
1

Parallel Stereo Vision Algorithm
Paul Cockshott, Susanne Oehler, Tian Xu, Paul Siebert, Gerardo Aragon

Abstract—Integrating a stereo-photogrammetric ro-
bot head into a real-time system requires software
solutions that rapidly resolve the stereo correspond-
ence problem. The stereo-matcher presented in this
paper uses therefore code parallelisation and was
tested on three different processors with x87 and AVX.
The results show that a 5mega pixels colour image can
be matched in 3.0 seconds or as monochrome in 1.7
seconds.

I. INTRODUCTION

This paper presents initial efforts to solve the stereo-
correspondence problem in real time manner for the
robot head used in the Clothes Perception and Ma-
nipulation project (www.clopema.eu). This means that
generating 2.5D range maps should be obtained in
an on-line manner. The stereo correspondence problem
comprises the task of locating for each pixel on one
image of a stereo pair, the corresponding location on
the other image of the pair. Therefore the problem
is solved by constructing a displacement field (also
termed parallax or disparity map) that maps points
on, for example, the left image to the corresponding
location on the right image: Il(x, y) → Ir(x’, y’). In
this case the displacement field is usually expressed as
two disparity maps Dx(x, y) and Dy(x, y) each storing
horizontal and vertical displacements respectively that
map each pixel in the left imageIl into the correspond-
ing location of the right imageIr, as follows:

Ir(x
′, y′) = Il(x+Dx(x, y), y +Dy(x, y))

It should be noted that the displacement values
stored in these maps are both real valued and signed.
Knowing the correspondences between stereo pair im-
ages and also the geometric configuration of the cam-
eras that captured the stereo pair, by means of camera
calibration, it then becomes possible to recover range
values, for each matching stereo-pair of pixel valid
associated with a valid disparity estimate, through a
process of triangulation.

A. The Robot Head
The robot head comprises two Nikon DSLR cam-

eras (D5100) that are capable of capturing images
at 16 mega pixels. These are mounted on two pan
and tilt units (PTU-D46) with their corresponding con-
trollers (Figure I.1). The cameras are separated by
a pre-defined baseline for optimal stereo capturing.
The hardware is interfaced to a Intel Core i7-3930K

Figure I.1. Side (a) and back (b) view of the robot head.

computer at 3.20 GHz with 16GB in RAM running
Fedora 17. Camera and controller drivers are developed
under ROS (www.ros.org). The robot head is able to
verge its cameras on a point [1] and it will feature the
stereo-matcher described in this paper.

II. THE LEGACY SOFTWARE AND ITS HISTORY.

The research underpinning all versions of image
matching algorithm reported here have their origins
in the Multi Scale Signal Matching (MSSM) algorithm
proposed by Jin and Mowforth [2, 3]. MSSM operates
by tracing dense, local, matches over a discrete scale-
space: essentially an image pair is reduced in progress-
ively in detail by iterated blurring operations. The most
blurred versions of the stereo-pair, containing least
detail and hence scope for matching ambiguity, are
matched first and then subsequent matches at finer
scales progressively resolve the detail removed by the
blurring operations to produce a final full-resolution
set of displacement, or disparity, estimates between
corresponding locations on the matched images.

Jin’s MSSM[2], formulated a coarsely quantised
scale-space (

√
2 blur factor between scales) that re-

quired of the order of a few tens of image scales
to be computed and therefore fewer matching opera-
tions were required to traverse from a coarse solution
through to a full-resolution match and used a Gaussian
spatial weight to a Pearson cross-correlation window
used for local matching.

Typically, in excess of two days of CPU time were
required to match a 256x512 stereo-pair using a SUN 3
workstation (Motorola 68000 based processor) in 1989.
Urquart modified the MSSM to incorporate the semi-
pyramid[4] and as a result MSSM could then match
the 256x512pixel stereo-pair in the order of one hour.
Van Hoff, further improved the MSSM algorithm by
incorporating a fully regular image pyramid sampled
with a half-octave reduction factor between levels[5].

