LEHRSTUHL FUR BETRIEBSSYSTEME

Univ.-Prof. Dr. habil. Thomas Bemmerl

Gy

eff°[33

MP-MPICH

USER DOCUMENTATION &
TECHNICAL NOTES

Lehrstuhl fiir Betriebssysteme
Univ.-Prof. Dr. habil. Th. Bemmerl
RWTH Aachen

Boris Bierbaum
Carsten Clauss
Rainer Finocchiaro
Martin Poppe
Silke Schuch
Joachim Worringen

1104

([*[=33SS [EHRSTUHL FUR BETRIEBSSYSTEME

Univ.-Prof. Dr. habil. Thomas Bemmerl

LICENSE AGREEMENT AND COPYRIGHT NOTICE

MP-MPICH ("the software") is licensed by the Lehrstuhl fuer Betriebssysteme ("the copyright
holder") to the organisation ("the Licensee") to which you (*"the Applicant"’) belong at no charge
for private, educational or commercial use. The commercial use in the sense of this license does NOT
include the right to re-distribute the software (in whole or in parts). It DOES include the right to use
the software together with freely and publically available third-party software for the Licensee’s own
commercial purposes in an environment which is under the Licensee’s responsibility.

Thus, the Licensee has no rights to commercially distribute the software or derivative work in any
form or use the software together with commercially distributed (not freely and publically available)
third-party software which in turn accesses original or derivative functionality contained in MP-MPICH
without written consent of the copyright holder.

The Licensee has the right to modify the software as long as the copyright holder is informed on
these modifications and the modified software is made freely and publically available, including the full
source code.

BECAUSE THE SOFTWARE IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE SOFTWARE, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE SOFTWARE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH THE LICENSEE.
SHOULD THE SOFTWARE PROVE DEFECTIVE, THE LICENSEE ASSUMES THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE SOFTWARE AS PERMITTED ABOVE, BE LIABLE TO THE LICENSEE
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THE LICENSEE OR THIRD PARTIES OR A FAILURE OF THE SOFT-
WARE TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You already agreed to these terms and conditions when you downloaded the software.

RWTH Aachen University, Lehrstuhl fiir Betriebssysteme
Univ.-Prof. Dr. habil. Thomas Bemmerl

Kopernikusstr. 16

D-52056 Aachen, Germany

Phone: +(49)-241-8027634

Fax: +(49)-241-80627634

eMail: contact@lfbs.rwth-aachen.de

WWW: http://wuw.lfbs.rwth-aachen.de

Copyright (©, 2009 RWTH Aachen University, Lehrstuhl fiir Betriebssysteme.
All rights reserved.

mailto:contact@lfbs.rwth-aachen.de
http://www.lfbs.rwth-aachen.de

Contents

F

B2 Installation

5
3.1 What is SCMPICHA 5
i 5

6

3.2.2 _ Setting up the cluster nodes and the SCI interconnect 8
3.2.3 _Installing the Archived 10
3.2.4 Updating an Existing SC-MPICH Installation 10

ang_anﬂ_@m_plhng 10
B3 Usagd 12

3.3.1 _Creating SCLMPICH applicationd 12
3.3.2 _ Running SCI-MPICH appli('ationsl 14
3.3.3 _Host Specificationl 19
3.3.4 _Launching SCI-MPICH applications manualld 21
3.3.5 Shutting down SCI-MPICH applications 29
3.4 Compatibilit 22

BA6 QuenPBS 23
3.5 Device Configurationl« o oo 24
3.5.1 Protocol-specific Configurationl v oo v v 24
3.5.2 _Global Device Configurationl oo oo 30
3.6 Memory Allocation o oo 42
3.6.1 _ Explicit. Memory Allocation via SCEMPICH 43
3.6.2_Implicit Memory Allocation via SCILMPICH 43

B.7_MPI-2 One-Sided Communicationl oo v v v 44

(3.8.1 Compiling the !!g'ggggjj 44
3.8.2 Running Applicationd.o 44
MI&Q%@_W 44
3.9.1 General questions concerning SCLMPICH 45

O

: 0

‘ O

Problems compiling the libraries and MPI applicationd 45

oblem nning MPI applicationd 47
oblems Achieving Good Performance 52

B.Mfmmamﬁ 52
|3 10.1 Compiler Optimisation 52

IM&.M 53
3.11 Internal Designl 53

/ B

|3 12 Known Bugs, Limits & ("aveatg 59

3_.13_Bdﬂas:;HL<tor\z| 62
3.14 Approved Platforms and Conficurationd oo 64

M1 Whatis NT-MPICH? 67
|_4, .1 Differences between NT-MPICH and the original MPICH NT .. 67

4.2 Svstem Requirementd o oot 67
U3 Installation 68
: i istributionlo 68
4.3.2 Installing the Binarv Distributionl 71
%@M@M 73
4.4.1 Compiling the Examples and Running the Tests 73

icati 73

4.5 Compiling MPI Programs written in Fortranl 73
4.6 _Compiling an MPI Program written in it oo 74
4.7 Starting NT-MPICH Applications 74
471 Generic Startupl 75

: icati i ins"l ... 75
[4.7.3 Startup with RexecShell 75
M%%@d 76
[4.7.5 Available plug-ind 79

80

81

14.8.2 Using the Compaq Visual Fortran compiler and Compatibleé o 82

14.8.3 Using non e . erd .o 83

; - ; - " 84

84

85

86

86

86

86

91

91

94

94

94

95

iBand-Su 95

W(‘onﬁgura’cio 96

15.3.1 Principles of MetaMPICH inter-meta host communication 96

5.3.2 Syntax of the configuration fild, 97

XA fourati . er_¢ jond 104

b.3.4 Checking the configuration with checkmetacfg 105

5.3.5 More example configurationd 106

Bd Usagd 108

5.4.1 Creatin icationd 108

IEM Running MetaMPICH applicationd 109

Platform noted 110

5.5.1 Solaris 2 6(Intel] 110

5.5.2 Linux 2x(Intel) 111

5.0.3 Crav T3H 111

b6 Internal Design 111

5.6.1 Modifications to MPICH oot 112

5.6.2 Ranking Systemlo 114

5.6.3 Gateway- and Tunnel-Devices . . . o oo v v i 115

5.6.4 Router 117

.7 Performancd 118

jon platforml 118

......................... 118

| 5.7.3 _MPI performancd 119
5.8

1 Introduction

Thank you for your interest in MP-MPICH. This document will give you an impression
of what MP-MPICH is and then help you to install and use the different subsystems of
MP-MPICH.

More information on MP-MPICH is usually available via the URL noted below. For
specific questions, don’t hesitate to write an email to the given support address.

1.1 What is MP-MPICH?

MP-MPICH is an MPI implementation for clusters of x86- and Sparc-based systems
with one or more CPUs each. It allows for communication via shared memory, TCP/IP
and SCI. MP-MPICH is derived from MPICH 1.2.0, complies with the MPI-1 standard
just like MPICH does, and can be used with all tools which can be used with MPICH.

MP-MPICH consists of several parts which are more or less independent from each
other:

SCI-MPICH. This is the part of MP-MPICH that enables the use of the fast SCI inter-
connect. The main benefit of SCI-MPICH is performance: message latencies (roundtrip /
2) of below 4us, and the sustained bandwidth goes up to nearly 100% of the available SCI
bandwidth (currently 74 MB/s for 32-bit PCI buses, about 170MB/s for 64-bit/66MHz
PCI buses, more than 270 MB/s measured on PCI-Express based systems).

NT-MPICH. NT-MPICH is the port of MPICH to Windows NT and 2000/XP. It offers
very good performance, a complete remote execution environment and many features
like full MPE logging and graphics or MPI-1O for NTFS, which are not available in other
MPI distributions for Windows. NT-MPICH also supports communication via SCI.

MetaMPICH. If multiple clusters shall be used as one single MPI system, MetaMPICH
can be used to create such an environment which is transparent to the application. It
connects the clusters with a freely configurable topology which is made up from TCP,
SCTP, UDT and even mixed protocols.

MP-Cluma. A platform independent cluster manager for heterogeneous hierarchical
computing environments.

1.2 Contact & Support

Please Note: The MP-MPICH project is finished and the software is no longer being
maintained. While you can still download the source code and this manual, we do no

longer provide support in any way!

2

Compiling and installing
MP-MPICH from source

Though based on ANL MPICH 1.2.6, MP-MPICH has its own configure script which
can be build with newer versions of autoconf. Many configure switches of the original
are removed while some new are provided.

2.1 Configuring MP-MPICH

For detailed configure options run ./configure --help.

Unique — and therefore mentioned here — is the option to configure MP-MPICH with
several channel devices at the same time using the option
--with-device=ch_...[,ch_...,ch_...]. At run-time, the device can be chosen by
calling mpirun with the option -channel ch_....

Available channel devices within MP-MPICH are:

ch_smi — communication via SCI (Linux or Windows)

ch_shmem — communication via shared memory on Linux machines

ch_wsock2 — communication via TCP and shared memory in Windows clusters
ch_usock — communication via TCP in Linux, Windows and mixed clusters
ch_isi — communication via TCP, SCTP and/or UDT in Linux clusters or Grids

ch_mpx — communication via an underlying Vendor-MPI

3 SCI-MPICH

This part of the MP-MPICH documentation is intended to give you the basic knowledge
to install SCI-MPICH on your system (chapter B2]) and run applications on it (chap-
ter [3.3 on page 12)). It also provides you with more in-depth information on tuning
parameters in order to help you get the best performance from your SCI cluster (chap-
ter [3.5 on page 24]). Of course, this kind of knowledge is also required to solve potential
problems in setting up your SCI-MPICH environment and in running applications.The
operation of SCI-MPICH under Windows NT is covered in chapter [3.7 on page 44, To
see which performance you can expect from SCI-MPICH, take a look at chapter 3.10 on
page 52. If you intend to tune or modify SCI-MPICH, chapter mives an
overview on the internal design of SCI-MPICH, but also on current limitations or known
bugs.

3.1 What is SCI-MPICH?

SCI-MPICH is part of the MP-MPICH project: it is the part of MP-MPICH that enables
the use of the fast SCI interconnect for inter-process communication. It achieves up to
310 MB/s bandwidth between processes on different nodes and message latencies below
4ps.

Like MP-MPICH, SCI-MPICH is based on the MPICH implementation of MPI. It con-
sists of a new ADI-2 channel device called ch_smi which manages the communication via
SCI. Next to the full MPI-1 functionality, it also offers the one-sided communication as
specified by the MPI-2 standard and other features not common in MPI implementations
through the MP-MPICH architecture.

This document is intended not only to help you install and use SCI-MPICH, but
also to assist you in understanding (to a certain degree) how it works and how you can
achieve the best performance or a certain behaviour with it. Therefore, we strongly
recommend to read this document completely, including the parts that go
beyond the basic setup.

3.2 Installation

The installation does not differ much from the normal installation of MPICH. Only the
differences are noted in this chapter. Refer to the original MPICH documentation for
further information.

3.2.1 Requirements in Hard- and Software

SCI-MPICH can be used on a variety of systems. The preconditions that must be met
are:

Hardware See Table 3.1l for supported CPU architectures. Support for other architec-
tures should be easily possible, but has not yet been tested (see chapter [3.14 on page 64]
for more information on platform availability). SCI-MPICH is 64-bit safe.

‘ CPU TypeStatus ‘ Notes ‘

[A-32 / x86 release
- no known problems
x64 / AMD64 / EMT-64T | release

- no known problems

Sparc release
- only tested for SMP operation (no SCI)
[A-64 (Itanium) alpha

- only tested for SMP operation (no SCI)

Table 3.1: CPU types supported by SCI-MPICH

Additionally, you need of course at least one PCI-SCI adapter per nod for multi-
node operation. SCI-MPICH supports all available PCI-SCI adapters from Dolphin and
Scali, connected in arbitrary topologies.

Operating System SCI-MPICH can operate under Solaris, Linux 2.x and Windows
NT 4.0 /2000 / XP / .NET. We have performed tests on all of these platforms to
ensure correct functionality. However, as Windows and Linux on IA-32-platforms are
our primary development platform, they are tested best. Again, ports to other operating
systems should not be too difficult.

SCI-Drivers SCI-MPICH is based on the SMI library, which in turn uses the SISCI
programming interface for SCI. Both existing SISCI implementations, from Dolphin or
Scali, can be used. However, the Scali implementation lacks some features like DMA,
reliable remote interrupts and a number of queries. The whole SCI-MPICH functionality
is only available with the Dolphin implementation of the SISCI API.

If using Dolphin drivers with Linux 2.4, please look at question Q{I0 on page 49l

Libraries A number of libraries is required to let SCI-mpich work:

e SISCI Library (libsisci or libsisci_api): For access to the SCI hardware, the SISCI
library is required (see above). It is supplied with your SCI drivers.

IMultiple adapters are supported in beta-state.

Pthread Library (libpthread): SCI-MPICH uses POSIX threads for certain opera-
tion modes.

Other system libraries: Depending on the configuration, other system libraries
(like libdl) may be required. They should be available on any of the supported
operating system platforms.

Compiler SCI-MPICH consists of different parts in different languages:

The main libraries under Linux and Solaris are plain ANSI-C and thus should
be compilable with any current C compiler. The Fortran bindings are Fortran77
and should be compilable with any Fortran77 compiler. The calling and naming
conventions are adapted to the compiler during configuration. Creation of Fortran
bindings can be disabled via the --disable-£77 option to configure.

The Fortran90 bindings have not been tested lately, but generally work. A For-
tran90 compiler is required to create the modules. Problems may occur with the
most recent (untested) Fortran90 compilers.

The C++ bindings are a separate package which are compiled by default (use
configure option --disable-cxx to avoid this) using the default or specified C-++
compiler.

On TA-32 platforms, the MPI operations for MPI_Reduce () MPI_Accumulate ()
are optimised using MMX and SSE assembler instructions. Any recent assembler
(like as or gas) should cope with the MMX instructions; to translate the SSE
instructions, the assembler nasm is required to be in the $PATH. The configure
script will set up things automatically.

We have tested the following compilers:

Gnu gcc / g77 3.3.5 on Linux 2.4/2.6, x86: o.k., optimisation -03 recommended

Gnu gcc / gfortran 4.1.1 on Linux 2.4/2.6, x86: o.k., optimisation -03 recom-
mended

Gnu gcc / g77 3.4.6 on Linux 2.6, x64: o.k.
Portland Group pgcc / pgf77 6.2 on Linux 2.6, x64: currently does not work

Sun cc / f77 from Sun Studio 11 on Solaris 9, Sparc: o.k., optimisation -x03
recommended

Gnu gcc / g77 3.3.1 on Solaris 9, Sparc: o.k.

o.k., optimisation -x03 recommended

Intel icc / ifc Version 9.1 on Linux 2.4/2.6, x86: o.k., optimisation does not make
a difference for performance (default optimisation is sufficient).

For some assembler files on x86 platforms, a recent version of the Gnu assembler as
is required (on Linux, this the default assembler; on Solaris, it needs to be installed
separately).

The C++ bindings can not be built with any of the Sun C++ compilers mentioned
above; we did not yet evaluate the reason for this.

For Windows N'T /2000, Microsoft Visual C++ version 6 can be used with the supplied
project files.

Tools To compile the SMI library on non-Windows platforms, you need the Gnu ver-
sion of make (aka gmake). The startup script mpirun is a sh shell script which needs
the commands basename, dirname, awk, sed and sort (these should be available on any
Unix platform). Some optional startup modes of mpirun require xterm and a pager (like
less or more).

3.2.2 Setting up the cluster nodes and the SCI interconnect

SCI-MPICH can run on any SCI connected cluster if all nodes on which processes are
started can reach each other via SCI. Additionally, all processes need to be able to
communicate via TCP/IP (required for startup synchronisation only).

However, it is recommended to configure the SCI interconnect and nodes as follows.
These rules vary somewhat depending on the type of SCI driver you use (Dolphin or
Scali).

e Nodes with adjacent SCI ids should also be physically adjacent regarding the
SCI cabling. This makes internal, topology-oriented optimisations of SCI-MPICH
(especially for collective communication) effective. Example (node ids relate to a
Dolphin-driven cluster):

Good: Bad:

SCIid 16

SCI id 4 SCIid 4

SCIid 8 SCIid 12

SCIid 16

SCIid 12

SCIid 8

e Dolphin SCI driver: The nodes within a single ring need to start with SCI id 4,
while the following (in the direction of the cabling) nodes get assigned SCI ids
incremented by 4 (8, 12, ...). One ring can include a maximum number of 15
nodes. For a two-dimensional torus topology, each additional ring of the torus
starts with an additional displacement of ’64’ for the nodes SCI ids. This is the
way to set up a 2D torus as required by the Dolphin SCI driver. The table below
illustrates this scheme for a 2-dimensional torus with n rings. (node ids are given
in hexadecimal notation).

ring number | first node in this | second node in maximum node
ring this ring id in this ring
0 0x0004 0x0008 0x003c
1 0x0044 0x0048 0x007c
n-1 (n-1)*0x40 + | (n-1)*0x40 (n-1)*0x40
Ox4 0x8 Ox3c

e Scali SCI driver: If you use a Scali-driven cluster, you need to ensure that the
nodes’ SCI ids are assigned in a similar manner. The slightly different scheme
is shown in the following table for the example of a cluster with n rings and a
maximum number of 15 nodes per ring (maximum number of rings is also 15).
The node ids are given in hexadecimal notation.

ring 2

-~ ==7 sCIid 80

ring number | first node in this | second node in maximum node
ring this ring id in this ring
0x100 0x0200 0xf00
1 0x1100 0x2100 0x1£00
n-1 0xn100 0xn200 0xnf00

The automatic assignment performed by the driver and its configuration daemon will
assign different SCI ids; use the manual configuration tool to adjust this once. Currently,
only 2D-torus topologies are supported with Scali.

e The numerical order of the SCI ids of the nodes should be the same as the alpha-
betical order of the nodes’ hostnames. Example:

| hostname | SCI node id (Dolphin) | SCI node id (Scali) |

p3-00 0x0004 0x0100
p3-01 0x0008 0x0200
p3-02 0x000c 0x0300
p3-03 0x0010 0x0400

This will ensure the proper mapping between processes started by mpirun and their
MPI ranks in the MPI COMM _WORLD communicator. This is required for correct
naming of output files and terminal windows. Please note that host names like "nodel
node2 ... nodel0 nodell ..." will not sort correctly as nodel0 is alphabetically smaller
than node2. Instead, you should use leading zeros like in the table above (like "node01
node02 ... nodel0 nodell ..."). You may install and use (local) host alias names to work
around such a problem without reconfiguring the hostname of every node.

In case of a misconfigured cluster, SCI-MPICH will still execute correctly. However,
i.e. the rank of a process which is appended to an output file will not be identical to
the MPI rank the process was assigned during the execution, and the performance of
collective operations may degrade.

3.2.3 Installing the Archives

The necessary steps to install the software depend on the archive you downloaded:

mp-mpich _1.x.y.tar.gz Just unpack the complete MP-MPICH archive to a suitable
place.

NT-MPICH.zip The binary distribution for Windows NT includes the ch_smi device
and the SMI library. Refer to chapter[3.8 on page 44]for the necessary installation steps.

3.2.4 Updating an Existing SCI-MPICH Installation

Currently, we do not offer patches to update an existing SCI-MPICH source tree to a
newer version. Therefore, to update an existing installation, you must install the new
version and remove the old one.

3.2.5 Configuring and Compiling

The information in this chapter describes the configuration and compilation of SCI-
MPICH on Unix systems. For information about SCI-MPICH on Windows systems, see
chapter [3.8 on page 44 The steps in building the MPI library are almost identical to
the original MPICH:

1. You need to set up the complete source tree according to your system environment
using the configure script in the top-level directory of SCI-MPICH. The only
required parameter to configure is the list of devices to be used. Therefore,
to set up a build of SCI-MPICH, the following suffices: ./configure --with-
device=ch_smi. Please note that in this case, SCI-MPICH only supports process
communication via shared memory, for enabling SCI data transfers, a path to the
SISCI library must be supplied (see below). Use ./configure --help to get a
complete list of options and enviromnent variables which affect the behavior of
configure.

