandwidth on both systems and that it can reach a
maximum performance of 39.42 GFLOPS on the BCS system
and 20.35 GFLOPS on the coprocessor.

2048

1024 b2l EP Performance
512 \N-\%}“/
256 6vo\(\é/
128 ’A\‘\(e’é/
$ 64 394 l/?e/
9 32 EEEEER ”
™S []
© 16 :£
8 S
4 =
2 :g
1 -
05 ——
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64
Operational Intensity in FLOPS/byte
Fig. 7. Roofline model applied to the BCS system. The model shows that

the SMXYV kernel which has an operational intensity of 1/6 FLOPS/byte can
reach a maximum performance of 39.4 GFLOPS on the BCS system.

iggi Peak FP Performance
512 = 7~
256 (*»“‘6 -~
128 \&o}a/
¢ 64 Qe?
O 37 2035 /
fre lllll/
O 16 :LG
4 :§
2 Eg
1
0,5 —a ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1/16 1/8 1/4 1/2 1 2 4 8 16 32 64
Operational Intensity in FLOPS/byte
Fig. 8. Roofline model applied to the Intel Xeon Phi coprocessor. The

model shows that the SMXYV kernel which has an operational intensity of 1/6
FLOPS/byte can reach a maximum performance of 20.35 GFLOPS on the
Intel Xeon Phi coprocessor.

Fig. 9 shows the performance measured for SMXV within
the CG method. As expected, the best performance is achieved
on the BCS system (with compact distribution strategy)
which delivers 37.24 GFLOPS for our implementation, which
is close to the theoretical maximum of 39.42 GFLOPS as
predicted by the Roofline model. For the Intel MKL version
only 31.64 GFLOPS are reached. Here, the reason for the
lower performance on this big BCS system is that our own im-
plementation is less generic and that we have the full control of
the correct data and thread placement. The slower performance
increase for the scatter strategy when utilizing more than
64 threads is directly connected to the STREAM measurement
of Fig. 3. Due to the bandwidth drop with large thread counts,
the best result is obtained with 64 threads. As predicted by the
Roofline model with 18.67 GFLOPS the performance on the
coprocessor is also close to the maximum of 20.35 GFLOPS.
While the difference between the Intel MKL version and our
own implementation is about 5.5 GFLOPS without SMT (61
threads), the maximum performance of both versions (244
threads) is almost the same.

40 —&—-0penMP, coprocessor, balanced »
35 | -¢MKL, coprocessor, balanced
30 | —#-OpenMP, BCS, scatter /)K
-l-OpenMP, BCS, compact

2 25 —+=MKL, BCS, scatter

O 20 | —¥MKL, BCS, compact

[

(U]

Threads

Fig. 9. Performance of the SMXV within the CG method on 128-core SMP
machine and on the coprocessor.

System #Threads | Time [s] | dxpay/ dot SMXV
daxpy product
Coprocessor 244 32.24 3.71% 1.89 % 94.03 %
BCS 128 18.10 1141% | 4.45% 84.01 %
TABLE IV

RUN TIME SHARES AND SOLVING TIMES FOR THE LINEAR ALGEBRA
KERNELS ON BOTH SYSTEMS.

B. Vector Operations

Accelerators like GPGPUs often require to not only op-
timize the SMXV kernel, but also other vector operations
within the CG solver (e.g., reductions for the dot product).
Table IV shows that the share of vector operations in SMXV
is more dominant on the Intel Xeon Phi coprocessor than on
the BCS machine (94.03 % vs. 84.01 %). The vector operations
daxpy (¢ = a * £ + %) and dxpay (¥ = & + a * ¢) take only
3.71 % of the total runtime while they consume up to 11.41 %
on the BCS system. After the matrix vector multiplication
most of the vectors are discarded from the cache and need
to be reloaded. In contrast to the coprocessor, the BCS system
cannot reach full memory bandwidth for these small arrays
(about 15 MB each). The share of the dot product is lower
on the coprocessor which shows that the OpenMP reduction
works fine on this new architecture. Since the SMXV kernel
has the most significant run time impact we concentrated our
analysis on it.

C. SIMD Vectorization

As mentioned in Section II, the Intel Xeon Phi coprocessor
has new powerful SIMD capabilities. To analyze these, we
built two versions of the CG method with and without vector-
ization (through the compiler flag —-no-vec). Fig. 10 shows
that the gain from vectorization within the CG method is quite
small. Although one observes a 2x gain for small numbers
of threads, there is no difference when the coprocessor is
fully utilized. In combination with the presented performance
model, one can see that it is possible to utilize the full available
bandwidth although the code was not vectorized. Since the
data loaded through the gather operations is the same as with
the scalar version of the CG code, the gather operations cannot
provide any additional performance gain. This means that
memory-bound applications in general can benefit from the

100

10

GFLOPS

=&— -no-vec

-~ vectorized

0.1
1 2 4 8 16 30 60

Threads

120 180 240

Fig. 10. Performance of the SMXV within a CG method with and without
vectorization on the Intel Xeon Phi coprocessor.

high memory bandwidth of the coprocessor, even if they do
not use SIMD vectors.

VI. CONCLUSION AND FUTURE WORK

The growing demand for both compute power and low en-
ergy consumption has led to a growing adaption of accelerators
and coprocessors for HPC to fulfill this requirement. While for
GPUs a rewrite of the application might be necessary, we have
shown that with the upcoming Intel Xeon Phi coprocessor it
is possible to efficiently port compute kernels with no or just
minor code modifications.

The overhead of the standard OpenMP constructs which
use synchronization is smaller than on big SMP machines,
which makes the approach very promising for many HPC
applications using OpenMP. The overhead of the offload
pragma used in the language extension (LEO) is also quite
low, so that it will not limit the scalability.