2

Table I
TYPICAL EXECUTION TIMES, IN SECONDS, FOR MSSM IN 1993 [7]

Image Size (pixels) 256×256 512×512 576×768
Sun SPARCstation LX 32.7s 130.9s 215.0s
IBM RS6000 320H 15.5s 64.5s 104.6s
Sun SPARCstation 10 10.7s 50.5s 71.2s

Minor modifications[6] further improved the execution
rate as listed in Table 1.

The original C system was recoded in Java as C3D
incorporating Van Hoff ’s improved version of MSSM
[8, 9].

III. LEGACY CODE - PARALLELISATION STRATEGY

C3D is based on research outputs from the past
25 years and has been used for numerous research
projects involving stereo-photogrammetric camera sys-
tems. For the current objective its employment is no
longer adequate due its slow processing times. To
achieve acceptable real-time timings it has been de-
cided to create new parallelised software.

In order not to lose the research inputs, which had
led to the creation of C3D, the source code of the
latter is being used as the design basis and benchmark
for the new parallelised software. Due to the variety
of different authors and the time span over, which
C3D got developed, earlier documentation of the im-
plementation turned out not to be fully consistent with
the source code of the current version of C3D. It was
necessary to extract the essential parts of the source
code and transcribe their functionalities. C3D employs
external libraries and follows an object-oriented design,
which makes it difficult to translate directly into a
parallelised form. We decided to first transcribe the
source code into a set of Matlab scripts, removing the
external libraries’ influences and its object orientated
nature. These Matlab scripts can be tested for output
validity against the Java software. More importantly
they provide design and documentation for a new par-
allelised version, as for instance, described in section
V.

In this first phase of parallelisation, we decided to
focus on the stereo-matching algorithm of C3D, without
transcribing the C3D scale-space pyramid code. The
C3D stereo-matcher takes two images, as input and
outputs a horizontal disparity matrix, a vertical dispar-
ity matrix and a confidence matrix of the same size as
the input images. The matching process is as followed:

1) First a pyramid representation with a given num-
ber of pyramid levels for the left and right image
is produced. For the smallest level of the pyramid
the horizontal disparity, vertical disparity and
confidence matrix are initialised to zero.

2) Starting at the smallest pyramid level Step 2 will
be repeated for each pyramid level:

a) Step 2a to 2h is repeated for each iteration
on the current pyramid level: The sampling
step (sampStep) is initialised to one by
default, unless totIter > 1 and curIter < 7 .
The sampling step is calculated as follows:
sampStep = (totIter−curIter−1)∗ 0.9

totIter−1+1
where totIter is total iteration and curIter
is the iteration counter.

b) Step 2b to 2h is repeated twice for each it-
eration (1 iteration = 2 match cycles): Five
different warped right image instances are
created by applying bi-linear interpolation
using the horizontal and vertical disparities
with and without sampling step shift. The
first is created using the horizontal and ver-
tical disparities without shifts. For the other
four, horizontal and vertical ±sampStep is
added to the disparities before warping.

c) For the left image and each of the five
warped images a standard deviation mat-
rix is calculated by multiplying the images
with themselves, i.e. squaring them, and con-
volving the result horizontally and vertically
with a Gaussian kernel.

d) With the same Gaussian kernel, covari-
ance matrices are calculated multiplying the
warped images with the left and then con-
volving.

e) Based on the standard deviation and covari-
ance matrices the correlation coefficients are
calculated.

f) Having obtained five correlation coefficient
matrices, 2nd order polynomial maximisa-
tion is applied to the corresponding elements
of the matrices. In case of a confidence value
greater than one and the zero point cor-
relation coefficient (c0) greater than zero it
readjusts the disparity (disp) to be: disp =
disp ∗ 1−c0

conf−c0 followed by overwriting the
confidence with 1. Should C3D fail to fit a
polynomial, it sets the disparity to zero and
the corresponding confidence to 0.4.