2. Build the complete set of libraries (as specified via the configure pass) via a call
to make in the MP-MPICH top-level directory

3. You may test SCI-MPICH by compiling some examples or test programs from the
examples directory tree by calling make in the appropriate directory and launching
the examples via mpirun. Refer to chapter|3.3 on the following page|for information
about the usage of mpirun.

4. If you want to install everything in a (global) directory, call make install. You
can specify this directory with the configure option --prefix=/path. Please note
that you first have to call make, before calling make install.

For SCI-MPICH, there are some special or additional options for the configure pass
which may be supplied.

e As stated above, you must supply the device option (with ch_smi as one of the
devices to be built), but you may as well built other devices, e.g.

--with-device=ch_smi,ch_shmem,ch_usock

e The SISCI library is required for building SCI-MPICH with support for SCI. Per
default, the script looks in the standard system paths as well as in /opt/scali
and /opt/DIS. To specify another path to the SISCI installation, use: --with
-sisci=/path/to/SISCI Please note that the SISCI library needs to be located
under /path/to/SISCI/1ib, the SISCI include files need to be located in /path/
to/SISCI/include.

e The C compiler should be instructed to optimise the code because this significantly
reduces the small-message latency. Use the environment variable CFLAGS for this
(Gnu cc: CFLAGS=-03, Sun cc: CFLAGS=-x03). We have observed a reduction of the
small-message latency of more than 3 ps on PentiumlIII-800 systems when using
optimized code (see section [3.10.1 on page 52)

Example for the invocation of the configure script:

configure --with-device=ch_smi --with-sisci=/opt/DIS --prefix=/usr

All other configure options can be used as usual. Some of these standard options that
might be interesting to SCI-MPICH users are:

e If you want the device to perform fully asynchronous, non-blocking communication
which allows overlapping of computation and communication, you need to enable
the usage of threads in the device with the option
--enable-async (this is a device-specific option!)

Please note that the minimum message latency will increase in this case.
e Per default, SCI-MPICH uses static libraries. If you want to use shared libraries

instead, specify --enable-shared-1libs Please consider the notes we made in
chapter [3.10.2 on page 53| concerning static vs. dynamic linking.

e Special debugging/tracing output of the device is enabled via --enable-devdebug
This option also needs to be specified if the channel device (like ch_smi) should
be able to generate extended debug/tracing output

e The ch_smi device can gather a large number of statistics which are helpful for
performance analysis. This is enabled via
--enable-statistics (this is a device-specific option!)
(required for STATISTICS option in the ch_smi device configuration file)

e The configure script should automatically detect your operating system. However,

if in doubt that the correct selection is performed, use the architecture option with
one of the supported platforms:

--with-arch=[solaris|solaris86|LINUX]
Notes:

e Because the configure script performs a number of tests, some of them related to
SCI, you should configure & compile SCI-MPICH on the same (type of) machine
as you will run SCI-MPCH applications on.

e The optimisation level of the compiler and the choice of debugging options has
a significant influence esp. on the small-message latency (see section 3.10.1 on
page 52)

After configuring, call make to build the whole MPICH distribution, or call make
mpilib to build only the library, but no additional tools and tests.

3.3 Usage

The information in this chapter describes the usage of SCI-MPICH on Unix systems.
For information on SCI-MPICH under Windows NT, see chapter [3.8 on page 44 For
users familiar with MPICH, the use of SCI-MPICH won’t cause any problems. If you
are not familiar with MPICH or even with programming in MPI, you'll have to read the
according documentation. This chapter does only deal with the differences between the

use of the standard MPICH and SCI-MPICH.

3.3.1 Creating SCI-MPICH applications

To compile MPI applications, use the mpicc/mpiCC/mpif77 /mpif90 scripts (located in
the bin directory) as usual. These scripts pass all options which they do not understand
to the compiler frontends. Some switches of these scripts that may be useful are listed
below.

Command Printing and Help
-help Print a short summary of available options and mode of operation.

-show To see the commands that the scripts really execute, add this option to the
command line. All commands that would otherwise be executed are now printed
to the terminal.

Linking options

-static | -dynamic Specify static or dynamic linking. If none of these switches is
given, the linking mode as specified with configure will be used (default is dynamic
linking). However, also if shared libraries have been built, it sometimes is desirable
to link statically: small message latency decreases (see chapter [3-10.2 on page 53J),
and potential problems with finding dynamic libraries on the nodes where the
program is executed can be avoided. Linking dynamically without having built
shared libraries will of course fail.

-shlibpath | -noshlibpath If linking with shared libraries, it is required that the ap-
plication can find these libraries when launched. Using the switch -shlibpath, you
can tell SCI-MPICH to encode the path to the shared libraries into the executable.
This shared libraries will then always be read from the SCI-MPICH installation
directory where the mpicc script (used for the compilation) is located. However,
if you want that the libraries to link with are determined via system default paths
or the LD_LIBRARY_PATH environment variable, specify -noshlibpath to enforce
this behaviour.

MPI Profiling SCI-MPICH supports the MPI profiling interface which allows any
library to intercept the MPI calls of an application. Different kinds of such libraries
using this interface are available, offering different functionality which only need to be
linked with the unmodified application. This can be done using the following options to
any of the compiler frontend scripts mentioned above:

-mpilog Link with the logging library. A MPE log file will be generated which can be
visualised using jumpshot. Requires the MPE libraries.

-mpianim Link with the animation library. The message transfers between the processes
will be visualised in "real-time" (online). Requires the MPE libraries.

-mpitrace Link with the tracing library. Will print tracing output to stdout for each
MPI function called.

-mpipapi Link with the PAPI wrapper library. Requires that the application is launched
with the mpirun option -mpipapi (if not, startup will block)

-mpistat Link with the statistics wrapper library. This library will print some vital
statistics concerning the utilisation of the MPI library by each process. This
information will help you to quickly determine if an application is compute- or
communication-bound, and to verify the effect of optimisations. The output for
each process will look like this:

#type calls minfus] max|us] avglus] acc[s] %of total
Application 1799 0.5 130523.0 13105.6 23.577 99.31
MPI collec- 1 132.5 132.5 132.5 0.000 0.00
tives

MPI send 796 1.3 2898.3 143.3 0.114 0.48
(nonblocking)

MPI recv. 796 1.2 176.7 11.0 0.009 0.04
(nonblocking)

MPI comple- 199 129.7 484.4 204.6 0.041 0.17
tion check

other MPI 6 0.7 23.6 6.9 0.000 0.00
functions

Similar types of MPI functions are grouped and are timed together. For each group,
the number of function calls, the minimal, maximum, average and accumulated
duration and the percentage of the accumulated duration of the total execution
time is printed to stdout for each process. The timing information ’Application’
specifies the time that the process spent outside of the MPI library. This means
each phase between two function calls is measured.

-vampir Link with the VAMPIR logging library (see chapter [3.4.2 on page 23)

3.3.2 Running SCI-MPICH applications

To run the compiled application, use the mpirun script from build/PLATFORM/ch_smi/
bin. The calling syntax is the same as for the original MPICH version:

mpirun [mpich-options] program_name program_parameters

Alternatively, you can call mpiexec (as recommended by the MPI-2 standard). This is
only a name replacement, the script behind it and thus the functionality of mpiexec is
identical to mpirun.

If you have configured SCI-MPICH for PBS (--with-pbs option), you should use
gmpirun instead. Again, all options valid for mpirun can also be used with qmpirun.

The SCI-MPICH version of mpirun accepts all basic options as known from other
MPICH implementations plus some special SCI-MPICH options. All applicable options
are listed sorted by category.

Topology Definition

-np N | -n N Run with N processes. If this option is omitted,one process will be

launched on every host in the machine file used (or on every host specified via the
-nodes option). The option -n is an alias for -np.

-machinefile FILE Use FILE to describe the hosts on which to start the processes —

see chapter [3.3.3 on page 19|

-nodes NODE_O[,NODE_1,... | If you do not want mpirun to use the nodes (hosts)

-smp

specified in any machine file, but want to specify the nodes to be used on the com-
mand line, you can use the -nodes parameter. This parameter must be followed
by a comma-separated list of hostnames. This list must not contain spaces. The
therewith specified nodes are used in the same manner as if they had been read
from a machine file (see chapter [3:3:3 on page 19). Some more features of the
-nodes option:

e To generate a list of nodenames which differ only in small parts of the name,
it is possible to specify the hosts in a sh-like syntax, i.e.:
mpirun -nodes "p3-0{1,2,3,4}" exefile
Please note the usage of quotation marks around the node specifier - this is
required to avoid the extension of this expression on the commandline which
would result in an illegal syntax.

e [f the -n option is omitted when using -nodes, mpirun will start one process
on each specified node.

e The -nodes option is aliased by the -node, -hosts and -host options (other
name, same functionality).

e [t makes no sense to use -nodes together with the -machinefile parameter
(-nodes has the highest priority).

Running more than one process on a single node is only recommended for SMP
systems and may have significant influence on the application performance (it can
decrease or improve). In case of the Linux platform, it requires that the SCI drivers
are compiled with SMP support enabled. To avoid unwanted SMP execution, the
option -smp must be supplied to allow more than one process on any single node.

-help Print a short summary of available options and mode of operation.

-v |

-V |

-t |

-verbose (small letter ’V’) Be verbose on startup and print information on
the startup process to stdout.

-Verbose (big letter ’V’) Be even more verbose on startup and additionally
print information on the internal configuration of SCI-MPICH.

-testing | -show Just show the commands mpirun would issue, but do not
execute them.

Application Standard-1/0

-stderr FILE Redirect the stderr stream into a file. The output of each process is
written into a file named FILE_x where x is the MPI rank of the process. Existing
output files are renamed to *FILE™’, empty output files are removed after termi-
nation of the application. If only one process created a non-empty output file, this
file will be named FILE (and not FILE_X).

-stdout FILE Redirect the stdout stream into a file. The output of each process is
written into a file named FILE_x where x is the MPI rank of the process. Existing
output files are renamed to *FILE™’, empty output files are removed after termi-
nation of the application. If only one process created a non-empty output file, this
file will be named FILE (and not FILE_X).

-stdin FILE If you need to supply input via stdin to any process, you need to store
this input in a file and use the stdin option: each process will get input from the
file FILE. All processes will get the same input as specified in the file.

-console all | <rank|nodename,...,rank|nodename> Do open a separate console
I/O window for each specified process, so that the console input and output (stdin,
stdout, stderr) of the processes is cleanly separated and process can read its own
input. The environment variable DISPLAY must be set correctly on the host on
which the smirun-command is issued. The environment variable MPI_XTERM or
XTERM (with higher priority for MPI_XTERM) can be set to specify the command
used to open the terminal window. The default value is the xterm command. It is
possible to open a console window for all processes using the parameter all. If only
certain processes should open their own console window, specify the MPI ranks or
the hostnames of these processes in a comma-separated list as parameter.

-pager In conjunction with -console, stderr and stdout are piped to a pager. The
environment variable MPI_PAGER or PAGER (higher priority for MPI_PAGER) can be
used to specify the command through which the output is piped. If you do not
want to have to press a key after each page of output, you may set an appropriate
environment variable to cause the used pager (less by default, use the -V option of
mpirun to determine) to behave like the tail command. A usual way to choose is
to set the environment variable LESS to "+F" (i.e. export LESS=+F). Refer to the
man page of you pager for detailed information on which startup commands are
supported.

Working directory and environment

-wd PATH | -workingdir PATH Specify a working directory. The default directory in
which the execution will take place is the directory in which the executable is
located.

-env VAR=VALUE Specify an environment variable VAR to be set to VALUE in the context
in which the processes will execute. To specify multiple variables, this option can
be supplied multiple times.

Debugging SCI-MPICH supports the startup of all or single processes of the appli-
cation under the control of an debugger. To do this, you’ll need to be able to create
X-windows from the host and the command prompt from which you launch the mpirun
command.

-gdb all | <rankl|nodename,...,rank|nodename> Use the debugger gdb to control
all (parameter all) or only the specified processes (by specifying a list of ranks).
Examples:

mpirun -n 4 -gdb 2,3 buggy
Start the program buggy with 4 processes, and have the processes with MPI rank
2 and 3 execute within the control of gdb.

-dbx all | <rank|nodename,...,rank|nodename> Like option -gdb, but use the de-
bugger dbx.

-tv Use the debugger TotalView to control all processes of the application. Make sure
that the environment variable TOTALVIEW points to the TotalView executable,
otherwise totalview is being assumed.

Device Configuration

-devconf FILE Use FILE to supply a device configuration for ch_smi. This information
can also be contained in the machinefile (see chapter 3.5 on page 24)).

Advanced Options A number of options exist which are useful for tracking prob-
lems or for library developers, but are not relevant for users of SCI-MPICH who
just want to run MPI applications. These options are:

-mpipapi If an application has been linked with the PAPI wrapper for performance
monitoring, you need to specify this with mpirun, too. This will start the perfor-
mance data server (on the system on which mpirun is executed), to which the MPI
processes deliver their performance monitoring data. The server in turn will print
its port number to the console and wait for a connection with the performance
monitoring application (a GUI or a logfile writer).

-smidebug Let the SMI library generate debug output — useful if you have problems
which seem to be SCI related. The startup of the SMI library can be traced, and
the error messages are more verbose and appear in the full context.

-smitrace Let the SMI library generate tracing output — useful if you want to see how
long distinct sections in a run take inside the SMI library

-smistat Let the SMI library generate statistical timing and function call information
on shutdown (equivalent to the output of SCI-MPICH with the "statistics 1"
option in the device configuration file)

-nowatchdog Fully disable the watchdog (not only set it to an infinite timeout).

-skip id If a certain process should not be started by mpirun, it is possible to specify
this process via the supplied id. Such a behaviour may be useful if this process
should be started from a debugger. The supplied id can have different semantics:

e id is a hostname from the list of hosts that mpirun will start processes on. In
this case, no process is started on this host.

e id is an integer number. In this case, the process which would have this MPI
rank will not be started.

In either case, mpirun will print the command line which would have been used to
launch the process(es). This command line should be used for the manual startup
of the other process. Please note:

e The process should be started on the same host which mpirun would have
started it on.

e The initial startup synchronisation of the processes which form an application
has a limited timeout. If the manually started process is launched with a delay
which is beyond this timeout (a small number of seconds, depending on the
number of processes), it will fail to synchronise with the other processes.

-nolocal Do always use SCI memory even if all processes are running on a single node.
In this case, the SMI library would normally use local shared memory among the
processes.

Example:
mpirun -np 7 -machinefile /home/foo/cluster/machines -xterm flood 50000

Starts the program flood on 7 nodes which are read from the file /home/foo/cluster/
machines and opens a separate xterm window for each process. The parameter 50000
will be passed to flood.

Notes:
e mpirun is a sh script.

e mpirun uses rsh to launch the processes on the remote hosts. Make sure that
the systems are configured accordingly to enable rsh to execute without explicit
authentication (entering the password). Usually, this is done by setting up $HOME/
.rhosts accordingly. On systems (many Linux distributions), the general security
configuration (via the PAM mechanism) needs to be adjusted to allow this.

e Instead of rsh, ssh may be used as well (see configure option --with-rsh).

e mpirun needs to have write access to the /tmp directory of the host on which it is
started.

e The processes of an SCI-MPICH application need to synchronise in the startup
phase using a TCP/IP port. The default port address that is used is 51069. If
you need to change this address, set the environment variable SMI_SYNCPORT to
an according value.

3.3.3 Host Specification

The mpirun script can use a machine file to determine the hosts on which to run the
MPI processes. Consider the following rules and limitations when creating or using such
a file or look at the file machines for an example:

1. Each line in the file contains exactly one hostname. Following this hostname, the
number of processes on this host may be specified with a colon (’:") as separa-
tor (compatible with machine files for the well-known ch_p4 device of MPICH).
Comment lines are not supported However, you may include device configuration
information in the machine file which has to be located below the lines containing
the host names, separated from the host section by a blank line. See figure 3.1 on
the following page for some examples:

2. The mpirun script selects the required number of hosts from the machine file from
top to bottom. It launches one process on each of the selected hosts found in an
alphabetical order (sorted by hostname). No process is launched on the local host
(on which mpirun was invoked) unless this host appears in the machine file and
is selected. If the specified number of processes of the MPI application is bigger
than the number of hosts in the machine file, the processes are scheduled on the
available hosts in a round-robin manner.

3. If the option -machinefile is omitted from the mpirun call, it uses the following
strategy to find a machine file: - look for ./machines - if not found, look for
$HOME/ .machines - if still not found, look for $MPIR_HOME/util/machines - start
all processes on the current machine (from which mpirun was started).

Notes:

e If multiple processes are started on a node, these processes will communicate not
via SCI shared memory, but via local shared memory (SYS-V or memory mapped
files), unless the -nolocal option was used.

e If multiple processes are started on a node, the -smp option needs to be supplied
to mpirun to certify that you want to do this.

Valid machine file, specifying 3 processes on 3 different nodes:
cluster-node-00
cluster-node-01
cluster-node-02

Valid machine file, specifying 3 processes on 2 different nodes:
cluster-node-01
cluster-node-00
cluster-node-01

Valid machine file, also specifying 3 processes on 2 different nodes:
cluster-node-00
cluster-node-01:2

Valid machine file, specifying 6 processes on 3 different nodes:
cluster-node-00:2
cluster-node-01:2
cluster-node-02:2

Invalid machine file (no comments allowed!)
cluster-node-00:2

cluster-node-01:2
cluster-node-02:2

Valid machine file with device configuration appended:
cluster-node-00:2
cluster-node-01:2

async_progress 1
rndv_poolsize 4M

Figure 3.1: Examples for machine files

e [t is generally not a good idea to launch more processes on a node than there
are CPU’s in the node. This will degrade performance significantly. If you really
need to do this, use the device configuration option polling (see section 3.5.2 on
page 35).

e [t is of course possible to simultaneously launch multiple MPI processes of different
applications on a single host by running mpirun several times. Again, you should
not use more processes than CPUs per node.

3.3.4 Launching SCI-MPICH applications manually

If for any reason (i.e. for debugging), you do not want to launch an SCI-MPICH appli-
cation via the mpirun script (or via rexecshell for Windows NT), you may also start
it manually. The arguments which are required are as follows:

-h hostname Specification of the master node for startup
-n number_of_processes Total number of process to form the application

-r rank_of_process Rank of the individual process The rank 0 must be given to a
process which runs on the master node as indicated by the -h option.

-m id_number Identification number (choose any number, but it must be identical for
all processes)

Optional arguments are:

-d filename Use the specified device configuration file

-1 Indicate that all processes are running on the same node (this will improve per-
formance as only local shared memory will be used)

-w disable the watchdog (required for debugging)
-s enable debug output of the SMI library

-v verbose startup of the ch_smi device

The order of these options does not matter. These SCI-MPICH options must be termi-
nated by a "--". Parameters for the application itself can be appended.

Notes:

e Parameters supplied via the command line override the related parameters in a
device configuration file.

e SCI-MPICH can be configured to use threads for certain operations (configure
option --enable-devthreads). Using threads usually hinders Linux from writing
a core file in the case of a process failure because Linux can not dump core of
multithreaded processes (this may change with future Linux versions).

Example: To run an application called myprog on nodes A and B and give each one
the parameters -foo 0 with activated SMI debug output and disabled watchdog:

e on A: myprog -h A -r 0 -n 2 -m 17 -s -w -- -foo 0

e on B:myprog -h A -r 1 -n 2 -m 17 -s -w -- -foo O

3.3.5 Shutting down SCI-MPICH applications

To shut down a running SCI-MICH application, it is sufficient to terminate any single
process of the application (i.e. by sending a SIGINT). Of course, if the application was
launched via the mpirun script, the complete application will be aborted if the mpirun
script is aborted, i.e. by pressing CTRL-C on the console. In any case, the watchdog will
ensure that the whole application will terminate immediately and cleanly. The same is
true if your application terminates abnormally.

The clean shutdown of a parallel application includes the termination of all partici-
pating processes and the deallocation of all occupied resources. SCI-MPICH uses the
advanced features of the SMI library like watchdog and resource management to ensure
that all processes of the application detect the (abnormal) termination of one or several
processes and will terminate as well. All resources are deallocated no matter how the
application terminates (normal, by crash, coredump, signal...).