The bandwidth of one coprocessor is up to 156 GB/s and
exceeds eight Intel Xeon X7550 processors. This is reflected in
real-world kernels like the SMP optimized sparse CG solver.
With the Roofline model we have predicted a maximum perfor-
mance of about 20 GFLOPS for the SMXV kernel (limited by
the read memory bandwidth) and achieved almost 19 GFLOPS
with the unmodified kernel. This shows that scientific OpenMP
applications can run efficiently on the upcoming Intel Xeon
Phi coprocessor without requiring a rewrite.

In addition to our work which focused on shared memory
programming, it would be interesting to investigate the per-
formance of the Intel Xeon Phi coprocessor for distributed
memory paradigms like MPI on one or multiple coprocessors.

ACKNOWLEDGMENTS

Parts of this work were funded by the German Federal Ministry of Research
and Education (BMBF) as part of the LMAC project (Grant No. 01IH11006).

Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.

** Performance tests are measured using specific computer systems, com-
ponents, software, operations, and functions. Any change to any of those
factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with
other products. System configuration: Intel® W2600CR baseboard with 2S

Intel® Xc:onTIVI processor E5-2670 (64 GB DDR3, with 1600 MHz, Scientific

Linux 6.2) and single Intel® C600 IOH, Intel® Xeon Phi' coprocessor
with BO ES2 silicon (GDDRS5 with 5.5 GT/sec, driver v2.1.4346-16, flash
v2.1.01.0375, OS v2.6.32-220, Intel® Composer XE 2013 v13.0.1.117).

REFERENCES

[1] NVIDIA, “CUDA C Programming Guide, Version 4.2,” April 2012.

[2] Khronos OpenCL Working Group, “The OpenCL Specification, Version
1.1, Revision 44, June 2011.

[3] OpenMP Architecture Review Board, “OpenMP Application Program
Interface, Version 3.1,” July 2011.

[4] U. Drepper and I. Molnar, “The Native POSIX Thread Library for
Linux,” Redhat, Tech. Rep., February 2003.

[5] MPI Forum, “MPI: A Message-Passing Interface Standard, Version 3.0,”
July 1997.

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: an Insightful
Visual Performance Model for Multicore Architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65-76, April 2009.

[7] Intel Corporation, “Intel® Xeon Phi " Coprocessor Instruction Set
Architecture Reference Manual,” September 2012, reference number
327364-001.

[8] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From GPGPUs to Many-
Core: NVIDIA Fermi* and Intel® Many Integrated Core Architecture,”
Computing in Science and Engineering, vol. 14, no. 2, pp. 78-83,
March—April 2012.

[9] Intel Corporation, “Intel® C++ Compiler XE 13.0 User and Reference
Guides,” September 2012, document number 323273-130US.

[10] D. Gutfreund, “Mesca BCS Systems,” Bull SAS, rue Jean Jaurs, 78340
Les Clayes sous Bois, France, October 2012.

[11] S. Wienke, D. Plotnikov, D. an Mey, C. Bischof, A. Hardjosuwito,
C. Gorgels, and C. Brecher, “Simulation of bevel gear cutting with
GPGPUs - performance and productivity,” Computer Science - Research
and Development, vol. 26, pp. 165-174, 2011.

[12] K. W. Schulz, R. Ulerich, N. Malaya, P. T. Bauman, R. Stogner, and
C. Simmons, “Early Experiences Porting Scientific Applications to the
Many Integrated Core (MIC) Platform,” TACC-Intel Highly Parallel
Computing Symposium, Tech. Rep., April 2012.

[13] A. Heinecke, M. Klemm, D. Pfliiger, A. Bode, and H.-J. Bungartz, “Ex-
tending a Highly Parallel Data Mining Algorithm to the Intel® Many
Integrated Core Architecture,” in Euro-Par 2011: Parallel Processing
Workshops, Bordeaux, France, August 2011, pp. 375-384, LNCS 7156.

[14] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication
on CUDA,” NVIDIA Corporation, Tech. Rep. NVR-2008-004, Decem-
ber 2008.

[15] C. Terboven, D. an Mey, D. Schmidl, H. Jin, and T. Reichstein, “Data
and Thread Affinity in OpenMP Programs,” in Proc. of the 2008
Workshop on Memory Access on Future Processors: a Solved Problem?,
Ischia, Italy, May 2008, pp. 377-384.

[16] N. Berr, D. Schmidl, J. H. Gobbert, S. Lankes, D. an Mey, T. Bemmerl,
and C. Bischof, “Trajectory-Search on ScaleMP’s vSMP Architecture,”
Advances in Parallel Computing: Applications, Tools and Techniques on
the Road to Exascale Computing, vol. 22, pp. 227-234, 2012.

[17] D. Schmidl, C. Terboven, A. Wolf, D. an Mey, and C. H. Bischof,
“How to Scale Nested OpenMP Applications on the ScaleMP vSMP
Architecture,” in Proc. of the IEEE Intl. Conf. on Cluster Computing,
Heraklion, Greece, September 2010, pp. 29-37.

[18] J. McCalpin, “STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers,” http://www.cs.virginia.edu/stream, 1999, [Online,
accessed 29-March-2012].

[19] J. M. Bull, “Measuring Synchronisation and Scheduling Overheads in
OpenMP,” in Proc. of the Ist European Workshop on OpenMP, Lund,
Sweden, October 1999, pp. 99-105.

[20] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau
of Standards, vol. 49, no. 6, pp. 409-436, December 1952.

[21] T. A. Davis, “University of Florida Sparse Matrix Collection,” NA
Digest, vol. 92, 1994.