g) The newly computed horizontal and vertical
disparities matrices are multiplied by the
sampling step and added on to the initial
horizontal and vertical matrices. To obtain
again one confidence matrix it computes
ConfHV = ConfH ⊗ ConfV weights this
against the initial confidence (InitConf) :
InitConf = ConfHV + 0.75 ∗ (InitConf −
ConfHV)

h) The disparity matrices are then weighted by
the confidence matrix Dispxy = Dispxy ⊗
InitConf . This is followed by smoothing us-
ing the local confidence matrix as a convo-
lution kernel. The same process is then ap-

3

plied to the confidence matrix. The weighted
smoothing process (2h) is repeated twice. If
the steps 2b to 2h have been run twice the
process will either step to the next iteration,
starting at 2a or in case the total number
of iterations for the pyramid level has been
reached move to the next pyramid level (3).

3) After the matching iterations the resulting ho-
rizontal and vertical disparity matrices and the
confidence matrix are smoothed once more with
a 3x3 average filter, before being expanded to the
size of the next pyramid level. OR

4) The final (largest) level of the pyramid is returned
as output.

IV. THE HARDWARE TARGET AND THE COMPILER

We have used Vector Pascal [10, 11] as our source
language because it is an array language of a similar
semantic level to Matlab thus easing the prototyping
process, it targets and automatically parallelises code
for a range of parallel processor chips including the
multi-core AVX machines we are using; and, since we
have access to the developers we can have new code
generators added for additional target machines as
we buy them whilst leaving the core vision code un-
changed. In Vector Pascal all operators are overloaded
so that they can operate on arrays and vectors as well
as scalars. Using compiler flags, a single program can
be compiled, with differing levels of parallelism, to
target a range of microprocessors.

Each array assignment statement is evaluated by the
compiler for parallelisation in two ways:

1) If it is a two dimensional array and it uses only
basic arithmetic operations or pure functions (
side effect free) on the right hand side, then the
work on rows of the array is interleaved between
different n processors so that processor j handles
all rows i such that i mod n = j.

2) If the right hand side contains no function calls
and operates on adjacent array elements, then the
compiler generates SIMD code.

3) If the expression on the right is a conditional with
no function calls it is evaluated using boolean
masks to allow SIMD execution (Algorithm 1).

At the start of the project we evaluated 3 architectures:
a 6 core Intel Ivy bridge (3.2GHz, 12MB cache), an 8
core AMD Bulldozer (3.1GHz, 8MB cache) and a 2 core
AMD Fusion (2.7GHz, 1MB cache, 160 Radeon cores
at 600MHz). Both the Ivy Bridge and the Bulldozer
utilise the AVX instruction set, capable of operating on
vectors of 8 single precision floating point values. The
AMD Fusion system, does not utilise AVX, but has a
chip with a GPU on the same die as a pair of x86 cores.
We developed two Vector Pascal code generators for the
Fusion, one using the Virtual SIMD approach [12] and
the other translating directly to OpenCL. Although the

Algorithm 1 Translation of Pascal conditional expres-
sions to AVX instructions.
var a,b,c:array[1..8] of real;
begin
a:=if c<b then c*c else b;

=======
vmovdqu YMM0, [PmainBase+ -96];
vcmplps YMM7, YMM0, [PmainBase+ -64];
vmovdqu YMM6, [PmainBase+ -96];
vmulps YMM0, YMM6, YMM6;
vandps YMM0, YMM0, YMM7;
vpandnpd YMM1, YMM7, [PmainBase+ -64];
vorpsb YMM0, YMM0, YMM1;
vmovdqu [PmainBase+ -32], YMM0;

Virtual SIMD approach is known to work with the Cell
processor, initial trials showed the performance of both
techniques on the Fusion architecture was poor. This
appears to be due to the cost of transfers between the
two address spaces of the machine. We thus rejected
this target architecture.