Note:

e If an SCI-MPICH application is under the control of a debugger, the shutdown
mechanism may fail to deallocate all resources automatically in case of an termi-
nation cause by the debugger (because the debugger doesn’t use SIGINT). This
may require a reboot of the system after a number of runs to deallocate certain
resources.

A better technique would be to detach the program from the debugger (if possible)
and kill it with an appropriate signal (except SIGKILL) which allows the process
to shut down properly.

3.4 Compatibility

SCI-MPICH has been tested for compatibility with different MPI tools and environ-
ments.

3.4.1 MPICH ABI

SCI-MPICH is binary compatible with MPICH as it offers the MPI API through the
MPICH ABI. Object files of applications which are designed to be used with MPICH
need only be linked with the SCI-MPICH libraries.

3.4.2 VAMPIR

SCI-MPICH was successfully tested with VAMPIR, tracing library (1ibVT) from the
VAMPIR distribution 2.5, November 1999 on Linux x86. Newer version should work as
well, as the profiling interface as defined by MPI remains the same. To link with the
VAMPIR tracing library and thus automatically create VAMPIR trace files, supply the
option -vampir to the MPI compiler scripts (mpicc, ...). Make sure that the environment
variable VAMPIR_LIB is set such that the required tracing library 1ibVT can be found in
$VAMPIR_LIB. VAMPIR is a product of Pallas GmbH; more information on the VAMPIR
tracing environment can be found at http://www.pallas.del

3.4.3 TotalView

SCI-MPICH is compatible to TotalView. Simply add -tv to the mpirun-call.

3.4.4 MPICH ch_p4 Startup

The startup via the mpirun script is compatible with the startup of applications linked
with the original MPICH and the ch_p4 device. This means, the same kind of machine-
files and other options can be used. However, even if the -nolocal option is not given,
SCI-MPICH will only launch processes on the hosts specified in the machine file, not on
the local host (which is the behaviour of ch_p4 with the -nolocal option).

3.4.5 Scali ScaDesktop

This ch_p4 compatibility does also allow the use of the Scali cluster frontend tool
ScaDesktop to start applications. To do this, simply copy the files mpirun, mpirun.args
and mpirun.ch_smi from the SCI-MPICH installation (in the bin directory) to /opt/
scali/contrib/mpich/bin, overwriting the existing files mpirun and mpirun.args (you
may want to make backup copies of these). From the cluster-view of the scadesktop
tool, select Run -> MPICH program... and select an SCI-MPICH executable. To pass
additional options to mpirun, prepend them to the filename in the dialog. Options to
the executable itself need of course to be appended.

3.4.6 OpenPBS

SCI-MPICH can easily be used with the OpenPBS (or PBSpro) queuing system. It
supplies a special frontend script for this with mpirun-like semantics. All you need to
do is to specify the PBS system when configuring SCI-MPICH (see chapter 3.2.5 on
page 10) and use the gmpirun-script to start your applications (see chapter 3.3.2 on
page 14).

http://www.pallas.de

3.5 Device Configuration

SCI-MPICH can be configured to optimally fit your hardware setup or the requirements
of your MPI application. To do so, it reads a device configuration file on startup.
You can supply the name of such a file via the -devconf option of mpirun. If the
option -devconf is omitted from the mpirun call, the following strategy to find device
configuration information is used:

1. look for ./ch_smi.conf
2. look for \$ (HOME) / .ch_smi.conf

3. look for device configuration information in the machines file which is used (see
chapter [3.3.3 on page 19)

4. use the built-in default settings

All of the parameters are supplied in the form

PARAMETER VALUE

PARAMETER must be one of the identifiers listed below (case does not matter). VALUE
must be an integer (usually the number of bytes or a boolean switch). If VALUE means
a number of bytes, you can append the letter ’k’ or "M’ to indicate that this value is
expressed in Kilobytes (210) or Megabytes (220). Look at the file ch_smi.conf for an
example.

For each parameter which is not specified in the configuration file, the default value
as specified in this chapter will be used. Using these default values is fine for most cases,
but to activate certain features or settings (which may improve or degrade performance,
depending on the application and hardware), other settings than the default values may
be required. An example for this is the activation of the asynchronous progress feature:
this is useful for applications which are aware of the possibility to overlap computation
and communication, but other applications may show a reduced performance with this
feature activated.

Lines which start with a ’>#° or ’;’ character are considered as comments and are
ignored, as well as empty lines. If an application is started with the verbose option
(-v option for mpirun), SCI-MPICH will print warning messages for lines which are
syntactically incorrect or which do specify illegal values.

3.5.1 Protocol-specific Configuration

The three different protocols for communication (short, eager, rendezvous) use a certain
layout and dimension of their memory pools/queues. These definitions can be set at the
startup of the application by the following parameters.

Note:

e It may happen that SCI-MPICH is not able to allocate all the buffers of the
specified size In this case, the size and number of the buffers for the eager and
rendez-vous protocol are decreased automatically. The actual buffer configuration
is printed by process 0 if the application is started with the -v option.

SHORT Protocol

The size of the buffers which is used for control packets and short messages can be
adjusted. If your application sends a lot of small messages which are in the low range of
the size for the eager protocol, you may increase SHORT _bufsize to send these messages
via the short protocol which is somewhat faster. This is true for messages smaller 1024
bytes. However, very small messages (only a few bytes) will take slightly longer in this
case.

SHORT _bufsize The size of the buffers for short messages & control packets.

default: size of the largest atomic SCI data move (64 or 128
bytes)

Notes:

e The maximum message size for short messages does not equal SHORT _bufsize,
but is several bytes smaller. It is printed on startup if you specify the -V option
to mpirun.

e This value is aligned to powers of 2 internally and is at least 64 bytes.

e You need to consider that increasing SHORT_bufsize will decrease SHORT _nbrbufs
because SCI-MPICH imposes certain built-in limits on the memory usage of the
short protocol. To keep the number of buffers constant, you need to specify a value
for SHORT _nbrbufs.

SHORT _nbrbufs The number of buffers for short messages & control packets.

. Pagesize .
default: SHORT bufsize 1

Lower values lead to more frequent remote updates of the related counter which means
less performance. Higher values lead to more memory consumption.

Notes:

e A value smaller than the default size does not save any memory since at least one
memory page is reserved for the buffers between each two processes.

Memory usage of the short protocol for each process:
NBR_PROCESSES*SHORT _bufsize*SHORT _nbrbufs (+ alignment)

EAGER protocol

EAGER_bufsize The maximum size of a message to be transferred via the eager
protocol.

default: 16 kB

Other values (lower or higher) are possible. Lower values lead to less performance
since the rendezvous protocol is used for messages > EAGER_bufsize, higher values lead
to more memory consumption.

Notes:
e This value is aligned to multiples of the stream buffer size internally.

e Extending the eager buffer size beyond 64kB usually makes no sense because the
rendez-vous protocol starts to be faster for messages of a certain size.

EAGER_nbrbufs The number of buffers (each EAGER_bufsize bytes long) which
are allocated for each sender-receiver pair.

default: 4

Other values (lower or higher) are possible. Lower values lead to (potentially) less
performance because the rendezvous protocol is used if no free eager buffer is available
on the receiving process. Higher values lead to more memory consumption.

Note:

e You may set this value to 0 to disable the eager protocol if you are really tight on
memory.

EAGER_maxcheckdev The number of calls to CheckDevice () if no free eager buffer is
available before the rendez-vous protocol is used (this is more an
internal parameter)

default: 1

Other values >= 0 are possible. The performance impact of this parameter heavily
depends on the communication pattern. If you set EAGER_nbrbufs to 0, you should set
this parameter to 0, too.

EAGER_immediate If a process receives an unexpected message (a message for which
no receive buffer has yet been posted) via the eager protocol, it
has the choice of leaving the message in the incoming eager buffer
until a matching receive has been posted, or it can free the in-
coming eager buffer by temporarily copying the message in an

EAGER_dynamic

internal buffer. The first method avoids the additional copy op-
eration, but blocks the incoming eager buffer which may require
the sending process to send the next message via the (slower)
rendez-vous protocol. The option EAGER_immediate selects one
of these methods

0 leaves the message in the incoming buffer
1 immediately frees the incoming buffer
default: 0

Besides the ’traditional’ static eager protocol with a fixed num-
ber of fixed-sized buffers for each sender-receiver pair, a new
variant of the eager protocol called dynamic eager can be acti-
vated by this parameter. This protocol version uses a fixed-sized
ring buffer with a variable number of buffers inside, leading to a
more effective usage of memory resources. The size of the ring
buffer is calculated as EAGER_bufsize*EAGER_nbrbufs and will
be reduced if the memory resources are not sufficient.

0 uses static eager protocol
1 uses dynamic eager protocol
default: 0

Memory usage of the eager protocol for each process:
NBR_PROCESSES*EAGER_bufsize*EAGER_nbrbufs (+ alignment)

RENDEZ-VOUS protocol

RNDV_poolsize

The pool of locally shared memory from which the buffers for
the rendez-vous message transmission are dynamically allocated.

default: 1 MB

Other values (lower or higher) are possible. Lower values lead to less performance
since partial message transfers will occur more often (at least for every message >
RNDV_memorysize). Higher values lead to more memory consumption. This value is

aligned to page size.

Note:

e If SCI-MPICH can not allocate a buffer of the specified size, it halves the buffer
size and try again until the buffer size is smaller than the eager buffer size.

RNDV_blocksize

The block size for the pipelining of writes and reads.

default: 24 kB

Other values (lower or higher) are possible. The smaller the value, the more protocol
overhead will be created. Increasing the value may reduce the pipelining effect and
thus the effective bandwidth. The optimum value depends on the relation of local and
remote memory bandwidth and thus needs to be manually determined for each system.
However, the default value usually delivers more than 95% of the peak performance for
all kinds of systems we tested.

This value is aligned to multiples of the stream buffer size internally.

Notes:

e A value of 0 turns off the interleaving

RNDV_receipt The size of the remote receive buffer, expressed as a multiple of
the RNDV_blocksize value.

default: 12

Other values (lower or higher) are possible. Not using the maximum available memory
for this receipt buffer make better use of the existing shared memory resources and
may provide better overall performance in situations with many concurrent rendez-vous
transfers towards one process. The peak point-to-point performance may be improved
by using higher values.

A value of 0 means that the maximum available memory should be used for the
reception of a rendez-vous message.

RNDV_blocking The blocking variant of the rendez-vous protocol uses a tradi-
tional ring buffer with flow control via shared read- and write-
pointers instead of the control-message based flow control in the
standard rendez-vous protocol. This results in a higher point-
to-point bandwidth especially for messages of data which is not
cached or which exceeds the size of the cache. However, it will
hinder the processing of incoming messages during the transfer
of a rendez-vous message (it blocks) which may reduce effec-
tive throughput in certain situations. This means, it is best to
use this protocol for communication pattern where the receiver
waits for only this message to arrive. Therefore, this protocol is
always used for ready sends (via MPI_Rsend()) with the rendez-
vous protocol. For cases where other send modes do also benefit
from the blocking behaviour, it is possible to use this protocol
for all PIO-based rendez-vous transfers.

0 uses non-blocking rendez-vous protocol for all transfers except
ready-sends

1 uses blocking rendez-vous protocol for all PIO-transfers
default: 0

Notes:

e The blocking protocol may exhibit very high performance degradation for situa-
tions where one process has to process a very big number of outstanding/concurrent
rendez-vous messages. This may be avoided by defining a bigger memory pool via
the RNDV_memorysize parameter.

RNDV_MAXRECVS To limit the degree of parallel message transmission, which may
have a negative impact on performance and resource availability,
the maximum number of concurrent rendez-vous receive opera-
tions a process performs is limited. This limit can be changed
using the RNDV_MAXRECVS parameter. Incoming receive requests
which exceed this limit will be postponed until the ongoing re-
ceive operations have finished.

default: 0 (unlimited)

RNDV_MAXSENDS Same as RNDV_MAXRECVS for the maximum number of concurrent
send operations of a process.

default: 4

Memory usage of the rendez-vous protocol for each process:
RNDV_memorysize

Single-sided Communication

SCI-MPICH supports the complete set of single-sided (aka ’one-sided’) communication
as specified by the MPI-2 standard.

SSIDED_ENABLED Disable single-sided (aka one-sided) communication. Usually,
there is no reason to do so.

0 disables single-sided communication
1 enables single-sided communication
default: 1

SSIDED_RMTPUT_PRIVATE Threshold value: MPI_Get accesses above this value will be
executed as a remote put operation to speed up the transfer.
This value applies if the window is located in private memory at
the target.

default: 148

SSIDED_RMTPUT_SHARED Threshold value: MPI_Get accesses above this value will be
executed as a remote put operation to speed up the transfer.
This value applies if the window is located in shared memory at
the target.

default: 122

For more information on the protocols, look for documentation at our WWW site.

3.5.2 Global Device Configuration

Additionally, there is a number of options which have effect not only on a single protocol,
but on multiple protocols or the whole device

Generation of runtime-statistics If you want to create runtime statistics for a variety
of functions in the device, use the STATISTICS option. Each process will print a table
of function call statistics and counters to stdout after proper termination. To use this
option, the configure script needs to be invoked with the --enable-devdebug switch
You then can control the generation of the statistics with the following option:

STATISTICS Switch to turn statistics on or off with the supplied value:

0 turns them off 1 turns them on default: 0

Notes:

e The use of this function is mainly for internal debugging and tuning and is probably
of no meaning to the average user.

Watchdog SCI-MPICH uses the Watchdog of the SMI library to shut down the whole
application in the case that one or more processes have crashed or are fully blocked.
For debugging, this behaviour is not desired, thus you can control the watchdog via this
parameter.

WATCHDOG Turn the watchdog off or enable it with a defined time-out

0 turns the watchdog off

> 0 turns the watchdog on and sets the time-out to the given
value (in seconds). The watchdog will consider a process as dys-
functional when it does not respond within the time-out.
default: 5

Self-send shortcut In the case of a process sending a message to itself, a shortcut
has been implemented which uses a single-copy variant for the eager and rendez-vous
protocol (copying directly between the send- and receive user buffer). As this acceleration
is usually desired, it is turned on by default.

SENDSELF Switch to turn on single-copy variant of the eager and rendez-
vous protocol for messages send to itself.

0 turns them off
1 turns them on
default: 1

True asynchronous sends Depending on the MPI-Applications you are running, it
may be desirable to use an implementation of MPI Isend which does really work asyn-
chronously to allow the overlap of computation and communication. SCI-MPICH allows
this kind of communication, using DMA or a thread for PIO. However, depending on
the application it may not always improve performance. Therefore, you can control the
use of asynchronous communication via the following option:

ASYNC_PROGRESS Switch to turn the usage of asynchronous Isends on or off with
the supplied value:

0 turns them off
1 turns them on
default: 0

Notes:

e This option is only available if the configure-option --enable-devthreads or --
enable-libthreads was used.

Use of DMA for message transfer The PCI-SCI adapter boards support DMA be-
tween shared memory segments. We have implemented support for DMA transfers —
check for yourself if it helps with your application. Use the DMA MINSIZE options to
select a threshold from which DMA is efficient on your system.

USE_DMA_PT2PT Switch to turn on DMA transfer mode for messages send via
asynchronous MPI send calls.

0 turns DMA off

1 turns DMA on, using non-mapped remote segments

2 turns DMA on, using mapped remote segments (slower)
default: 0

Notes:

e This option only has an effect if asynchronous transfers are enabled (see option
ASYNC_PROGRESS) or if registering and zero-copy operations are enabled (see op-
tions REGISTER and ZEROCOPY).

e Enabling DMA implies setting SENDSELF to 1, to (this is done internally indepen-
dent from the user setting of SENDSELF).

e DMA transfer between processes on the same node is not possible. In this case,
SCI-MPCH uses the traditional PIO protocol variant.

e DMA with non-mapped remote segments is way faster than with mapped remote
segments because the overhead for mapping a remote segment is very significant
and increases nearly linearly with the size of the remote segment. There are no
reasons not to use non-mapped remote segments with DMA. The old mode is for
reference only.

DMA transfer threshold Using DMA for message transfers can be significantly faster
than PIO. This is especially true if the message buffers can be used as source and target
for memory transfers (see options REGISTER and ZEROCOPY). However, setting up a DMA
transfer includes some overhead, especially if registering and zero-copy is not supported
by the platform. For transfers up to a certain message size, depending on the capabilities
and performance characteristics of the platform and the communication pattern of the
application. Therefore, you can adjust the minimum size for a message to be transferred
via DMA. There are two different thresholds, one for the synchronous (blocking) and one
for the asynchronous (non-blocking, see option ASYNC_PROGRESS) version of the rendez-
vous protocol. Doing DMA for the asynchronous protocol variant may pay off for smaller
message size, because the focus for this protocol is to transfer data in the background,
but not necessarily as fast as possible (as it is the case for the blocking protocol). The
short and the eager protocol do never use DMA.

SYNC_DMA_MINSIZE Threshold value for the size of a message which is to be trans-
ferred using DMA synchronous (blocking) rendez-vous protocol...

default: 512 kB

ASYNC_DMA_MINSIZE Threshold value for the size of a message which is to be trans-
ferred using DMA by the asynchronous (non-blocking) rendez-
vous protocol.

default: 32 kB

Zero-copy transfers For messages sent with the rendez-vous protocol, SCI-MPICH is
able to perform zero-copy transfers (direct copy from user send-buffer to user receiver
buffer without intermediate copies) for optimised performance. This is done by directly
connecting to the remote receive buffer. However, a number of conditions must be met
to allow for zero-copy transfers, read the notes below. If zero-copy is enabled, but can
not be performed because not all necessary conditions are met, SCI-MPICH will fall
back to the standard protocols.

ZEROCOPY Switch to allow or disable zero-copy transfers.

0 turns off zero-copy

1 turns on zero-copy
default: 1

Notes:
e This option only has an effect if DMA transfers are enabled. (option USE_DMA)

e Using persistent communication improves the performance of zero-copy transfers
(MPI_Send_init () or MPI_Recv_init() see MPI documentation).

e The SCI driver (IRM/SISCI) must support registration of user-allocated mem-
ory. This is currently under development and will soon be available in the official
Dolphin sources (see option REGISTER).

One of the following conditions for the memory of the send/receive buffer must be
met to allow zero-copy:

1. The memory for the send/receive buffers should have been allocated via the func-
tion MPI_Alloc_mem() and should be freed with MPI_Free_mem().

2. If the two functions from 1. can not be used, but malloc() / free() or a sim-
ilar allocation mechanism is used, de-allocation and subsequent re-allocation of
communication buffers must be avoided. Allocating a buffer once, using it for
communication, and finally freeing it is fine.

3. If condition 2. can not be assured, it is recommended to recompile the applica-
tion with the macro MPI_MALLOC_WRAP defined (option -DMPI_MALLOC_WRAP for a
C/C++ compiler). This will activate macros in mpi.h which replace all occur-
rences of malloc() and free() with equivalent calls to MPI_Alloc_mem() and
MPI_Free_mem().

Registering user-allocated buffers This option is relevant in conjunction with zero-
copy. It determines if SCI-MPICH should try to register user-allocated buffers (the
send- and receive buffers handed over via the MPI calls) with SCI. If the registering
succeeds (depending on available resources), the buffer can directly be used as a DMA
source or target, allowing zero-copy transfers even for buffers not allocated via MPI. If
the registering fails, SCI-MPICH will use intermediate buffers for transferring the data.

REGISTER Switch to allow or disable registering of user-allocated memory.

0 turns off registering
1 turns on registering
default: 1

Note:

1. The functionality required for registering memory is not provided in the standard
Dolphin drivers so far. We are working on an inclusion of this feature.

On-demand connection Normally, all processes of an SCI-MPICH application con-
nect all their memory segments to each other during MPI_Init(). For a large number
of processes, this can take a considerable amount of time. However, not all of these con-
nections are actually used during the execution of the application since it occurs that
not each process communicates with each other using every available protocol.

To speed up the startup, SCI-MPICH offers a on-demand-connection option. Using
this option, the memory segments are configured, but not actually connected on startup.
Instead, the connection is performed on demand during the execution of the application.

DEMAND_CONNECT

Note:

Switch to turn on or off fast startup using delayed segment con-
nections.

0 turns on-demand connection off
1 turns on-demand connection on
default: 1

1. This option has become meaningless for current SCI-MPICH versions which enforce
a fully dynamic resource management (see option RESOURCE_SCHED).

2. If the fast startup is used, SCI-MPICH can no longer dynamically adjust the size of
the memory segments to the available resources. This means if a segment is to be
connected on demand and the connecting process has no sufficient SCI resources
available to perform the connection, the application will abort when releasing other
resources does not help. Therefore, fast startup should only be used for memory
configurations that are known to work.

Synchronisation of memory transfers To avoid thrashing on the PCI bus of nodes in
the system, SCI-MPICH synchronises remote memory accesses between processes. There
are different modes how this synchronisation can be performed which are selectable via
the setting of MEMCPYSYNC_MODE in the configuration file. Additionally, a threshold value
for the synchronisation with respect to the size of a transfer operation can be set.

MEMCPYSYNC_MODE

MEMCPYSYNC_MIN

Notes:

Select how memory transfer operations are synchronised between
the processes.

0 no synchronisation

1 synchronise only incoming transfers on the destination node

2 synchronise only outgoing transfers on the source node

3 synchronise both incoming and outgoing transfers

default: automatic setting of mode according to topology and
the type of the PCI-SCI host adapter (recommended!).

Set a threshold value for the size (in bytes) of a inter-node mem-
ory transfer operation to be synchronised. Any value bigger than
zero is valid. This value specifies the largest size of a memory
transfer which is not synchronised.

default: 2048

1. The current implementation of MEMCPY_SYNC does not consider multiple PCI-SCI
adapters in one node, but synchronises on a per-node basis (not on a per-adapter
basis as it would be required for efficient use of multiple PCI-SCT adapters).

2. This synchronisation can significantly improve performance on systems with Dol-
phin LC-2 link chips (D31x and D32x series of PCI-SCI adapters). In this case,
disabling synchronisation (by choosing mode 0) is not recommended for systems
with more than 4 nodes.

For systems with LC-3 link chips (D33x series of PCI-SCI adapters), this synchro-
nisation is not required, but usually reduces performance if used. The automatic
configuration turns the synchronisation off for LC-3 based systems.

3. Memory transfers performed by the short-protocol and intra-node transfers are
never synchronised.

PCI-SCI adapter scheduling Systems with multiple PCI busses can benefit from using
multiple PCI-SCI adapters in parallel. There are different ways to use the multiple
adapters which are selectable on startup.

ADAPTER_MODE Specify the usage and assignment of multiple PCI-SCI adapters
in a node.

0 all processes use the same default PCI-SCI adapter

1 use one adapter for incoming and one for outgoing transfers
(called IMPEXP mode, for import-export)

2 each process use a different adapter for all his transfers (called
SMP mode)

default: 0

Note:

1. This option is still experimental.

PCI-SCI transfer verification For experimental reasons, PCI-SCI transfer verification
can be turned off. This will lead to slightly lower latencies - but may of course lead to
crashes or incorrect results.

NO_VERIFY Specify PCI-SCI transfer verification.

0 enables verification
1 disable verification
default: 0

Checking for new messages Per default, SCI-MPICH polls for the arrival of new
messages. This is the fastest way to detect the arrival of a new message and guarantees
the very low latency of down to 5us for inter-process, inter-node message exchange.
However, in some environments blocking (on remote interrupts) while waiting for a new
message is preferred to polling as it leaves the CPU available for other task while an
MPI process is just waiting for a new message. SCI-MPICH offers an option to chose
between polling and three blocking variants.

MSGCHK_TYPE Specify the type of checking for new messages.

0 use polling only (low message latency, high CPU usage)

1 use interrupts only (high message latency, lower CPU usage)
2 use interrupts with subsequent polling

3 use interrupts with a number subsequent blocked checks

default: 0

MSGCHK_DELAY For types 2 and 3 only: Specify the delay (amount of time in us)
to poll (type 2) or block (type 3) after an interrupt did come in.
default: 50

MSGCHK_REPEAT For type 3 only: Specify the number of time to block and check
for new messages after an interrupt was processed.
default: 10

Note:

1. The latency for small messages will increase (up to a factor of 10), and the band-
width for big messages will decrease (up to 10%) using a non-polling mode. How-
ever, the actual performance impact on an application depends very much on the
communication pattern.

2. This option is only available if the configure-option --enable-devthreads or --
enable-libthreads was used.

3. Turning on of the non-polling modes automatically turns on the asynchronous
progress mode (see option ASYNC_PROGRESS)

Optimised collective operations The standard task of a MPI communication device is
to process point-to-point send and receive operations. These operations are also used by
the upper layers of the MPI library to perform collective operations (like MPI_Barrier,
MPI_Alltoall, ...). However, a communication device has the option to perform some
or all collective operations, too, if it has better means to do so (or if the standard
implementation performs bad with this specific device). SCI-MPICH also has some
optimised collective operations which can be selected with this switch.
Currently, the following collective operations are replaced:

MPI_Allgather, MPI_Allgatherv with custom SCI-MPICH version (performs good for
even number of processes)

MPI_Allreduce, MPI_Reduce, MPI_Scan with algorithm by Rolf Rabenseifner of HLRS
Stuttgart (performs better for bigger messages, switching between standard algo-
rithm for small messages and custom algorithm is done automatically), also in an
SCI-optimised variant, or with custom SCI-MPICH pipelining (even better for big
messages). Additionally, the reduce operations are MMX /SSE-optimised on TA-32
platforms.

MPI_Reduce_scatter with custom SCI-MPICH version (performs great for short- and
eager-sized messages, still good for large messages using asynchronous transfers)

MPI_Alltoall, MPI_Alltoallv with custom SCI-MPICH version for increased perfor-
mance and better resource cache rate.

MPI_Barrier with shared-memory barrier - very low latency.

MPI_Bcast with pipelined message transfer for rendez-vous messages.

MPI_Scatter, MPI_Scatterv with custom SCI-MPICH version with good improve-
ment for small messages.

COLL_CUSTOM_ENABLE

USE_DMA_COLL

COLL_BARRIER

COLL_BARRIER_FANIN

Specify if the custom collective operations of SCI-MPICH should
be used or not.

0 use standard MPICH collective operations
1 use custom collective operations of SCI-MPICH
default: 1

Specify if the custom collective operations of SCI-MPICH should
use DMA for message transfer or not (currently only applies to
the pipeline protocols).

0 use PIO only
1 use DMA if possible
default: 1

Various options are available to fine-tune the behaviour of the
implemented custom-collective operations. These are mostly of
interest for experiments and research.

Enable or disable the use of the shared memory
default: 2

Various options are available to fine-tune the behaviour of the
implemented custom-collective operations. These are mostly of
interest for experiments and research.

Fan-in (and fan-out) of the shared-memory barrier. This related
to the inter-node synchronisation; for intra-node synchronisation,
the fan-factor is always set to the number of processes running
on the node.

default: 2

Various options are available to fine-tune the behaviour of the
implemented custom-collective operations. These are mostly of
interest for experiments and research.

COLL_REDUCE_LONG

Threshold for differentiation between "short" or "long" vectors

for reduction.

default: size of eager buffers (EAGER_BUFSIZE)

COLL_REDUCE_LONG_TYPE, COLL_REDUCE_SHORT_TYPE Choice of the communication al-

COLL_REDUCE_FANIN

gorithm for reduction of short or long vectors. Valid values are:

0 tree

1 rabenseifner

2 pipeline

default: short: 0 — long: 2

Fan-in for the reduce-communication-tree (mostly for short vec-
tors)

default: 4

COLL_ALLREDUCE_TYPE Choice of the communication algorithm for global reduction (ap-

plies for all vector lengths). Valid values are:

0 default (reduce followed by broadcast)
1 rabenseifner

2 pipeline

3 allgather

4 rabSCI

default: 4

COLL_ALLGATHER_BARRIER Message-size related lower threshold for using a barrier to

COLL_ALLTOALL_MIN

COLL_ALLTOALL_TYPE

synchronise / separate the communication phases of the allgather-
communication.

default:

Message-size related lower threshold for using the custom all-to-
all communication. Usually, the custom-algorithm is faster for
rendez-vous messages.

default:

Choice of the routing algorithm to select communication partners
during the all-to-all communication. Valid values are:

0 plain
11-D

2 2-D

3 scampi
4 mpich
default: 1

COLL_ALLTOALL_BARRIER Message-size related lower threshold for using a barrier to
synchronise / separate the communication phases of the all-to-
all-communication.

default:

COLL_PIPE_MIN Message-size related lower threshold for using the custom pipeline
algorithm.

default: eager buffer size

COLL_PIPE_DMA_MIN Message-size related lower threshold for using the custom pipeline
algorithm with concurrent DMA- and PIO transfers.

default: 2 * COLL_BCAST_BLOCKSIZE

COLL_PIPE_BLOCKSIZE Blocksize for pipelining.
default: 32kB

COLL_PIPE_NBRBLOCKS Number of pipeline-buffers to use.
default: 8

COLL_PIPE_DYNAMIC Allow or disallow dynamic adoption of pipeline-buffer size, de-
pending on the message size.

default: 1

COLL_SCATTER_MAX Maximum size for messages to use the custom scatter algorithm.
default: EAGER_BUFSIZE

MPI-2 memory allocation SCI-MPICH supports the MPI-2 functions MPI_Alloc_mem
and MPI_Free_mem which can be used to allocate "special" memory for message buffers
which gives better performance than memory allocated via malloc / free. The memory
manager for this allocation does only use "special" SCI-optimised memory areas if the
requested size exceeds a lower threshold (because allocating smaller buffers does not
pay off in performance, but uses up resources and leads to memory fragmentation). The
value for this threshold can be set via ALLOC_MINSIZE. Buffers sized below this threshold
are allocated via standard malloc internally.

ALLOC_MINSIZE This parameter should be increased if your application makes
increased usage of MPI_Alloc_mem() for small buffers, leaving
not enough resources for bigger buffers which would best benefit
from SCI-optimised memory.

default: 64 kB

ALLOC_POOLSIZE The allocation of SCI-optimised memory is performed from a
pool of such memory. The size of this pool can be set via
ALLOC_POOLSIZE.

If an allocation request can not be satisfied from within this
pool, SCI-MPICH will try to allocate the SCI-optimised memory
from a memory area only created for this request. Creating such
an area costs significantly more time than allocating from the
pool, thus the pool should be at least twice as big as the usual
allocation requests to avoid performance decrease.

In case that a pool of the specified size can not be allocated,
SCI-MPICH reduces the size accordingly down to the size of the
first allocation request.

default: 4 MB

Optimised non-contiguous communication SCI-MPICH offers optimised communi-
cation techniques for sending/receiving non-contiguous derived datatypes which offer up
to twice the bandwidth than the standard MPICH technique (which is also used in all
other MPI implementations we know).

Using this technique for (h)indexed and struct may, under certain conditions, lead to
incorrect receive data if the datatype used for receiving is different then the datatype used
for sending. For this reason, the optimisation is disabled for these types by default (full
MPT conformance). If the situation described above does not apply to your application,
you can turn on the optimisation for these types, too (limited MPI conformance).

NC_ENABLE Specify if the custom non-contiguous (n-¢) communication tech-
nique of SCI-MPICH should be used or not.

0 use standard MPICH n-c communication

1 use optimised n-¢ communication w/ full MPI conformance
2 use optimised n-c comm. w/ limited MPI conformance
default: 1

NC_MIN Specify the minimal size (in bytes) of a contiguous part of a non-
contiguous datatype to be transferred directly. Data blocks be-
low this size will be gathered locally to improve the performance
of remote SCI operations.

default: 8

Resource Scheduling SCI-MPICH manages the SCI resources (local and remote SCI
memory, DMA connections and registered memory regions) dynamically to ensure that
even with limited SCI resources, the application can use a maximum processes. To
enhance the performance of this dynamic resource management, these resources are
not immediately destroyed if no longer required for a specific message transfer, but are
cached for possible reuse. Only if a new resource can not be created, a number of the
cached, but currently unused resources is destroyed to free system resources for the new
resource to be created. This implies that there must exist a policy on which a decision

which of the cached resource to choose for destruction. A number of different policies
(called scheduling strategies) does exist which can be selected via a device parameter
called RESOURCE_SCHED.

RESOURCE_SCHED Specify the scheduling strategy for the dynamic resource man-
agement. Possible values:

0 IMMEDIATE - don’t cache at all, but destroy free’d resources
immediately (mainly for testing purposes)

1 LRU - destroy the least recently used resource.

2 LFU - destroy the least frequently used resource.

3 BEST_FIT - destroy the resource which fits best (size).

4 RANDOM - randomly select a resource to destroy.

5 NONE - do not destroy any cached resources, but instead ter-
minate the application if not enough resources exist (mainly for
testing purposes).

default: 1 (LRU)

Different policies can be applied concerning the caching of resources. These policies
can be controlled via certain parameters:

CACHE_REGISTERED Keep registered memory regions registered after the data transfer
is complete? Caching is usually fine and increases performance,
but may lead to data corruption if a malloc()’ed region was
registered, then free()’d, and another, newly malloc()’ed re-
gion with addresses in the same range is to be registered. If such
a situation can be guaranteed not to occur (by using the MPI
allocation functions), it is safe to set this option to ’1’.

default: 0 (do not cache registered regions)

CACHE_CONNECTED If caching of registered memory is enabled, it is also safe to enable
caching of connections to remote memory regions by setting this
option to 1.

default: 0 (do not cache connections to remote regions)

Performance Modelling In cases where an application should scale better than it
actually does, the fun with parallel programming starts. There are a lot of methods
to improve the scaling of a parallel application, foremost by algorithmic improvements.
However, if no further possibilities for algorithmic improved can be found, it is required
to locate the performance bottlenecks that hinder scaling. Instrumenting the applica-
tion and evaluating the produced traces is one way to do this. When the bottlenecks
are located, it can be estimated how much a platform with higher performance would
improve the scaling of the application.

SCI-MPICH offers another interesting way that is called performance modelling: by
controlling certain performance characteristics of the MPI communication (below the

actual value that is reached on the used platform), better estimations based on these
experimental runs can be made on how much impact this specific characteristic has on
the overall application performance.

A number of characteristics can be controlled, which is explained below. Naturally,
it is not possible to increase the performance (raise the bandwidth, reduce the latency)
beyond the limits implied by the used system platform.

PERF_GAP_LTNCY The gap latency is the delay of the sender between two sub-
sequent transmissions of a control message (which may also be
a short message) to the receiver. PERF_GAP_LTNCY defines the
number us of that are added to the natural delay.

default: 0

PERF_SEND_LTNCY The send latency is the duration that the sender needs to send
a control message (which may also be a short message) to the
receiver. PERF_SEND_LTNCY defines the number of us that are
added to the natural duration.

default: 0

PERF_RECV_LTNCY The receive latency is the duration that the receiver needs to
read a new control message (which may also be a short message)
from the incoming queue. PERF_RECV_LTNCY defines the number
of us that are added to the natural duration.

default: 0

PERF_BW_LIMIT To limit the bandwidth to a maximum value, specify this upper
limit (in bytes per second) with PERF_BW_LIMIT.

default: 0 (which means 'no limitation’)

PERF_BW_REDUCE To generally reduce the bandwidth, specify the reduction with
PERF_BW_LIMIT. The given value will be used to reduce the band-
width to value % of the natural bandwidth. If the bandwidth was
already limited by PERF_BW_LIMIT, no further reduction will be
applied.

default: 0 (which means 'no reduction’)

3.6 Memory Allocation

For SCI-MPICH to achieve good performance with features like zero-copy, it is important
to have control over the memory allocation performed by the user. Therefore, explicit
and implicit memory allocation via the MPI library is supported.

3.6.1 Explicit Memory Allocation via SCI-MPICH

The MPI-2 standard defines functions to allocate and free memory which are sup-
ported by SCI-MPICH: MPI_Alloc_mem() allocates a block of memory which can subse-
quently be free’d with MPI_Free_mem() (see MPI-2 standard for exact prototypes). The
MPI_Alloc_mem() function accepts an additional MPI_Info parameter. An MPI_Info
type can contain an arbitrary number of (key, value) pairs (called attributes) to spec-
ify certain demands or conditions. SCI-MPICH supports attributes with two keys and
different values as defined in table 3.2

‘ Key ‘ Value ‘ Purpose ‘
type private Enforce allocation of private (non-
shared) memory. This allows to let
MPI_Alloc_mem() behave like malloc().
shared Enforce allocation of shared (SCI shared)

memory. The call will fail if not enough
shared memory is available.

default MPI_Alloc_mem() will decide if shared or pri-
vate memory will be allocated (based on the
device configuration settings ALLOC_MINSIZE
and the available shared memory resources).
This call only fails if also a standard
malloc () would fail due to a out-of-memory
condition.

alignment | <integer> | Align the returned address of the buffer to
the specified integer value. Can be used
with any type (private or shared) of mem-
ory. Relevant to have private memory prop-
erly aligned for pinning /registering (an align-
ment of 64 is recommend, 8 is required).

Table 3.2: Recognised attributes of MPI Info objects for memory allocation

3.6.2 Implicit Memory Allocation via SCI-MPICH

If an application allocates memory via malloc (), SCI-MPICH does not have any control
over this memory area which hinders certain optimisations concerning the registering of
the memory for zero-copy DMA transfers. Therefore, the include file mpi.h contains a
macro which maps all malloc() calls to an internal allocation function which in turn
uses MPI_Alloc_mem() to allocate private memory with proper alignment. Likewise,
the free() call is mapped to MPI_Free_mem(). This mapping will result in a negligible
overhead for the allocation, but will help to improve communication performance.
However, conflicts between these mapped malloc () /free() calls and the original calls
need to be avoided (because they will surely lead to problems, maybe even corrupted

data or application crashes). Such a conflict would be to allocate memory within a code
module which has mpi.h included, and deallocating it in another module which did not
include mpi.h.

This behaviour of SCI-MPICH can be controlled upon the pre-compile configuration
(using the --disable-mallocmap or --enable-mallocmap switches), in the source code
by defining MPI_ENABLE_MALLOCMAP or MPI_DISABLE_MALLOCMAP or upon compilation
via the compiler frontend scripts using the -mallocmap or -nomallocmap switches. The
default is always to enable the mapping of malloc() and free().

3.7 MPI-2 One-Sided Communication

SCI-MPICH supports one-sided communication which is part of the MPI-2 standard.
You can use the according calls for local- and remote-shared-memory communication.

The one-sided communication, regarding the setup of windows, synchronisation and
data transfer can be used as defined by the MPI-2 standard. You need to consider that
the effective performance that will result from these operations does strongly depend on
the type of memory (private or shared) that you used for the creation of the window.
Currently, none of the asserts as defined by the MPI-2 standard are supported (this
means they will be safely ignored by SCI-MPICH).

3.8 SCI-MPICH under Windows

The source code for SCI-MPICH is identical for Unix systems and Windows (N'T, 2000
and XP). However, the compilation and usage is different and are described in this
chapter.

3.8.1 Compiling the Library
[no special information available yet - please refer to chapter]

3.8.2 Running Applications
[no special information available yet - please refer to chapter]

3.9 Common Questions and Problems

There are some frequently asked questions and problems concerning SCI-MPICH which
we try to answer and solve in this chapter. The quality of this chapter heavily depends
on the feedback we get from you - the user. Don’t hesitate to bother us with questions
and problem reports - but please read the documentation carefully in advance!

20ne-sided communication is also called single-sided communication, which means the same.

3.9.1 General questions concerning SCI-MPICH

Q1:
Al:

Q2:
A2:

Q3:
A3:

Q4:

A4

Q5:

Ab:

Can I use the ch_smi device with MPICH release x.y.z?
The ch_smi device is integrated in MP-MPICH which has developed far away from
the MPICH from ANL. A "re-integration" into the current MPICH release is not

feasible; instead, the relevant changes in MPICH should be ported to MP-MPICH,
if necessary.

Is SCI-MPICH thread-safe?