In the longer term our preferred target architecture
is the Intel MIC which combines over 50 x86 cores each
of which can operate on vectors of 16 single precision
floating point numbers. Provided a Linux system with
shared memory is available on this machine, experi-
ence shows that the production of a code generator for
it is a task of about a month or two.

V. THE PARALLEL ALGORITHM

Although the Pascal Compiler does not require ex-
plicit parallelism, the programmer, by expressing their
algorithm in terms of array operations, supplies im-
plicit parallelisation hints. Our aim was to derive an
algorithm that was similar to our existing one, but is
expressed in a data parallel fashion.

Like our Java algorithm, it uses a scale-space pyr-
amid structure to enhance the efficiency of search. It
attempts to perform a match moving from the coarsest
to the finest level of detail. The key targets for paral-
lelisation were: the process of extracting disparities at
any given scale; and, the process of creating the scale-
space pyramid from the initial images.

The basic algorithm is the same as was applied in
C3D except that instead of using explicit loops for con-
volution, sub-sampling etc., we express everything in
terms of operators over floating point number matrices.

The basic step in forming a pyramid is to repeatedly
convolve layers with a 5 wide separable blurring ker-
nel, to prevent aliasing, and then sub-sample.

Given a starting image A as a two dimensional array
of pixels, the algorithm first forms a temporary array
T whose elements are the weighted sum of adjacent
rows. Then in a second phase it sets the original image
to be the weighted sum of the columns of the temporary
array.

4

Algorithm 2 The parallel correlation function. The PM
messages indicate lines with both SIMD and multi-core
parallelism. Storage management code is not shown.

PROCEDURE computesim(var sim,l,r:image);
var bottom:pimage;i:integer;
const k:kernel=(0.0816,0.218,0.3032,0.218,0.0816);
BEGIN

PM for i:= 0 to l.maxplane do sim[i]:=l[i]*r[i];
(* got products for the top term

do summation using convolution *)
pconv(sim,k);
(* now we compute the l2 norm of l

and divide the top by it*)
PM for i:= 0 to l.maxplane do bottom^[i]:=l[i]*l[i];

pconv(bottom^,k);
for i:= 0 to l.maxplane do

PM sim[i]:=sim[i]/sqrt (bottom^[i]);
(* repeat with the r l2 norm *)

PM for i:= 0 to l.maxplane do bottom^[i]:=r[i]*r[i];
pconv(bottom^,k);
for i:= 0 to l.maxplane do

PM sim[i]:=sim[i]/ sqrt(bottom^[i]);
PM for i:= 0 to l.maxplane do sim[i]:=sim[i]*sim[i];

END;

The bulk of the actual work in the convolution is done
by calls to a parallel multiply accumulate procedure
which is called twice to perform vertical and horizontal
passes.
MA(T[lo..hi],

p[0..hi-lo+0],p[1..hi-lo+1],
p[2..hi-lo+2],p[3..hi-lo+3],
p[4..hi-lo+4],kerr);

...
MA(p[bm..tm,lo..hi],t[bm..tm,0..hi-lo+0],

t[bm..tm,1..hi-lo+1],
t[bm..tm,2..hi-lo+2],
t[bm..tm,3..hi-lo+3],
t[bm..tm,4..hi-lo+4],kerr);

where T and p are image planes. T[lo..hi] selects
rows lo to hi of the image. The multiply accumulate
procedure has the form

PROCEDURE MA(VAR a,p,q,r,s,t:plane;k:kernel);
BEGIN

PM a:= p*k[1]+q*k[2]+r*k[3]+s*k[4]+t*k[5];
END;

It multiplies the whole image plane term by the
factor and adds it to the image plane acc. The PM
generated in the listing file indicates that the line is
parallelised across cores and uses SIMD.

Algorithm 2 shows code used to perform a parallel
correlation between two images.