No. As MPICH itself, on which SCI-MPICH is based, is not thread-safe, there is no
real need for this. However, the ch_smi device in SCI-MPICH can be configured
to use threads internally for true asynchronous communication. The device is
fully thread-safe, but it still is complicated enough to ensure true thread-safety of
the complete MPI library - the device is the most critical component concerning
thread-safety.

How can I make use of my SMP nodes?

With the current SCI drivers, you can specify more than one process per node
in a SCI-MPICH application. The intra-node communication is performed via
local shared memory This means SYS-V style shmget (), shmat () on Solaris and
mmap () of files for Linux because of performance problems with SYS-V calls on
certain Linux platforms. However, due to performance related side-effects of SMP
usage, you need to confirm the usage of an SMP configuration with the -smp option
to mpirun.

Can I use SCI-MPICH in a heterogeneous environment - that means between
systems running different operating systems or between x86- and Sparc-based sys-
tems?

We successfully tested SCI-MPICH on a mixed Solaris-x86 and Linux cluster using
the usual mpirun script. Communication of Unix- and NT-systems via SCI-MPICH
is also possible, but there is no convenient startup-mechanism available (yet) - the
processes need to be started individually via the command line. Connecting Sparc-
based systems with x86-based systems will probably cause endian-related problems
- we could not test it yet.

Does SCI-MPICH support extensions and tools like C+-+ bindings, MPE, ROMIO,
Vampir, Totalview, ... 7

SCI-MPICH is based on MPICH; thus you can use any extension and tool which
can be used with MPICH 1.2.0 (also see chapter [3-4 on page 22)). However, we
could not test with all available tools. Please report back success or failure stories.

3.9.2 Problems compiling the libraries and MPI applications

Q1:

When I run configure for the SMI library, the output at the end says

Al:

Q2:

A2:

Q3:

A3:

Q4:

A4

> #xx no SCI support -> SMP support only **x

although I have specified the exact path to the SISCI files using the --with-sisci
option. It is the path where the Dolphin installation script has installed everything.
What’s wrong?

The Dolphin installation script unfortunately installs the SISCI API library to a
subdirectory of the /path/to/SISCI/1ib directory. You need to move it one level
up for the configure script to find it. Hopefully, Dolphin will fix that (they are
informed).

I have fixed the parameters for configure, and all required files are placed at the
correct locations, but configure still gives the same error messages, i.e. says "no
SCI support".

The configure script caches its findings in the file config.cache. Remove this
file, or just call make distclean, and rerun the configure script to enforce a new
configuration run from scratch.

During the make process of SCI-MPICH, I get an error message saying
Could not link a C program with static MPI libraries

What does that mean?

Some code in the ch_smi device makes uses of functions that are only available
in dynamically linked executables. Trying to statically link such this code into
an executable fails. If you really want statically linked executables, you need to
configure with the --disable-sharedlib option. This will disable the relevant
code fragments in the device. However, this does of course mean that some func-
tionality is not available (device-specific, optimised collective operations, in this
case). You do not need to do anything about this message unless you really want
statically linked executables. However, future versions of MP-MPICH (to which
SCI-MPICH belongs) will rely even more on dynamic linking.

When T start my successfully linked MPI application via the mpirun script, the
execution does not start, but fails with an error message like . ..

When the application process is launched on a remote node, it can not find the
shared SCI-MPICH libraries that it is linked with. There are different ways to
solve this problem:

e Do not link dynamically, but statically using the -static option when calling
mpicc to link your application.

e Encode the path to the shared libraries into the executable by supplying the
-shlibpath option when calling mpicc to link your application.

e Make sure that the environment variable LD_LIBRARY_PATH contains the path
to your SCI-MPICH library directory. This may be achieved by editing your
shell profile, i.e. the .bashrc file if you are using the bash shell. Refer to the
operating system / shell documentation for more information.

e Install the SCI-MPICH libraries into a directory which is searched by de-
fault by the operating system when it’s looking for shared libraries (/usr/
local/1ib is usually a good place). Use the --prefix option for the config-
uration of SCI-MPICH to specify this location, and run make install after
building SCI-MPICH. Refer to the operating system documentation for more
information.

3.9.3 Problems running MPI applications

Q1:

Al:

Q2:

A2:

Q3:

A3:

Q4:

A4:

I have problems which seem to be SCI related, or my application does not start at
all.

Generally spoken, an SCI-MPICH application is also an SMI application because
it is based on the SMI library. This means, first make sure that SMI applications
run fine on your system. Refer to the SMI manual for instruction on how to check
this.

I do supply a device configuration file to SCI-MPICH. But I have the impression
that SCI-MPICH does not behave as it should according to the settings in this file.
SCI-MPICH performs validation checks on each of the settings. Also, it may occur
that the available resources do not match the demand specified by the device
configuration file. To see the setup that SCI-MPICH really uses, use the verbose
startup option (-v for the mpirun script). However, the memory buffer related
information printed with this option only apply to process 0 - other processes may
have larger or smaller memory buffers etc. because they have different resources on
their nodes. In contrast, the information concerning the general setup are identical
throughout all processes.

When I start an application across multiple nodes, I get a message like

[0] could not create base segment

during the startup, and my application seems to hang.

A possible reason for this behaviour is that you are using an SMI library which
is not configured for SCI and thus tries to communicate via local shared mem-
ory - which does not work across multiple nodes. Check which SMI library
the executables are actually using when launched on the different nodes (check
LD_LIBRARY_PATH for dynamic linking!); then check if the configuration of the
SMI library you are using is for SCI. SMI will tell you if it can use SCI when you
configure it.

When I start an application on a single node, I get a message like

[0] could not create base segment

during the startup, and my application seems to hang.

A possible reason for this is that for some reason the System-V shared memory
resources are exhausted on the specified node. Check with the ipcs command
and remove all unneeded segment with ipcrm. SCI-MPICH usually cleans this up,

Q5:

Ab:

Q6:

AG:

QT:

AT:

Q8:

even when the application should crash.

When I start an application across multiple nodes, I get a message like connection
refused during the startup, and my application does not run.

The start script mpirun launches the processes on the remote hosts using a remote
shell (rsh). Make sure that you cluster is configured to allow remote shells and
logins without authorisation from the node which executes the mpirun script. The
easiest way usually is to edit the $(HOME)/.rhosts file. However, some Linux
distributions are configured with high security by default and may disallow rsh
rlogin at all. Contact the system administrator to change this. We are planning to
implement a new startup mechanism which no longer is based on these mechanisms.

My application runs fine with N processes. But if I start it with N-+1 processes, a
message like

[0] SMI ERROR: _smi_init_mp failed

or

[0] SMI ERROR: _smi_barrier_init() failed

is printed and the application terminates.

These error message indicate that the size of the internal shared memory regions
is not sufficient for the number of processes you are using. The default size of
these regions is 256kB. It is recommended to double the size in case it is to small.
This can be done via an additional parameter when configuring the SMI library.
To increase the size to 512kB, add this parameter when invoking configure in the
SMI library: --enable-intsgmtsize=$((512%1024))

My application runs fine with N processes. But if I start it with N-+1 processes, a
message SCIConnectSegment () failed. is printed and the application terminates.
This error message indicates that the SCI kernel driver (IRM) has not enough
identifiers for virtual connections available. The amount of these identifiers can be
increased by two ways:

e Statically by changing the source code and recompile & reinstall the driver:
Locate the file irmConfig.h in the driver sources (usually in DIS/src/IRM/
drv/src) and set the definition of DEFAULT_MAX_VC to the value desired; then
recompile & reinstall.

e Dynamically by passing a parameter to the module (Linux only!): the module
parameter is max-vc-number, and you can pass it directly or via a line in the
configuration file pcisci.conf which should look like:
max-vc-number=1024

When T start an application across multiple nodes, I get one or more message(s)
like

perror: : no such a device

(0] SMI ERROR: SCIInitialize() failed

and the application terminates.

AS:

Q9:

A9:

Q10:

A10:

Q11:

This message indicates that the SCI driver (IRM and/or SISCI) is not correctly
installed or is not running on one or more nodes. Please make sure that drivers
are running on all nodes by using the scidiag tool (to verify the IRM is running)
and some SISCI examples like scibench2 on all nodes.

When I start an application across multiple nodes, I get one or more message(s)
like

[0] SMI ERROR: SCIInitialize() failed

and the application terminates.

This message may indicate that the version of the SISCI library which was linked
into the executable does not match the installed SCI driver on the concerned
nodes. Relinking the executable with the SISCI library from the distribution of
the installed SCI driver should help. You should always take care that all nodes
in the cluster run identical versions of the SCI software.

I use Linux with a 2.4 kernel and the default Dolphin SCI drivers. I also have
installed the bigphysareapatch. When I start an application across multiple nodes,
it works o.k. at the beginning, but after a few runs I get a message(s) like
[0] SMI ERROR: Not enough SCI resources available:
SCICreateSegment () failed
**x*x Application aborted internally by process 0.
Although you have a kernel with bigphysarea-Patch running and thus should
have enough SCI resources available to run the application, the SCI driver can not
allocate a local segment. The reason is that the default Dolphin driver configura-
tion for 2.4 kernels is to not use the bigphysarea allocation scheme, but instead a
technique introduced with the 2.4 kernel to allocate the required memory on boot.
This does, however, not work reliably, at least if not everything is configured cor-
rectly. The easiest solution is to enable the bigphysarea-allocation in the driver
again. To do so, you need to change two source files of the IRM SCI driver:

1. In src/IRM/drv/src/prolog.h: make sure that
#define BIGPHYS_DISABLE 1

is not active (commented).

2. For driver distributions of version < 1.15 only:
In src/IRM/drv/src/LINUX/os/memalloc.c: make sure that also in this file

#define BIGPHYS_DISABLE 1

is not active (commented).

and recompile the driver.

When I start an application across multiple nodes, I get one or more message(s)
like

[2] SMI_ERROR: SCI session terminated -remote process crashed?

All:

Q12:

A12:

Q13:

A13:

Q14:

Al4:

and the application aborts. But my SCI setup seems to be working fine, scidiag
reports no problems.

We have experienced such a problem with some Linux 2.2 systems. After applying
the modifications to the kernel as described in the SMI Manual, chapter 2.3.1
"Preparing the System", the problem did no longer show up (reported by Hirokazu
Kobayashi koba@criepi.denken.or. jp).

When I run an application across multiple nodes, I get messages like
SCIOpen i 1 dev /dev/SISCI/1 err 3

during the startup, or

SISCI : Error doing ioctl_mmap: error is 0x40000904

but the execution seems to terminate normally.

These messages are just debug output of the SISCI API and may disappear as
Dolphin Inc. releases a newer versions of the API. They do not influence the
correct execution of the SCI-MPICH application.

My application expects input from stdin (interactive input from the console), but
I can not supply this input to it, and the application aborts or uses some random
value.

There are two possible solutions:

1. Use the mpirun -console option for the affected processed to have process
0 open up its own xterm window. Usually, only process 0 reads from stdin,
thus -console 0 should do it. If this does not work, you may try -console

all.

2. Supply the input via a file which you specify with the mpirun -stdin option.

When I run an application across multiple nodes, I get messages like
perror: No such device or address

Sometimes, the execution goes on normally, but sometimes, the application termi-
nates with a message like

[4] Remote rendez-vous memory can not be imported

The perror-message is output from the operating system which occurs if SCI re-
sources are exhausted. If the execution goes on normally, SCI-MPICH was able
to get sufficient resources by freeing some SCI memory which is currently not
needed. However, if this is not possible, the application needs to be aborted be-
cause a message can not be delivered. To avoid this problem, you may try the
following measures:

e Restart the drivers (or even reboot the cluster) to regain potentially "lost"
SCI resources

mailto:koba@criepi.denken.or.jp

e [f this does not help, you need to reduce the size of the SCI memory buffers

that each process of an SCI-MPICH application allocates using custom device
configuration options (see chapter 3.5.1 on page 24)).

To make sure right during the startup (in MPI_Init()) that the application
has enough SCI resources even for the worst case communication scenario
during its execution, use the device configuration option DEMAND_CONNECT
and set it to 0 (zero). This will enforce the connection and initialisation
of all shared memory resources right at the startup. If this succeeds, it is
guaranteed that there will be no resource shortage during the execution of
the application.

If you have just not enough SCI shared memory for you purpose, you'll need to
increase the maximum shared memory size that the PCI-SCI adapters offer.
Please refer to the Dolphin documentation to see how this can be achieved (it
involves setting the prefetch space memory size on the PCI-SCI adapter
using sciconfig and potentially increasing the amount of memory reserved

for SCI mapping by the OS).

Q15: When I run an application across multiple nodes, I get messages like

Al5:

[0] SMI ERROR:
[0] SMI ERROR:
[0] SMI ERROR:
[0] SMI ERROR:

SCIMap...Segment () failed

could not map segment

Could not create undivided region
Could not create shared region!

and the application terminates.

You are running out of resources; shared address space in this case. You need
to increase the maximum size of shared memory address space and probably also
the maximum number of shared memory segments on you system. You need to
be root to do these changes on every machine in the cluster. For Solaris, add the
following lines (or similar values) to /etc/system and reboot:

* we need more memory for creating shared regions etc (SCI)
set shmsys:shminfo_shmmax=536870912

set shmsys:shminfo_shmseg=128

* more lomem-pages for the SCI driver

set lomempages=2048

For Linux, as described in the SMI manual, you need to edit some values in /usr/
src/linux/include/asm/shmparam.h. The kernel needs to be recompiled and

restarted.

Note: On Linux, we observed problems with some C library releases and how
they deal with shared memory. Updating the C library might help.

3.9.4 Problems Achieving Good Performance

Q1: The point-to-point bandwidth via SCI (between to remote processes) I get with
a PingPong-benchmark is much lower than the raw SCI remote-write bandwidth.
What is wrong with my setup?

Al: This effect usually occurs if SCI-MPICH chooses the wrong copy function for
remote-writes via SCI. Two optimised assembly functions are available for sys-
tems which have write-combining for the remote SCI memory enabled or disabled.
The selection of one of these methods is done on startup of each process of the
application based on the available system information. If you start the applica-
tion with the -v option, the selected copying method of process 0 is printed to
stdout. On TA-32 platforms which have write-combining enabledﬁ, it should be
WC32 for systems using Intel PentiumIII or lower grade CPUs and WC64 for
AMD Athlon and Pentium4-class CPUS]. MMX should show up only for disabled
write-combining. On Sparc and Alpha platforms, it will always print memcpy as
these platforms do not offer this kind of performance tweak. The configuration
parameter MEMCPY_TYPE allows to override the default setting.

3.10 Performance

To check if your system delivers the performance that it should deliver, we give some
measurements for point-to-point communication (latency and bandwidth for ping-pong
communication, measured with examples/perftest/mpptest and the Intel MPI Bench-
marks).

[contents to be added (benchmark results)]

3.10.1 Compiler Optimisation

The choice of the compiler optimisation level and the enabling of debugging options
has a significant influence esp. on the small-message latency. The chart in Fig. 3.2 on
the facing page shows several measurements of latencies (measured with the Intel MPI
Benchmarks, Version 2.3) for different configurations of SCI-MPICH (the optimization
level can be set via the environment variable CFLAGS, e.g. CFLAGS=-03) and different
compilers (the name of the compiler executable can be set via the environment variable
CC, e.g. CC=icc).

As can be seen from Fig. [3.2 on the next page| there is a noticable decrease in latency
when using gcc 3.3.3 with optimization level -03 instead of -02. For gcc 4.1.1 and

30n Linux, it is required to enable support for MTRR (memory type range registers) in the kernel
configuration. The correct setup of the MTRR for remote SCI memory is then performed by the
SCI driver. This can be verified via ’cat /proc/mtrr’.

4The choice between WC32 and WC64 depends on the size of the cache-lines of the CPU, which is
identical to the size of the write-combine buffers. Currently, 32- and 64-Byte lengths are known and
supported.

IMB 2.3 PingPong small message latency, Linux 2.6.16, Pentium D 2.8 GHz, D 352
10

T T
gcc 3.3.3-02 —+—
gcc 3.3.3-03 -
gcc 4.1.1-03 ------

icc9.1-03 o

Latency [us]

0 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256

Message size [Byte]

Figure 3.2: Small-message latency for differently configured SCI-MPICH variants

the Intel C Compiler Version 9.1, there is not much to gain in this area by switching from
-02 to -03. In general, we recommend using Level 3 optimization for these compilers.
Recommended optimisation levels & flags for different compilers are given in Table 3.3
on the following page.

3.10.2 Linking model

If you want to get the maximum performance from SCI-MPICH, especially concerning
the message latency, you should choose to enforce static linking by linking with the -
static option. See figure[3.3 on page 55| for the overhead in execution time for dynamic
linking.

3.11 Internal Design

Although SCI-MPICH will run every MPT application with at least good performance, it
is often possible to optimise the performance by considering the techniques SCI-MPICH
uses internally. We try to give a broad overview on the internal design of SCI-MPICH to
give the user enough understanding to optimise the MPI application or to configure the

‘ Compiler ‘ Flags

Sun C 5.2 (Forte 6.1) | -x04

Gnu gee 2.95.2 (IA-32) | -03

Gnu gee 3.3.3 (IA-32) | -03

Gnu gee 4.1.1 (IA-32) | -03

Intel C compiler 9.1 -03

PGI pgcc 3.4-2 -fast -g°

*We have observed the strange behaviour that without the -g flag, communication deadlocks do occur.
Therefore, --enable-debug should be specified during the configuration.

Table 3.3: Recommended optimisation flags

device for the best use with SCI-MPICH. For more in-depth information on SCI-MPICH,
see the according references in chapter [3.15 on page 64]

3.11.1 Verbose Startup

If you launch an SCI-MPICH application with the -V option of mpirun, you will get
various information on the internal setup steps and configuration. Generally, the printed
information does always only reflect the state of the process with the MPI rank 0 -
the other processes may be set up differently concerning the number and size of the
communication buffers. These resources are marked yellow in the figure below. Global
configuration switches are identical on all processes and are marked red in figure 3.4 on
page 56.

3.11.2 Statistical Information on Device Activity

The communication device ch_smi of SCI-MPICH can gather various statistical infor-
mation during the execution which may be very useful to see what the device has done
how often, and how long such an operation took on average, minimal and maximal.
Additionally, it is possible to get information on certain numerical states during the
execution.

To be able to gather this information, SCI-MPICH must have been configured with
the --enable-devdebug switch. If this has been done, you need to tell SCI-MPICH to
actually do gather the statistical information by setting the STATISTICS option to "1’ in
the device configuration file. In this case, SCI-MPICH will print a table for each process
with all information available after the application has completed successfully (which
means it has called MPI_Finalize()) to the standard error output device.

These tables may contain any of the statistical values listed in Table [3.4 on page 57]
Three different types of statistical values to exist:

e timer: The occurrence, average, minimal and maximal duration, the accumulated
time and the percentage of the total execution time are gathered for a timer value.

Pingpong Performance
Linking-type and Compiler Influence on Small Msg Latency (mpptest, SMP, Pi11-800)

5 T T T | T T T | T T T | T T T | T T T | T T T | T T T | T T T

|atency [s]

— gcc 2.95.2, static lib -
T OO — gcc 2.95.2, shared libs|.......-
—— gcc 3.0.1, shared libs -
— gcc 3.0.1, static libs .

0 16 32 48 64 80 96 112 128
message size [bytes]

Figure 3.3: Comparison of different compiler versions and linking models. Measured on
Linux x86, Dual Pentium-IIT 800, Serverworks ServerSet ITI-LE, SMP mode

(node-internal)

All time values are specified in is except for the accumulated time which is specified

in s.
e counter: Only the occurrence of the related event is counted for a counter value.

e probe: The occurrence and the average, minimal and maximal state of the state
of a numerical value are counted for a probe value.

Only these values are listed in the tables for which the related events were triggered at
least once. This means that all events related to values not listed in the table did not

occur during the execution.