VI. COMPLEXITY ANALYSIS.
Denote the complexity in floating point operations of

a match on a given level of the pyramid as M(l)
Assume that the base image is of size x, y the number

of pixels at level l will be

p(l) =
xy

2l−1
(VI.1)

since the linear dimensions of each level reduce by a
factor of

√
2 between levels and the base level is 1. The

cost of matching a layer is the cost of doing the basic
match at that level m(l) plus the cost of propagating
down the disparities from higher layers into layer l that
is d(l) so

M(l) = d(l) +m(l) (VI.2)

The cost of propagating down the disparities is the
cost of interpolating each pixel I times the number of
pixels in a layer times 3 to account for the disparity
image having 3 planes, plus the time to rescale the x
and y planes of the disparity (2 multiplies per pixel)

d(l) = 2p(l) + 3Ip(l) (VI.3)

The interpolation process computes a matrix b from
a matrix a so that one destination pixel bij requires 55
maths operators per colour to compute it from 4 pixels
in the level above as follows

bij = (a⌊ i√
2

⌋⌊
j√
2

⌋(1− (j√
2
−
⌊

j√
2

⌋
))+

a⌊ i√
2

⌋⌊
1+ j√

2

⌋(j√
2
−

⌊
j√
2

⌋
))(1− (i√

2
−

⌊
i√
2

⌋
))

+(a⌊
1+ i√

2

⌋⌊
j√
2

⌋(1− (j√
2
−
⌊

j√
2

⌋
))+

a⌊
1+ i√

2

⌋⌊
1+ j√

2

⌋(j√
2
−

⌊
j√
2

⌋
))(i√

2
−
⌊

i√
2

⌋
)

(VI.4)
Register optimisation should be able to reduce the

number of these operations but these operations cannot
be done by SIMD instructions since the source pixels in
matrix a are not regularly spaced. We can thus deduce
that, unoptimised,

d(l) ≈ 167p(l) (VI.5)

The basic match within a level breaks down into the
component costs

1) Warping the image w(l)
2) Forming correlation images for the 5 offsets s(l)

on 3 colour planes
3) Polynomial interpolation q(l)
4) Smoothing sm(l)

m(l) = w(l) + s(l) + q(l) + sm(l) (VI.6)

Warping requires 16 floating point operations per
pixel on each of 3 colour planes so we have

w(l) = 48p(l) (VI.7)

Warping is again unsuitable for SIMD code. If we
designate the cost of doing a correlation as c(l) then we
have s(l) = 15c(l)and the correlation requires 8 floating
point operations (two of which are √) per pixel plus
3 image convolutions with a 5 element kernel. If we
designate the cost of convolution by k(l) we have

s(l) = 15(8p(l) + k(l)) (VI.8)

5

Polynomial interpolation requires 16 floating point
ops per pixel so

q(l) = 16p(l) (VI.9)

Smoothing requires 2 floating point ops per pixel plus
2 convolutions over 3 planes this amounts to

sm(l) = 6(p(l) + k(l)) (VI.10)

Separable 2D convolution with a 5 element kernel
requires 20 floating point operations per pixel so we
have

k(l) = 20p(l) (VI.11)

Substituting into VI.6 we have

m(l) = 48p(l) + 420p(l) + 16p(l) + 126p(l) = 610p(l)
(VI.12)

Substituting (VI.12) and (VI.5) into (VI.2) we get

M(l) = 777p(l) = 777
xy

2l−1
(VI.13)

Summing this over n pyramid layers we get

n∑
l=1

777
xy

2l−1
≈ 1554xy (VI.14)

since the sequence 1, 1
2 ,

1
4 ,

1
8 tends to 2. So for a

5 megapixel image, the number of floating point op-
erations is of the order 8×109 for the matching. On
top of this we have to calculate the number of oper-
ations necessary to create the two image pyramids.
The pyramid construction process at present involves a
convolution of each layer by a kernel to blur it followed
by a sub-sampling. The sub-sampling requires just over
2 floating point operations per pixel per colour, and the
convolution cost is given in (VI.11). There is a com-
plication involved in that the bottom layer is not sub-
sampled. The total floating point cost of constructing
each pyramid is thus

n∑
l=2

6p(l) +

n∑
l=1

3kl = 126xy (VI.15)

Given that we have two pyramids we can
compute the total floating point cost for
matching two 2448x2050 colour images as being
1680x2448x2050=8.5E+09. This implies a minimum
data input of 64GB for the algorithm.

The working sets for the basic operations of the al-
gorithm are large. For instance for convolution we have
3 planes, each of 20MB which have to be horizontally
convolved to a similar sized buffer and then vertically
convolved back to the original planes so 120MB of data
has to be processed at the bottom pyramid layer. This
is far larger than the cache size. Total active data size

Figure VII.1. Speed performance for the Intel 6 and AMD architec-
tures with the AVX and x87 instruction sets while matching colour
images.

for the two source pyramids and the output pyramid is
360MB, in addition temporary buffers of up to a further
180MB are used during the algorithm.

VII. RESULTS AND CONCLUSIONS

We tested speed and precision for the Vector Pascal
matcher and the C3D matcher using fractal-noise im-
age pairs. The fractal noise images (2448x2050 pixels)
were generated with different noise frequency patterns
and warped using bi-linear interpolation for a set of
predefined disparities maps. For the stereo-matching
the two original images served as the left and the
warped images as the right image. To evaluate the
precision of the new matcher and C3D, the output
disparities have been compared against the predefined
disparities, calculating the root mean square (RMS)
error over the differences of disparities. The speed of
the parallelised matcher was tested for two different
instruction sets, AVX and x87, two different image
formats, monochrome and colour, and run in parallel
over different number of cores for the three processors
presented in section IV.

A. Speed results
The x87 served as the speed benchmark for each

processor. The Intel 6 and AMD 8 run colour matches
2.2 and 2.7 times as fast with AVX, respectively while
multi-core parallelisation gives further accelerations of
2.4 and 2.6 times, respectively. In overall, the AMD 8
was the slowest as observed in Figure VII.1. Hyper-
threading in Intel 6 provided an overall speed-up of
3.2 times with respect to using a single core. Cache
optimisation of the convolve function (Algorithm 2)
gave a further speedup of 1.3 times with respect to no
cache optimised code, as depicted in Figure VII.2.

C3D was run on the Intel 6 with Java SE7, for 1
iteration at 16.10 seconds and for the standard number
of 10 iterations at 38.93 seconds while matching mono-
chrome images. Comparing the Intel 6 AVX 12 core
version with C3D’s standard setup, the new matcher is

6

Figure VII.2. Log-log graph of the speed performance vs Float-
ing Point Units (FPU) of the Intel 6 with both instruction sets.
Trendlines for the Intel 6 AVX and x87 instructions sets are y =
54.6x−0.68 and y = 37.6x−0.66, respectively; and for the Intel 6
without cache optimisation for both instruction sets are 75.5x−0.71

and y = 57.5x−0.74, respectively.

Table II
COMPARATIVE ACCURACY OF MATCHING

Java C3D Monochrome Colour
1 Iter 10 Iter AVX x87 AVX x87

Img Disp RMS RMS RMS RMS RMS RMS
1 1 0.00 0.01 0.29 0.50 0.09 0.11

2 0.06 0.02 0.29 0.50 0.09 0.11
3 0.05 0.02 0.29 0.50 0.09 0.108
4 0.33 0.32 0.66 1.26 0.32 0.47
5 0.95 0.92 5.35 6.52 1.51 1.44
6 1.17 1.15 13.12 13.55 3.0 2.81