3.11.3 SCI resource requirements

SCI resources are limited in two ways:

Fri Jul 6 16:23:01 CEST 2001:

running /home/joachim /linux home /mp—mpich/examples/
test /pt2pt/flood

on 2 LINUX smi processors

no device configuration file found, using defaults

using p3—01 as initialisation host
launching process 0 of 2 on p3-01
launching process 1 of 2 on p3—02

Initialising SCI-MPICH:

SMI library version 2.6 (DEBUG)

Lowlevel Init — ok.

Internal Segments — ok.

Barrier & Mutex Init — ok.

SMI Library initialized for 2 procs on 2 nodes.

Setting up protocols:
SHORT: global — ok.

RNDV: global — ok.
EAGER: global — ok.

ADI version 2.10 — transport ch smi 4.1, locks lock—
free

threads: disabled — stats:
disabled — csum: CRC32

Protocol memory configuration:

disabled — debug:

SHORT: nbrbufs = 31, bufsize = 128 [96 net |
EAGER: nbrbufs = 4, bufsize = 16384
RNDV : blocksize = 24576, poolsize = 1048576

[Application Output |

SCI-MPICH finalized .
Application terminated.

Figure 3.4: Verbose startup information

Initial configuration
information

Process launch

SMI Library Startup

SCI-MPICH protocol
initialisation

compile-time settings
& memory setup

protocol parameters
& global configura-
tion

shutdown information

‘ Value Label Type Description
to be filled

Table 3.4: Available statistical values in SCI-MPICH

e The size of the address window for remote memory: This parameter can be ad-
justed via the "page size" of the address translation on the SCI-PCI adapter board
(using the sciconfig tool).

e The number of remote memory segments that can be established: Under Linux
and Solaris, each SCI descriptor which is obtained via an SCIOpen() call, can be
used for one local and one remote SCI memory segment. SCI-MPICH/SMI does
in fact try to use the available SCI descriptors in an optimal way. However, the
number of SCI memory segments that can be established is limited (maybe by
some other parameters like kernel memory fragmentation or the number of open
files allowed for a process).

SCI-MPICH tries to handle SCI resource shortage in a variety of ways:

e The number and size of preallocated EAGER buffers is reduced if not enough local
SCI resources are available on startup.

e The size of the RENDEZ-VOUS memory pool is reduced if not enough local SCI
resources are available on startup.

e Only the relevant part of remote memory for the EAGER protocol is imported.

e If ’on-demand connections’ are enabled and a remote memory region can not be
imported, other remote memory regions which are currently not in use are deallo-
cated to free up some resources.

However, some communication patterns require full connectivity between all processes.
The SCI resource requirements for each process of an application with P processes for
this worst case scenario are calculated as follows:

Short protocol

Lmemshm‘t - (Shortbufsize +]-) : Shortnbrbufs - P
Rmemgport = (Shortbufsize +]-) : Shortnbrbufs : (P -]-)
Lsgmtshort =1
ngmtshort =P-1
Note: The memory setup for the short protocol is fixed to the given device parameters,

and the relevant memory segments are always at startup, independent from the device
configuration.

Eager protocol

Lmemeager = eagerugsize + €agernprbufs - P

Rmemeager = €ag€Tpy fsize - €AG€Tnprbuss - (P — 1) (managed dynamically)
Lsgmiteoger = 1

Rsgmteqger = P —1 (managed dynamically)

Rendez-vous protocol

Lmemypay = rndvmemorysize

Rmemyngy = rndUmemorysizer - (P —1) (managed dynamically)
Lsgmt, g, =1

Rsgmt,pngy = P —1 (managed dynamically)

Total

Lmemtotal - ((Shortbufsize +]-) : Shortnb’rbufs + eagerbufsize : eagernbrbufs) - P
+ Tndvmemorysize

Rmemtotal = ((Shartbufsize + 1) ' Shortnbrbufs + €AgeTvyfsize * CAGET nbrbufs
+ Tndvmemorysizeb) : (P - 1)

Lsgmttotal =3

Rsgmtiorq = 3+ (P — 1)

Notes:

e Size of memory segments are always a multiple of the systems virtual memory page
size and are thus rounded up if necessary.

e In case of SMP usage (multiple processes of an SCI-MPICH application on one
node), the processes on one node need to share the available SCI resources.

e Obviously, the resource bottleneck is the remote memory.

e If an application runs out of SCI resources, you should first reduce the size of
the rendez-vous memory pool (parameter rndv_memorysize; halving it i.e. from
IMB to 512kB usually does not hurt performance too much). If this does not
suffice, reduce the number of the EAGER buffers and their size (device parameter
eager_nbrbufs and eager_bufsize).

3.11.4 Message buffer sizes

| content to be added]

3.11.5 Asynchronous Transfers

| content to be added]

3.11.6 Source structure

All code related to SCI communication (the ch_smi device) is contained in mp-mpich/
mpid/ch_smi. smidef.h is the central include file contains numerous vital settings and
pre-defined default values. You can edit it to set default values as you like, but be careful
that you know what you are doing.

The device initialisation and shutdown is performed in smiinit.c. Initialisation con-
sists of calling the initialisation functions of all protocols and setting the pointers in
the channel device structure. smipriv.c contains low-level functions, mostly to send
and recv control messages. The three protocols short, eager and rendez-vous are imple-
mented in the files smishort.c, smi*eager.c and smi*rndv.c. Collective operations
and communicator setup are controlled from smicoll.c.

The source code uses lots of macros, using a tool like Source Navigator helps a lot to
explore it. For a deeper explanation of the structure, protocols and algorithms, please
look at the papers and Ph.D.-thesis on SCI-MPICH.

3.12 Known Bugs, Limits & Caveats

General:

e The default rendezvous-protocol does not work asynchronously - this leads to
the behaviour that an MPI_I*send() is not completed until the corresponding
MPI_Wait () is issued (this is the case for most MPI implementations!). To enable
asynchronous message processing in SCI-MPICH, configure with --enable-async
and specify the ASYNC_PROGRESS device configuration option.

Issues for the current release:

e successfully tested with MPICH test suite, (all test in mpich/examples/test);
more testing is on the way.

e deadlocks may occur for large number of posted receives for which no send has
taken place when using the
RNDV_BLOCKING 1
setting. This is protocol inherent.

e the following protocol configuration should not yet be used:
ASYNC_PROGRESS 1
USE_DMA 1
RNDV_BLOCKING 1

e SCI-MPICH can be used with the recent versions of Scali SSP (tested with 2.1
and 3.0). However, DMA and remote interrupts are not available with the Scali
drivers. This means that the related device options (i.e. ASYNC_PROGRESS) have
no effect on these systems.

3.13 Release History

‘ Release ‘ Date ‘ Notes
6.0 Mar 04 e SMI library included in mp-mpich
e Support for [A-64 and Opteron
e many, many fixes & improvements for stability
22 Oct 01 e increased security through checksums for short
messages
e new short-protocol for better space-time effi-
ciency
e efficient handling of derived datatypes (avoiding
intermediate copy operations)
e improved collective operations
e zero-copy transfers supported for rendez-vous
protocol
e better DMA / asynchronous message transfers
e MPI_Alloc_mem() / MPI_Free_mem() imple-
mented (MPI-2)
e single-sided communications (MPI-2)
e tested and optimised for Alpha platform
2.1 22.Dec 00

e asynchronous transfers are fully functional now

e new eager protocol variant (dynamic eager) for
more efficient memory utilisation

e new rendez-vous protocol variant (blocking
rendez-vous) for higher point-to-point bandwidth

e global synchronisation of memcpy operations for
more efficient PCI transfers (= higher perfor-
mance)

e improved configuration and build process

e improved application startup (mpirun script is
nearly MPI-2 conform now)

e uses shared libraries per default; modularisation
of the ADI-2 communication devices (channel de-
vices)

e uses SMI library 2.5

e many bug-fixes and increased stability; higher
configurability

e fully 64-bit safe, thread-safe ch_smi device

e support for D330

‘ Release ‘

Date

‘ Notes

2.0

22.May 00

e "segment connection on demand" for much
faster startup

e only mapping the relevant parts of remote seg-
ments

e fully flexible, adaptive sizing of message buffers
of each process

o full MPI 1.2 compatibility, incl. MPI_Cancel

e improved SCI memcpy function (pure assembly)
and alignment

e numerous bug fixes

1.99

17. Dec 99

Major rework, preparation release for 2.0

e lots of bugfixes

e works with D310 (32 bit) and D321 (64 bit)

e uses the massively improved version 2.1 of the
SMI library

e does not depend on fixed segments for its proto-
cols

e Solaris x86 approved

e Linux stability still weak -> user feedback re-
quired

1.1

23. Aug 99

Bugfix & performance release - now reaches nearly
100% of peak bandwidth for large messages

1.0

26. Jul 99

First public beta release, only tested well on Solaris
x86

3.14 Approved Platforms and Configurations

Generally, SCI-MPICH can be run on any x86 system with Solaris, Linux or NT operat-
ing systems, interconnected with PCI-SCI adapters which can be accessed via the SISCI

API. SCI-MPICH can also be run on SMP systems without SCI.

We try to supply information on certain configurations which have been tested suc-
cessfully with SCI-MPICH. This does not mean that the usage of SCI-MPICH is limited
to these configurations - every SCI platform should work fine, we just can not test them
all. If you want to add an entry to this ever growing list, feel free to submit the relevant
information to the address given in chapter [[.2 on page 2 We will happily add your

entry to this table.

| CPU | Chipse¢ SCI | Nodes | Topology | IRM | SISCI| 0S
Pentium D Intel D352 12 3D-Torus 3.1.7.1 | 1.10.D| Linux 2.6
E7230
P4-Xeon 2.4 | Intel D334 8 ringlet /2D- 3.1.7.1 | 1.10.D| Linux 2.4
GHz SMP E7500 Torus
PPro-200 SMP | 440FX| D310 6 ringlet, no | 1.9.8.1 | 1.9.2 | Solaris 7
SMP use
PII-450 SMP BX D310 6 ringlet or | 1.9.9 1.9.9 | Solaris 7
D320 D515 switch Linux 2.2
incl. SMP use
PII-450 SMP BX D320 4 ringlet incl. | 1.0 1.0 Win 2000
SMP use 2.44 2.44 | Win NT
UltraSparc on | n/a n/a 1 SMP with up | n/a n/a | Solaris 7,
- Ultra 60 to 4 CPUS 32 and 64
- Enterprise 450 bit mode
PIII-800 SMP Server-| D320 2 ringlet DISsp | DISsp| Linux 2.2
Works | D330 1.2 1.2
LE
PIII-Xeon 550 NX D320 6 ringlet, switch | 1.9.9 1.9.9 | Solaris 7
SMP D515
hpcLine BX D312 16 2D-Torus SSP SSP | Linux 2.2
(PII-450) 2.1 2.1

Table 3.5: Approved SCI-MPICH platforms

3.15 References

[1] J. Worringen, T. Bemmerl: MPICH for SCI-connected Clusters. Proc. SCI Europe

[2] J. Worringen: SCI-MPICH - The Second Generation. Proc. SCI Europe 2000, pp.

[3] J. Worringen, F. Seifert, T. Bemmerl: FEfficient Asynchronous Message Passing
via SCI using Zero-Copy. Proc. SCI Europe 2001, pp. 10-20, Dublin, Ireland,

'99, pp. 3-11, Toulouse, France, September 1999

10-20, Munich, Germany, September 2000

October 2001

[4] J. Worringen, A. Géer, F. Reker: Ezploiting Transparent Remote Memory Access
for Non-Contiguous and One-Sided-Communication. Proc. IPDPS 2002 (Work-
shop CAC), Fort Lauderdale, USA, April 2002

[5] J. Worringen: Pipelining and Overlapping for MPI Collective Operations. Proc.
Workshop HSLN in conjunction with IEEE LCN 2003, Bonn/Ko6nigswinter, Ger-
many, October 2003

(6] http://www.1lfbs.rwth-aachen.de/content/sci-mpich

http://www.lfbs.rwth-aachen.de/content/sci-mpich

4 NT-MPICH

This chapter of the documentation will give you a brief explanation of and its use. If
you intend to use SCI on Windows NT you should also read chapter

4.1 What is NT-MPICH?

NT-MPICH is basically a port of MPICH to the family of Microsoft Windows operating
systems. It contains different communication devices for Windows and a set of tools
that allow the usage of MPI in a Windows environment.

4.1.1 Differences between NT-MPICH and the original
MPICH.NT

Why do we offer an MPICH version for Windows NT, if the original MPICH is also
available for NT, and what are the differences and advantages of NT-MPICH?

The answer to the first question is quite simple: We started the development of N'T-
MPICH when there was no N'T support in the original MPICH distribution. Windows
NT is supported by ANL since MPICH version 1.2. NT-MPICH started with version
1.1.2 of MPICH.

The answer to the second question is not that simple, because it requires knowledge
about the MPICH distribution and the components it comprises. One difference is that
NT-MPICH is more complete than MPICH.NT. E.g. it contains a port of both the MPE
logging and graphics library.

The main reason why we continue to distribute an MPICH version for Windows N'T is
the lack of performance in the original MPICH.NT distribution. As it turned out after
the release of MPICH.NT, the communication devices of NT-MPICH perform better on
both shared-memory and ethernet connected machines. This is the main reason why
we did not abandon NT-MPICH. Furthermore we wanted to support communication
via SCI on Windows NT machines, which made it necessary to provide an MPICH
distribution for Windows N'T' anyway.

4.2 System Requirements

The NT-MPICH distribution has been developed under Windows NT 4.0 SP6 with
Visual C++ 6.0 and Fortran Power Station 4.0 on x86 machines. As far as we could

evaluate, NT-MPICH runs on machines with Windows N'T 4.0 SP4 or later, any Windows
2000 version, Windows XP professional and .NET server.

The import libraries created are VC++ 5.0 compatible so that VC++ 5.0 users can
use them. All static libraries, however, need the linker coming with VC++ 6.0. If you
own a non-TA-32 based NT system we would be very interested if NT-MPICH compiles
and runs on it.

NT-MPICH is implemented as a DLL (Dynamic Link Library). So, to use the binaries
you need a compiler that is able either to link VC++ 5.0 import libs or a tool that can
make use of a DLL in a different way. To link any of the static libraries coming with
NT-MPICH, the linker from VC++ 6.0 or later is required. For compiling the sources,
VC-++ 6.0 is required. If you have trouble compiling the code because of missing header
files and/or libraries, your compiler uses an outdated Platform SDK. In this case you
should download the current Microsoft Platform SDK from the Microsoft web siteEl.
Furthermore, the MPI_Reduce () implementation of NT-MPICH makes use of MMX and
SSE instructions available on newer IA-32 compatible processors. To compile this code,
the Visual C++ Processor Pack (available from Microsoftﬁ) has to be installed on your
computer.

Since the Fortran bindings are located in static libraries, your Fortran compiler must
be able to use VC++ 6.0 compatible static libraries.

For starting a parallel MPI application based on NT-MPICH, you will need a tool to
start programs on remote computers. Unfortunately, NT has no standard mechanism
to do so. However, there are several solutions for this problem on the internet. So if
you already have installed such kind of tool, you are ready to compute. If you don't,
we offer a sophisticated tool for Windows-based clusters called RexecShell. This tool
comes together with a special service that requires at least Windows NT 4 with service
pack 4 or later. It has also been tested with Windows 2000, XP and .NET.

4.3 Installation

MP-MPICH (and thus NT-MPICH) comes as a compressed archive, either as a binary
distribution or as complete source code without binaries. For the installation of the
binary distribution, please continue with chapter [4.3.2 on page 71l The installation of
the source distribution is described in the following chapter.

Next to installing NT-MPICH, you may want to install the cluster manager if you
need a facility to launch applications on remote nodes. See chapter [4.3.2 on page 72| for
a description of this process.

4.3.1 Installing the Source Distribution

NT-MPICH is provided as a binary and a source distribution. The source distribution
can be used to create the binary distribution with the Microsoft Visual C++ (Version

Vhttp://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm
2http://msdn.microsoft.com/vstudio/downloads/ppack

http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm
http://msdn.microsoft.com/vstudio/downloads/ppack

5 or 6) compile environment. To use other compilers or environments, the required
Makefiles / project files need to be created if the Visual C+-+-files can not be used.

Additionally, you’ll need the Microsoft Platform SDK and Visual C++ Processor Pack
installed as described in chapter [£.2 on page 67]

Unpacking the archive Just unpack the downloaded file to a location of your choice.
This can be your home directory if you are planning to work on the sources, or a tem-
porary directory if you only want to compile NT-MPICH once (with your compiler in
your environment) and then just use the binaries. If you unpack the archive, a direc-
tory named mp-mpich will be created which contains the complete sources. To compile
anything of the sources you have just unpacked, you’ll need to define a environment
variable named MPI_R0OOT which contains the path where you have unpacked the archive
(the directory which contains the source tree). Subsequently, we will refer to this direc-
tory as MPI_ROOT. After compiling the sources, the resulting libraries and binaries can
be installed into the "final" destination directory. If you like, you can also compile and
run the applications directly from the source tree.

Compiling the sources To compile the source tree, just open MPI_ROOT\mpich.sln.
This will bring up a workspace including 18 distinct projects, namely

e ch_ntshmem: NT-MPICH with ch_ntshmem device for communication solely via
shared memory.

e ch_smi_dll: NT-MPICH with the ch_smi device for SCI (Scalable Coherent In-
terface) connected clusters.

e ch_wsock2: NT-MPICH with ch_wsock2 device. This device supports both SMPs
and networks of workstations.

e CPP: this projects creates a library that contains the C+-+ bindings for NT-MPICH.
(see section [£.6_on page 74)

e mpe: this includes the logging facilities of MPE.
e mpe_client: the graphics part of MPE, automatically used by the project mpe.

e mpe_server: this will compile to a DLL containing the MPE server code. Used
by mpe_server_frontend and the RexecShell plug-ins.

e mpe_server_frontend: a Windows program that uses mpe_server to create a
standalone MPE server.

e nt_fortran_bindings: a static library containing the Fortran bindings for all
parts of MPICH (MPI, MPI-IO, MPE). See below for details.

e romio: a static library, containing a port of ROMIO for MPI-IO on NTFS. This
will be linked to the final MPICH DLLs automatically.

e shmem_device: a static library containing the ch_ntshmem device. This will be
linked with the ch_ntshmem project to build the final mpich_smp.d11.

e slog_api: a library containing all functions needed to create SLOG files. This is
needed by the mpe project, but can also be used independently.

e smi_device: contains the ch_smi device; needed by the ch_smi project.

e wsock_2 device: the combined TCP/IP & shared memory device of the ch_wsock2
project.

e wrappergen: A port of the wrappergen utility that can be used to create custom
MPI wrapper libraries.

e ampi, lmpi, tmpi: These projects will create wrapper libraries for the MPI func-
tions. See section 4.9 on page 84 on how to use them.

The most relevant projects are ch_ntshmem, ch_wsock2, ch_smi_d11, the language
bindings nt_fortran_bindings and CPP, and mpe_server_frontend. All other projects
are used internally by one of the aforementioned and thus compiled automatically if
needed. The projects starting with ch_ will create a DLL that exports all MPI, MPI-10
and MPE functions. The only difference between the DLLs lies in the communication
device they provide.

After compiling one of the main projects, you will find the resulting import library and
DLL under MPI_RO0OT\1ib\mpichXXX.1lib, where XXX is either ’_smp’ for ch_ntshmem
or >_smi’ for the ch_smi_d11 project. The ch_wsock2 configuration creates a library
just called *mpich. [DLL|1ib]"’.

The resulting libraries are binary compatible. This means that it is possible to change
the communication device without recompiling or relinking your code. E.g. if you want
to run your code, linked with mpich.lib (the wsock2 device) on your SCI system, just
rename mpich_smi.d11l’ to ’mpich.d11l’ and make sure the executable can find this
DLL. Now your program uses the ch_smi device instead of the ch_wsock2 device.

The project nt_fortran_bindings is used to support several different Fortran compil-
ers. Since different combinations of calling- and naming convention are used by different
compilers, this project comes in several configurations. Each configuration supports a
different Fortran compiler, denoted by the name of the configuration. Each configuration
creates a static library in the MPI_ROOT\1ib directory. These libraries are prefixed by
mpichf_. See section [4.5 on page 73| for a correlation between those libraries and the
according compilers.

There are three ways to compile the required projects:

e Interactively use the MS Visual Studio to compile the projects step-by-step.

e Use the batch-compile option of MS Visual Studio to trigger the compilation of all
required options at once.

e Use the batch file MPI_RO0T\build.bat from the command line. This batch file
will compile the complete NT-MPICH for SMP and TCP/IP communication, in-
cluding all available language bindings and the cluster manager. Make sure that
the executable msdev.exe is in your path for build.bat to work.

Please note that the RexecShell (see chapter [I.7.3 on page 75]) can not be compiled
with MS Visual Studio, but requires the Borland C++ Builder. We therefore provide
this single executable file RexecShell .exe within the source distribution.

Installing NT-MPICH After having compiled all sources, resulting in a number of
binaries and libraries, NT-MPICH should be installed into a different directory, i.e. to let
other users access the files and to preserve a working version of NT-MPICH independent
from the development in the source tree.

This installation is performed by calling the batch file MPI_RO0T\make_dist.bat
which copies all required binaries, libraries, include files and examples to a specified
directory. The usage is very simple:

make_dist <target_directory>

If you ever recompile NT-MPICH in the source tree, possibly generating new or mod-
ified libraries, you may always call this batch file again to re-install NT-MPICH in the
same location.

If you recompiled the cluster manager service rclumad you can install the new version
using rclumad-update.bat in the MPI_RO0T\bin directory.

4.3.2 Installing the Binary Distribution

We provide an executable nt-mpich_setup.exe to install the required libraries and
executables for NT-MPICH. You can choose different installation types Complete In-
stallation, Cluster Frontend, Cluster Node and User Defined.

Complete Installation Install all available components of NT-MPICH. Choose this
installation type on your development computer. If you want to develop your own MPI-
programs it is necessary to choose this installation type on at least one of your machines.

Cluster Frontend If you don’t have a preferred method to access remote nodes, we
offer tools called mpiexec and RexecShell that can be used to start remote processes
(which form the MPT application). These tools work in conjunction with a special remote
execution service named rclumad that has to be installed on all machines that are to
take part in the computation. Both RexecShell and mpiexec use this service to start
processes on remote nodes.

This installation type is included in the Complete Installation and is needed at least
once. The cluster frontend tool RexecShell is installed and mpiexec is also available.

Cluster Node As explained above RexecShell uses a system service. When you choose
this installation type solely the cluster manager service rclumad is installed. This service
has to be installed on each computer you are going to use to run NT-MPICH applications
on via the supplied remote execution tools (mpiexec or RexecShell).

If your nodes are not part of a domain but of a workgroup you have to set the following
registry key:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsal

"forceguest'"=dword:00000000

User Defined If you want to use NT-MPICH without the provided remote execution
tools you can just install the development part of NT-MPICH. You can choose one or
more of the following components:

e tools for remote execution (Cluster Frontend)

enable this computer to be a cluster node (Cluster Node)

e example source code, headers and libraries

header and library files for development

tools for profiling, logging and visualization (Cluster Frontend)

e Web pages for MPI and MPE

Configuring Cluster Nodes The cluster manager service contains a Control Panel
Applet Cluster Manager which is installed together with the service. It will appear in
the control panel of each system which has the service installed and can be used to set
a few options for the Cluster Manager:

e set the minimal number of threads for servicing requests: the default value of 5
should usually do fine.

e activate the logging feature and specify the logfile location: if the service does not
behave as you think it should, the log file may give hints on possible problems.

e start the service: if the service is not yet running, it can be started from here.
Of course, the service can be configured to be constantly running etc. via the
standard means of Windows 2000.

The logfile can be helpful if you encounter problems with rclumad. In case of problems,
please send us this logfile together with a description of your problem (see chapter 1.2
on page 2).

Uninstalling NT-MPICH NT-MPICH is listed at the table of installed software at
the control panel. You can uninstall it from here.

4.4 Compiling MPI Programs written in C

Generally, two things are needed to create an executable from your MPI source code:
the MPI include file mpi.h, and the library that contains the implementation of the MPI
functions. This library is called mpich.d11 for NT-MPICH.

4.4.1 Compiling the Examples and Running the Tests

NT-MPICH supplies a wide range of examples, located in the MPI_R0O0T\examples di-
rectory. The subdirectories contain different project (.dsp) and workspace files (.dsw)
which you can use to compile the examples. To compile the examples you’ll need to
define MPI_ROOT as described in chapter [4.3.1 on page 68|

Additionally, we have generated a number of VBscript programs named runtests.
vbs which run a whole test suite. For more information, please refer to the file MPI_
ROOT\examples\test\Readme_NT.txt.

4.4.2 Create your own Applications

Creating a program that uses NT-MPICH is simple. Create a project that contains the
code for your program. Make sure that the compiler can find the include file mpi.h,
which is located in the MPI_R00T\include directory. You also tell the linker to search
the directory MPI_RO0T\1ib for additional libraries. Finally link your program with one
of the mpichXXX.1lib files.

4.5 Compiling MPI Programs written in Fortran

NT-MPICH is also usable with Fortran. Unfortunately, things get complicated when
Fortran code is involved. Due to the fact that there is no standard how Fortran com-
pilers implement function calls internally, nearly each Fortran compiler uses a different
approach. To support a large variety of compilers, the MPI Fortran bindings are not
located in the DLL but in a static library. Because of the differences described above
we offer several different versions of this library. You have to select one of them that
is appropriate for your compiler and link your program with both this library and the
mpichXXX.1lib. The different libraries are:

mpichf_apf.lib: Bindings for the Absoft FortranPro compiler.
e mpichf_gnu.lib: To be used with GNU g77 compiler.
e mpichf_int.lib: For the Intel Fortran compiler.

e mpichf_1f.1ib: To be used with the Lahey LF95 compiler (see also section 4.8.1
on page 81).

e mpichf_sal.lib: To be used with the Salford FTN77/95 compiler.

e mpichf_vf.lib: Intended for Compaq Visual Fortran, the Portland Group com-
piler and Fortran PowerStation 4.0 (see also section [I.8:2 on page 82))

Please note that we do not possess all of the compilers mentioned. So we couldn’t
test all of the libraries. They have been created based on third-party information. The
only compilers we tested are G77, Intel Fortran, Lahey LF95, Salford FTN77 and MS
PowerStation. So please let us know if you managed to use NT-MPICH with
any other compiler.

If you are using NT-MPICH with Fortran programs, make sure that you also read
chapter [4.8 on page 81| which covers some related issues.

4.6 Compiling an MPI Program written in C4++

NT-MPICH also comes with the MPI C++ bindings. To use them, you have to bind
your program with either CPP.1ib or CPPd.1lib, which is the debugging version of the
library. We currently do not support the C+-+ profiling interface (PMPI::...). There
is one issue you should note when using the C++ interface together with error handlers
that throw exceptions (e.g. MPI::ERRORS_THROW_EXCEPTIONS). Do not use the compiler
switch /GX (or /EHc) when compiling sources that contain try-catch blocks, since these
switches will cause the compiler to assume that extern C functions will never throw an
exception. We were successful using the switch /EHsc-, that explicitly disables the /EHc
switch.

4.7 Starting NT-MPICH Applications

NT-MPICH applications are made up a number of processes running on one or more
nodes. The problem with starting up such an application is to launch the processes
on the different nodes with the correct parameters. There are different ways to do this
which are described in this chapter. There is one important setting which is necessary
no matter how you launch your application: you have to make sure that all processes
are able to find the NT-MPICH DLLs file. This can be done in three ways:

e On all nodes, set the system environment variable PATH to include the path to all
the NT-MPICH DLLs. They can be located in a local or a shared directory (the
latter option makes updates easier).

e On all nodes, copy the NT-MPICH DLLs from MPI_RO0T/1ib to a system library
directory (like C:\WINNT\SYSTEM32)

e Copy the NT-MPICH DLLs into the same directory where the executable is lo-
cated.

4.7.1 Generic Startup

Since Windows NT /2000 comes without standard tools to start processes on remote
nodes, we decided not to rely on a special service to start NT-MPICH programs. In-
stead you can use whichever method you like to start the processes of your distributed
application. All you need to know are the commandline parameters expected by an
NT-MPICH application; these are presented later on in this chapter.

4.7.2 Application Startup using "plug-ins"

The tools RexecShell and mpiexec described in this chapter make use of plug-ins to
start MPI applications, which may use different communication devices. Each device
in the NT-MPICH distribution expects a different set of commandline parameters for
startup (see section [£.7.6 on page 80| for details). Other applications may use environ-
ment variables for the same purpose. So to be most flexible, RexecShell and mpiexec
don’t know anything about the applications they start. In fact they rely on the support
of independent DLLs that are responsible for creating the correct parameters and en-
vironment settings for different types of applications. These DLLs are called plug-ins.
So in order to create the correct startup environment for your application, you have to
select the appropriate plug-in.

4.7.3 Startup with RexecShell

RexecShell is a graphical frontend and makes it quite simple to start your distributed
application and monitor the execution. To start an application, perform the following
steps:

1. Open the Configure dialog of RexecShell.

2. From the drop down list labelled "Active Plug-in", select the plug-in appropriate
to the device you intend to use. E.g. for the ch_wsock2 device (mpich.d1ll), you
would select the ch_wsock plug-in.

3. Select the hosts (aka nodes) you want to use for this run. All available hosts are
listed in the left list box. Nodes coloured black are available (which means that a
connection to the cluster manager service could be established) and can be selected.
Hosts which are visible in the network, but have no cluster manager service running
are listed red and can not be selected for executing the application. You can select
a host multiple times to have it execute the related number of processes of the
application.

4. Specify the executable, the working directory in which it should execute and addi-
tional parameters, if needed. The path specified here will be transferred to UNC.
Make sure that this path is valid and reachable from each hosts that you have
specified to run an application process!

5. Configure the selected plug-in (see chapter [£.7-5 on page 79).

6. Decide if you want to lock the hosts/nodes and if you want to have the user profile
be loaded on the remote host.
Locking the hosts is a very limited type of scheduling: it makes sure that no other
user can execute processes via RexecShell or mpiexec as long as your processes are
running. Loading the user profile on the remote hosts can take quite some time and
slow down the application startup, but is sometimes necessary to prevent startup
failure (depending on the default system configuration of the remote hosts).

7. Enter your credentials for the remote nodes on the account tab. The account
information entered here is stored and transmitted securely using the Windows
2000 encryption mechanisms.

8. Close the configure dialog and click on the Start button, or select the accordant
menu entry. For each process, a window for the console output of the process
(stdout and stderr) will open up, and your (parallel) application should start up.

4.7.4 Startup with mpiexec

If you prefer a commandline tool to start your application, you can use mpiexec. It
has been modelled after the description in section 4.1 of the MPI-2 standard. This
chapter first describes the generic options of mpiexec and then explains some important
techniques required to make good use mpiexec’s advanced features. Generic Syntax. A
generic call of mpiexec looks as follows:

mpiexec [options] [plug-in options] [--] program <parameters>

mpiexec assumes that after removing all options recognised by itself and the plug-in,
the first remaining parameter is the name of the program to start. This implies that
you can put the options in any position within the command line, as long as you make
sure that after removing them the command line looks like

mpiexec program <parameters>.

To avoid problems if you want to pass parameters to the program that are similar to
mpiexec’s (or the plug-in’s), you can put a -- (dash dash) in front of the executable
name. This will instruct mpiexec to ignore anything behind -- when looking for options.
The available options for mpiexec are described in the next paragraph; the specific
options for each plug-in are described in chapter [£.7.5 on page 79| Available options.
Valid options for mpiexec are:

-7 Print help message.

-account name Load and use the account 'name’ from registry (the account must have
been stored using the -store option).

-accounts List all accounts stored in registry.

-configfile file Load RexecShell config file ’file’. This supersedes all other com-
mand line parameters.

-debug Print debug messages (implies -1loud)
-domain name Use 'name’ as domain for account.

-gc Graphical configure. Don’t pass the commandline to the plug-in but use a dialog
box instead.

-help See -7.

-host ni[,n2[,...[,nk ||| Use nodes nl...nk. Supersedes -machinefile.
-lock Lock all nodes for exclusive use.

-loud Print informational messages during execution.

-machinefile file Use file’ as machinefile (default: machines.txt).

-n num Start num’ processes (default: 1).

-password pass Use 'pass’ as password for account.

-path path Use 'path’ to prefix executable name (default: mpiexec’s working direc-
tory).

-plugin file Use 'file.dll’ as actual plug-in (default: ch_wsock).
-plugins List available plug-ins.
-profile Load user’s profile on remote nodes.

-store Store the currently specified account in registry (to be used together with the
-account option).

-test Do not start processes. Just print commands.
-user name Use 'nmame’ as login name for account.

-wdir dir Set ’dir’ as working directory for remote processes (default is mpiexec’s
current working directory).

Specifying the hosts mpiexec supports several methods to select the hosts to use
for the computation. The most common and well known way to do so is to use a so
called machines file. This is a simple text file, containing a list of hosts to use. Per
default, mpiexec looks for a file called machines.txt in the actual working directory,
the home directory of the user, and in the installation directory of mpiexec. A different
way to specify the hosts to use is the -host switch, that takes a comma separated
list of hostnames as argument. If neither the -host switch is specified nor a machines
file can be found, mpiexec tries to find usable hosts by querying the network. This is
thought as fallback mechanism and might be quite time consuming. To speed up the
query, mpiexec tries to read a list of excluded hosts from a file named Excluded.rsh,
which should be located in the same directory as mpiexec. It expects a simple text
file containing (NetBios) hostnames separated by <CR>. This file can be created by
RexecShell (File|Edit exclude list), or manually, using a text editor.

Assigning processes to hosts It is not required that as many hosts are specified as
processes are to be started. If less hosts than processes are specified, mpiexec automat-
ically launches more than one process on the hosts specified. During this process it tries
to achieve an equal processes/processor ratio on each host. That means that hosts with
a higher number of processors will get more processes to execute. Of course it is legal
to specify the same host multiple times. This can be used to enforce a given number of
processes on each host.

Usage of plug-ins In order to support all different devices of the NT-MPICH distri-
bution, mpiexec uses the same "plug-in" mechanism as RexecShell does. That means
that the commandline and/or environment for the processes to start is not created by
mpiexec itself, but by a separate DLL that is loaded at runtime. Each plug-in recog-
nises a different set of options. These options are also specified in the commandline of
mpiexec, but will be parsed by the plug-in.

Path conversion While parsing the commandline, mpiexec tries to resolve all path
and file names to their according UNC forms, in order to simplify their specification.
E.g. assume that your current working directory is K:\mpi, where K: is mapped from
\\nt_server\global, then the command mpiexec -wdir .. myprog is identical to

mpiexec -wdir \\nt_server\global \\nt_server\global\mpi\myprog

Handling of console input/output Whenever a process is started under control of
mpiexec, its standard output/error handles are redirected to the node mpiexec is run-
ning on. This allows mpiexec to display all console output created by the program.
The standard input handles are also redirected, but only the first process started will be
allowed to interact with the user. This means that everything you type in the console
window mpiexec is running in, will be sent to the first process, which should be the
one with MPI id 0. All other processes will not get any input from stdin. So if you

develop an interactive application, remember to use process 0 to interact with the user
and distribute the input using MPI functions.

4.7.5 Available plug-ins
The NT-MPICH distribution currently contains the following plug-ins:

ch_shmem: This plug-in works in conjunction with the ch_ntshmem (SMP only) de-
vice of NT-MPICH. It recognises the following command line parameters:

-alog Use the ALOG logging format. Sets the environment variable
MPE_LOG_FORMAT=ALOG

-clog Use the CLOG logging format. Sets MPE_LOG_FORMAT=CLOG.

-display host Set the environment variable DISPLAY=host

-mpe Start the internal mpe server and set the DISPLAY variable accordingly.
-num n Start n processes.

-slog Use the SLOG logging format. (default). Sets MPE_LOG_FORMAT=SLOG.

There is one special issue with this plug-in. Since the ch_ntshmem device starts all
processes itself, mpiexec has to start only one process. So instead of the -n switch of
mpiexec use the -num option of the ch_shmem device. E.g. to start mandel.exe and the
ch_ntshmem device with two processes, use

mpiexec -plugin ch_shmem -num 2 mandel.
Do not use

mpiexec -plugin ch_shmem -n 2 mandel!

ch_smi: This plug-in is to be used with the ch_smi device. Like the ch_shmem plug-in
it supports the switches -alog, -clog, -display, -mpe, and -slog.
Additional parameters are:

-devconf file Use 'file’ as configuration file for ch_smi (see also section[3.5 on page 24)).

-port num Use port 'num’ during startup.

-smidebug Let the SMI library generate debug output — useful if you have problems
which seem to be SCI related. The startup of the SMI library can be traced, and
the error messages are more verbose and appear in the full context.

-v Be verbose during startup.

ch _wsock: This plug-in creates command lines for the ch_wsock2 device and is the
default in mpiexec. Like the two plug-ins above it supports -alog, -clog, -display,
-mpe, and -slog. Additionally -port num can be used to overwrite the default startup
port.

mpi_pro: Together with the mpich_nt plug-in (see below), this takes a special place in
NT-MPICH, since it can be used to start programs using MPI/Pro from MPI Software
Technology, Inc. So if you use not only NT-MPICH but also MPI/Pro or MPICH.NT you
can avoid to install both, the cluster manager and the startup services for MPICH.NT
and MPI/Pro, but use the NT-MPICH cluster manager to start all your applications.
The parameters the mpi_pro plug-in supports are:

-mpi_debug Print debug messages.
-mpi_port num Use port 'num’ during startup.

-mpi_verbose Print verbose messages.

mpich _nt: This plug-in can be used to start programs using the MPICH.NT imple-
mentation from ANL. It supports the following parameters:

-polling Use polling while waiting for messages.
-port num Use port 'num’ during startup.
-singlethreaded Don't use a dedicated message thread.

-verbose Print messages during the run

4.7.6 Starting NT-MPICH programs manually

If you don’t use RexecShell or mpiexec to start MPI programs (i.e. when you want to
set up a parallel debugging session), you need to know the commandline parameters for
the different devices:

ch ntshmem: <progname> -np <#of processes> [-consoles].
The switch -consoles makes ch_ntshmem create a new console for each process it cre-
ates. This can be useful for debugging purposes.

ch wsock2: <progname> [options] -- <your own parameters>.

The ch_wsock device assumes that on each node you want to use, a process is started by
an external mechanism (e.g. RexecShell). One of the processes coordinates the startup
process. The following explanations refer to this process as master. The master always
gets MPT id 0. The ids of the clients depend on the startup order of the clients and will
be selected by the master. Valid options are:

-n num ‘num’ is the number of processes that take part in the computation. If this
switch is given, the process assumes to be the master. (master only)

-m node 'node’ is the name of the host, the master is running on. If this switch is
present, the process assumes not to be the master. (clients only)

-p port Use the port number ’port’ for communication between master and clients.
(optional, master and client)

-b address Use IP address ’address’ for communication between the processes. This
is intended for multi homed hosts to specify a NIC to use.(optional, master and
clients)

Example: Assume you want to use 3 processes, one on the host NT1 and two on
NT2. One of the processes on NT2 is the master. Use the following commands:
On NT2:
myprog -n 3 -- param (master, gets MPI id 0)
myprog -m NT2 -- param (client, MPI id unspecified)
On NTI:
myprog -m NT2 -- param (client, MPI id unspecified)

ch _smi: For a description of the start parameters for ch_smi refer to section 3.3.4 on
page 21 of this document.

4.8 More about NT-MPICH and Fortran

Using Fortran with libraries is a complicated thing. If you encounter difficulties regarding
Fortran and NT-MPICH, please refer to the following sub-chapters.

4.8.1 Using the Lahey LF95 compiler

The linker shipping with the LF95 compiler behaves quite different from the linker issued
with Microsoft’s Visual C++. It expects symbols exported from a DLL to be decorated.
Since the Microsoft linker undecorates the names, your program will report missing
symbols in mpich.d11 on startup. There are two possible solutions for this problem:

1. If you have the Microsoft linker (link.exe) installed, add the switch -m1 MSVC to
your linking options. E.g.

1£f95 fpi.obj -1ib mpichf_1f.lib,mpich.lib -ml MSVC

will link the object file with mpich_1f.1ib and mpich.1lib, using Microsoft’s linker
(if available). This is the recommended solution.