2 1 0.01 0.01 0.47 0.541 0.10 0.10
2 0.06 0.02 0.48 0.55 0.10 0.10
3 0.04 0.02 0.48 0.55 0.10 0.10
4 0.38 0.36 0.75 0.94 0.32 0.44
5 0.97 0.94 1.92 2.11 1.44 1.38
6 1.19 1.16 4.79 4.39 2.76 2.32

µ RMS 0.43 0.41 2.41 2.66 0.83 0.79
σ RMS 0.47 0.46 3.65 3.75 1.04 0.93

Disparities (1)none, (2), 1 pixel horizontal, (3) 1 pixel vertical, (4) 10
pixels horizontal, (5) sin horizontal, (6) sin horizontal and vertical.

22.8 times faster. Even using colour images it is approx-
imately 13 times faster. Considering the MSSM timings
using the 1992 SPARCstation LX of 215 seconds over
576x768 pixels, in 20 years we have become 1430 times
faster. This is almost exactly in line with Moore’s law
growth rates.

B. Accuracy results
C3D is slightly more accurate than the Pascal ver-

sion, with an RMS error of 0.41 pixels, compared to the
0.83 pixels (see Table II). We attribute the difference
to the slightly different scale-space pyramids used.
However, the new matcher achieves more accurate res-
ults over colour images than over monochrome, which
is interesting as C3D can only match monochrome
images.

Overall, the 6 core Ivy Bridge has shown the best
performance in terms of balancing speed and accuracy.
The performance of the new matcher demonstrates the
potential feasibility of integrating a stereo-robot head

into a real-time system. Furthermore the new matcher
should be able to run with minimal changes on the
Intel MIC, possibly improving further its timings. In
terms of accuracy C3D is still leading, hence, we shall
proceed with transcribing and parallelising its pyramid
code.

REFERENCES

[1] G. Aragon-Camarasa, H. Fattah, and J. P. Siebert,
“Towards a unified visual framework in a bin-
ocular active robot vision system,” Robotics and
Autonomous Systems, vol. 58, pp. 276–286, Mar.
2010.

[2] J. Zhengping, On the multi-scale iconic represent-
ation for low-level computer vision systems. PhD
thesis, The Turing Institute and The University
of Strathclyde, 1988.

[3] Z. Jin and P. Mowforth, “A discrete approach to
signal matching,” tech. rep., 1989.

[4] C. Urquhart, The active stereo probe: the design
and implementation of an active videometrics sys-
tem. PhD thesis, University of Glasgow, 1997.

[5] A. van Hoff, “Efficient computation of gaussian
pyramids,” tech. rep., Turing Institute, 1992.

[6] A. van Hoff, “An efficient implementation of
MSSM,” tech. rep., Turing Institute, 1992.

[7] C. Urquhart and J. P. Siebert, “Towards real-time
dynamic close range photogrammetry,” vol. 2067,
p. 240251, 1993.

[8] J. Siebert and C. Urquhart, “C3D: a novel vision-
based 3d data acquisition system,” in Proceedings
of the Mona Lisa European workshop, combined
real and synthetic image processing for broad-
cast and video production, Hamburg, Germany,
pp. 170–180, 1994.

[9] J. Siebert and S. Marshall, “Human body 3d
imaging by speckle texture projection photogram-
metry,” Sensor Review, vol. 20, no. 3, pp. 218–226,
2000.

[10] T. Turner, “Vector Pascal: a computer program-
ming language for the FPS-164 array processor,”
tech. rep., Iowa State Univ. of Science and Tech-
nology, Ames (USA), 1987.

[11] P. Cockshott and G. Michaelson, “Orthogonal par-
allel processing in Vector Pascal,” Computer Lan-
guages, Systems & Structures, vol. 32, no. 1, pp. 2–
41, 2006.

[12] W. Cockshott, Y. Gdura, and P. Keir, “Two altern-
ative implementations of automatic parallelisa-
tion,” in CPC 2012 16th Workshop on Compilers
for Parallel Computing, 2012.