2. If you don’t possess 1ink.exe or you can’t use -m1 MSVC, you have to specify aliases
for all MPI functions your program uses. To simplify this task, the MPI_RO0OT\1ib
directory contains a response file (1f_imports.txt) that contains all the aliases.
You have to add this to your linker options. So in contrast to the example above
your commandline should now look as follows:

1£95 fpi.obj -1lib mpichf_1f.1ib -implib mpich
OMPI_ROOT\1ib\1f_imports.txt

Please note that mpich.1ib is not given behind -1ib, but you use -implib mpich
instead.

4.8.2 Using the Compaq Visual Fortran compiler and
compatibles

The Compaq Visual Fortran, MS Fortran PowerStation and Portland Group Fortran
compilers handle character strings in a different way than all other compilers supported
by NT-MPICH. In combination with the calling convention they use, we had to im-
plement special bindings for all MPI functions that might take a character string as
argument. While it is possible to use functions like MPI_SEND with character strings,
you have to take care when you do so. At least the Microsoft and Compaq compilers
show some strange behaviour. You can not call the same MPI function within the same
subroutine when one call uses a character sting as argument and the other uses a dif-
ferent data type. In this case the compiler does not distinguish between the two calls
and one will be linked to the wrong binding routine, causing a crash during execution.
To avoid this problem you should place calls that use character strings as arguments to
MPI functions into separate subroutines or, even better, into separate source files. The
following example explains the issue:

Assume you have a function that broadcasts a string to all processes. You first broad-
cast the string length, and, after that, the string itself. The code could look as follows:

SUBROUTINE BCNAME (FNAME)
CHARACTER*200 FNAME
INTEGER IFLEN
INCLUDE ’mpif.h°
IFLEN = LEN(FNAME)
CALL MPI_BCAST(IFLEN,1, MPI_INTEGER,0, MPI_COMM_WORLD, IERR)
CALL MPI_BCAST(FNAME,IFLEN, MPI_CHARACTER,O,
MPI_COMM_WORLD, IERR)
END

This code calls MPI_BCAST once with an integer argument and once with a character
string. The compiler would create wrong code. To work around this problem, you
should modify your program as follows:

Create a new subroutine:

SUBROUTINE SEND_LEN(IFLEN)

INTEGER IFLEN

INCLUDE ’mpif.h’

CALL MPI_BCAST(IFLEN,1, MPI_INTEGER,0, MPI_COMM_WORLD, IERR)
END

Replace the first call to MPI_BCAST with a call to the new routine.

SUBROUTINE BCNAME (FNAME)

CHARACTER*200 FNAME

INTEGER IFLEN

INCLUDE ’mpif.h’

IFLEN = LEN(FNAME)

C Replaced the call to MPI_BCAST with a

C call to the new subroutine

CALL SEND_LEN(IFLEN)

CALL MPI_BCAST(FNAME,IFLEN, MPI_CHARACTER,O,
MPI_COMM_WORLD, IERRPLL)

END

To avoid warnings when compiling the code you should put either SEND_LEN or BCNAME
into a separate source files. This also makes it impossible for the compiler to mix up the
two calls.

4.8.3 Using non-supported Fortran Compilers

If your Fortran compiler is not found among the list of supported compilers in chapter 4.5
on page 73, this means that either we could not get information about the behaviour of
that compiler or did not know that this compiler exists. However, you can try to use
one of the existing libraries. If that does not work because either you get linking errors
or your program crashes after calling MPI functions, we will have to create a special
library for you. In order to do so, please consult the documentation of your compiler
and tell us the following:

e Which naming convention is used (how are subroutines named by the compiler)
e Which calling convention is used (caller or callee clears stack)

e How are common blocks exported and what is their name in the object file.

e Which is the representation of logicals (which value is .true., which is .false.).
e How are character strings passed to subroutines.

If you can’t find this information in the documentation please do the following: Cre-
ate a small test program that contains at least one subroutine and a call to an MPI
function. Please also use the symbol MPI_BOTTOM somewhere in the program (e.g.

call mpi_send (MPI_BOTTOM,...)). Create an object file from this program. Do not
link it! Then send an e-mail to mp-mpich@lfbs.rwth-aachen.de|, containing the name
of your compiler, the object file, the source of the program and the error messages your
compiler /linker produces when you try to create an MPI program. We will then try to
figure out how to create a working library for your compiler.

4.9 Using the Profiling Interface

In order to allow users of MPI to write wrappers for MPI routines, the MPI specification
requires that every routine MPI_xxx must be callable by the alternative name PMPI_xxx.
That makes it easy for users to provide their own version of MPI routines that e.g. create
log files or debug output. In NT-MPICH this is achieved by exporting each function with
two different names from the DLL. Thus programs written in C can directly access the
PMPI_xxx routines in the DLL. Just link your program with your replacement MPI_xxx
routines and everything should work as specified.

Unfortunately, for programs using the Fortran bindings things are more complicated.
Since the Fortran bindings are placed in a static library, there is no (easy) way to create
alias names for functions. To solve this problem, for each Fortran library there is a
matching profiling library that has to be linked in addition to the other libs required. The
name of the profiling library starts with 'p’. So e.g. in order to use the profiling functions
with VisualFortran you have to link mpich.1lib, mpichf_vf.1lib and pmpichf_vf.1lib.

The NT-MPICH distribution contains three sample libraries, ampi.1lib, lmpi.lib and
tmpi.lib. These can be used to instrument your program. The first one will use the
MPE graphics feature to show an animated graphics that visualises the communication
pattern of the application. 1lmpi.lib will use the MPE logging features to create a
logfile, describing the calls of MPI functions. The last library just prints a trace of the
MPI calls. To use these libraries, just link your program with one of them. If your
program doesn’t seem to use the replacement calls, you have to change the order in
which the libraries are linked. E.g. the VC linker only uses the replacement, if you put
the tracing library in front of mpichXXX.1lib. So your commandline should look like

link $(0BJS) -1llmpi.lib -lmpich.lib <more parameters>.

The project cpi.dsp in MPI_ROOT\examples\basic shows how the libraries can be
used. Users who don’t use MSVC might encounter linking problems with these libraries.
Since they use stdio functions (especially fprintf ()) you have to link the program with
Microsoft’s C runtime library. Otherwise linking errors can occur.

4.10 Using MPE

NT-MPICH contains a complete MPE implementation, including MPE logging and MPE
graphics. To compile a program using MPE no special efforts are required. All functions
are contained in the mpich.dll.

mailto:mp-mpich@lfbs.rwth-aachen.de

4.10.1 MPE Graphics

If you intend to use MPE graphics, please read the following notes.

The original MPE relies on the X-Windows protocol to provide its graphical services.
Since it is uncommon that Windows based computers support this protocol, we re-
implemented the graphics code. NT-MPICH contains a program (mpe_server_frontend
.exe) that is able to display MPE windows created by distributed applications. This
server program has to run on the node that is to display the graphical output. As com-
munication mechanism between your processes and the server, RPCs are used. Thus
it is not required that one of your MPI processes is running on the host displaying the
window. The MPE server is completely independent from the MPI communication.

Please note that the MP-MPICH plug-ins of RexecShell are able to display MPE
graphics. So if you use RexecShell or mpiexec there is no need to start the external
MPE server. Just enable the "Use internal server" (-mpe switch for mpiexec) feature of
the plug-in.

We tried to preserve the semantics of all MPE graphics functions in our implementa-
tion. Unfortunately, there is no formal specification of the MPE functions’ semantics.
We only had the man pages and of course the original implementation as reference. We
tried to match the original semantics as far as possible, but nevertheless it is possible
that our implementation behaves differently. If you notice any differences that break
your code, please let us know.

There are also functions we changed intentionally. These are:

e MPE_Capture_file: The original MPE uses the tool xwd to create a snapshot of
the MPE window. Obviously this is impossible under N'T. Therefore, on Windows
NT, MPE_Capture_file() creates bitmap (.BMP) files. We also augmented the
functionality of the function. Originally, the snapshot of the window is written to
disk by the process that called MPE_Capture_file(). This makes it necessary to
transfer the bitmap from the server to the client, which (depending on the image
size) can be very time and network bandwidth consuming. To work around this,
NT-MPICH allows to instruct the MPE server to write the image to disk. To do
S0, just prefix the filename parameter with the string "server:". E.g. the call

MPE_Capture_file(handle,"server:c:\\temp\\mpe",5);

would cause the MPE server to write bitmap files named C:\temp\mpeXX.bmp,
while

MPE_Capture_file(handle,"c:\\temp\\mpe",5);

would cause the client to create the files on its hard disk. Especially if you use a
network drive to write the images to, it is more efficient to make the server write

the files.

e MPE_Add_RGB_color and MPE_Create_color_array: The original MPE imple-
mentation only supports up to 256 different colours. We removed this limitation
if your MPE server’s display supports more than 256 colours. Thus, if you use a
True- or HighColor display, you are allowed to create as many colours as you like,
only limited by your main memory.

4.11 Jumpshot

The MPICH distribution comes with two JAVA programs used to display MPE log files.
Jumpshot is used to visualise CLOG files, while Jumpshot-3 can be used for files in the
new SLOG format. Both work on Windows NT (tested with JDK 1.1.8 and 1.2).

4.11.1 Running Jumpshot or Jumpshot-3

We created batch files to start the programs. They are located in the bin subdirectory.
To work as intended these batch files rely on an environment variable JAVA_HOME that
should contain the path to the root directory of the JDK (or the runtime environment),
such that the JVM is located under %JAVA_HOME’,\bin\java. Jumpshot does not work
together with the Microsoft Virtual machine.

4.11.2 Compiling Jumpshot or Jumpshot-3

In order to simplify the build process on Windows we created a set of batch files that
replace the UNIX makefiles. For Jumpshot the file MPI_ROOT\jumpshot\src\code\
make .bat is used. It also assumes that the variable JAVA_HOME is set as described above.
Due to strange dependencies between the source files of Jumpshot you might get some
errors while compiling the first two files. This is expected and no reason to worry.

To build Jumpshot-3 you can use the file make.bat in MPI_ROOT\ jumpshot-3\src.
Both files will create a set of JAR files that can be used together with the batch files
described in the previous paragraph.

Please note that the CLOG format changed from MPICH version 1.1.2 to version 1.2.
This means that you cannot use the Jumpshot from 1.1.2 together with CLOG files created
by version 1.2 and vice versa.

4.12 Frequently asked questions

In this section we will try to give answers to some frequently asked questions. Please
help us to improve this part of the documentation by giving us feedback, bug reports
and problem solutions. We also like success stories. To contact us, please send an e-mail
to mp-mpich@lfbs.rwth-aachen.de.

Q1: Which of the DLLs should I use?

mailto:mp-mpich@lfbs.rwth-aachen.de

Al:

Q2:
A2:

Q3:
A3:

Q4:
A4

Q5:
Ab:

Q6:

AG:

QT:

AT:

Q8:

As a rule of thumb you should use mpich.d11 (the ch_wsock2 device). This is the
most sophisticated and provides both SMP shared memory and TCP/IP network
support. You should use mpich_smp.dll only if you don’t have the TCP/IP
protocol installed on your machine (which is very uncommon). Of course you
should use mpich_smi.d11l if you have an SCI connected cluster.

Can I run my programs in heterogeneous environment?
Currently NT-MPICH does not support heterogeneity. You should only use ma-
chines with processors of the same vendor (e.g. Intel x86).

Is it possible to mix Unix and N'T' workstations in the same cluster?
Theoretically, yes — but currently, only for communication via SCI. All other NT-
MPICH communication devices are "custom made" for the Win32 platform. Cur-
rently there is no compatible Unix device for socket communication via TCP/IP,
but we are planning to create a such a compatible device (any volunteers?). But
even if you use compatible devices, starting the applications in the heterogeneous
environment is still a delicate topic.

I can’t link my Fortran program with NT-MPICH. What’s wrong?
Please read section [4.5 on page 73| and 4.8 on page 81| of this document.

How can I display the MPE graphics on a Unix workstation?

You can’t. The MPE graphics implementation provided by NT-MPICH uses a
dedicated server to display its windows. This server is a Win32 DLL that uses
DCE RPCs for communication with its clients.

I use RexecShell to start my program. Unfortunately all processes report a rank
of 0. How can I solve this?

You most likely didn’t select an appropriate plug-in. Please make sure that you
selected the plug-in matching the communication device your program uses. If you
don’t know this, the commandline switch -mpiversion will cause the program to
print an identification string.

I want to use RexecShell, but it takes a long time to start the program because
there are many hosts in my domain. What can I do?
There are two possibilities to exclude hosts from RexecShell.

e Add hosts not to be used to the file Excluded.rsh by using File->Edit Exclude
List...

e Use a file named machines.txt (see mpiexec chapter [1.7.4 on page 70]). This
file contains all hosts to use. This file has to be located in the directory speci-
fied by the environment-variable USERPROFILE or in the same directory as
RexecShell.exe. If this file exists, RexecShell will ask on whether to use it
(and do not search the network) or to search for hosts in the domain.

How can I use remote execution with a host which is not in my domain?

A8: You can call mpiexec with the parameters domain and host:

mpiexec -domain <domainl>
-host <hostl,host2,domain2/hostl,...>

or add <domain2/host1> to machines.txt. With RexecShell, you can include
hosts with File->Edit Include List...

Q9: I want to use RexecShell but all nodes are in red colour, I even can’t run processes
on the local node.

A9: This behaviour mostly occurs when the nodes are not part of a domain. You can
start the MPI-processes manually as mentioned in chapter [4.7.6 on page 80l Or
see the next answer.

Q10: Can I use NT-MPICH without having a domain?
A10: If your nodes are not part of a domain but of a workgroup you have to set the
following registry key:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa]
"forceguest'"=dword:00000000

Q11: T can’t run any remote processes. If I want to launch a remote process, I get a
message like Creation of Process failed. Das System kann die eigene Datei nicht
finden.

A11: Per default, the executable of the application needs to be located under the same
path on all nodes which were chosen to execute the application. This means
that it must be copied to the same path on a local drive of each node, or must
be located on a shared drive which is accessible by all nodes under the same
path. Alternatively, RexecShell can be used to configure each host separately
with respect to executable, path, account etc. To do this, open the context menu
on a name in the 'Selected hosts’ list to invoke the "host configuration’ dialog, and
change the default configuration as required (see figure [A.T]).

Configure host | Configure host |

Basic Account |
Sfored accounts
& LOCAL/WORRINGEN
MSLFBSAJDACHIM
TRACK/WORRINGEN

o
ometuworingen\ LIBS sicmpmpl | &

Commandline parameters User name Dornain

Active plugdin Passwore d

¥ Locknode [T Loaduser profile 4 Store | Delete:

Figure 4.1: Host configuration dialog: Basic and Account configuration data

Q12: T can’t run any remote processes. They seem to start but terminate immediately
without any messages or error codes.

A12:

Q13:
A13:

Q14:
A14:

Q15:
Al5:

Q16:
A16:

Q17:

AlT:

Q18:

This happens when the process can’t find all required DLLs. Most likely this is
the mpichXXX.d11l. Please note that per default the user’s environment is not
loaded by mpiexec and RexecShell. This is done to speed up the process launch
— loading the environment can take a lot of time. This means that the user part
of the PATH variable is not set. Possible solutions:

- Add the location of the NT-MPICH DLLs to the system PATH variable (on each
node!).

- Put a copy of the DLL into the windows system directory (on each node!).

- Put a copy of the DLL into the same directory of the program you want to start.
- Instruct mpiexec / RexecShell to load the user environment (see chapter 4.7 on
page 74).

Does NT-MPICH support Windows 20007
All versions of Windows 2000 are supported.

Does NT-MPICH support Windows XP?
NT-MPICH works with Windows XP Professional.

Does NT-MPICH support the Microsoft .NET platform?
Users from Microsoft have reported that NT-MPCH, including the remote execu-
tion service, runs fine on .NET severs. However, we could not verify this ourselves.

Does NT-MPICH support Windows 9x?

Win 9x is not a supported platform for NT-MPICH. We do not try to be compati-
ble with it. From our experience we can say that the complete shared-memory code
does not work with Win9x. This means that you cannot start more than one pro-
cess per node. Furthermore the startup tools rclumad, mpiexec and RexecShell
do not run under Win 9x. Some users, however, report that they were able to run
multiple processes with a network connection.

I want to use MFC (or any other GUI) within my MPI program. How can I do
this?

With MPI, your processes do not necessarily execute on the same machine you
are sitting in front of. However, a Windows application can present its GUI only
on the local machine. Therefore, we generally do not recommend to use MFC
(or any other GUI) within an MPI application. Instead, you should split up your
application into a front-end (using MFC or any other GUI) and a back-end (doing
the MPI-based processing on the data specified by the front-end). If you need data
visualisation from within the back-end, you should use MPE graphics.

Moreover, MPI was designed to make parallel applications portable. Using a cer-
tain GUI code within an MPI application will render the application non-portable,
contradicting the purpose of MPI. Nevertheless you can look at /examles/ba-
sic/PiMfc which is an example for Pi calculation with MFC GUL

No host in my network can be chosen for remote execution. Errors like 'Can-

A1S8:

Q19:
A19:

not connect to server’ or "The RPC server is unavailable (1722)’ appear. What’s
wrong?

It is required that the Cluster Manager Service is running on each remote host to
use the remote execution tools. If you use Windows XP with SP2 problems witz
the internal Windows firewall can occur. Use the newest remote execution tools
and adapt your firewall settings.

How can I start the Cluster Manager Service?

You can install it with the NT-MPICH installer, choose "Enable this computer to
be a cluster node". You need administrator rights to install the service. Cluster
Manager Service is then restarted automatically on system start.

5 MetaMPICH

5.1 Introduction

MetaMPICH is an extension to MP-MPICH which makes it possible to connect groups
of MPI processes running on different hosts and architectures in a transparent manner
to run a single MPI application. The difference to existing solutions (like using the P4
communication layer) is the use of special router processes which manage the commu-
nication between the different hosts (see chapter [5.3.1 on page 90| for the concept and
chapter [5.6.4 on page 117]for information on the internal design), and the utilisation of
multiple devices to break the boundaries of dedicated fast cluster interconnects. This
design is well suited for massively parallel architectures where a large number of pure
MPI processes communicate only via the internal high-speed network run next to a few
router processes located on nodes with facilities for external communication as well as
for smaller cluster systems, where all nodes have access to a secondary external net (in
most cases ethernet). On the one hand, some MPP architectures need a design like this
because only a few designated nodes can communicate externally. On the other hand,
this design is also of advantage by easing the communication load for the MPI processes
as they don’t have to bother with the external communication.

To understand the following notes on how MetaMPICH manages the communication
between MPI processes, a few terms have to be understood:

e MetaMPICH groups the processors on the separate systems into meta hosts,
which are virtual hosts consisting of single systems or compute nodes which have
a shared file system, user accounts and most probably a high performance net-
work interconnect which allows high bandwidth communication with low latency
between them. At least one of the nodes (or an additional node which runs no
MPT processes) has to be a frontend node which can be accessed via ssh or rsh
for process creation. The frontend nodes must be able to run MPI processes on
the meta host nodes without interactive password input.

e Besides the fast local primary network each meta host has network interfaces
for one or more secondary or external networks. Only the minimal com-
munication facilities are necessary, i.e. for each pair of meta hosts (X,Y’) with
X = {z1,22,..2,}Y = {yl,y2, ...y} there must exist a pair of nodes (z;,y;)
which is able to establish a point-to-point connection. This way, MetaMPICH pro-
vides support for dedicated networks with non-routable private network addresses.
Think of nodes coupled directly via multiple Gigabit Ethernet adapters connected

external connection

N\ -

Q application process ’ network interface

router process

Figure 5.1: Meta system with router connection

back-to-back without a switch, and you get an idea of how flexible MetaM PICH
can be configured.

e To overcome the limited access to external networks, MetaMPICH uses dedicated
router processes in addition to the application processes. The former are
transparent to the latter and therefore produce an overhead to the normal MPI
processes of an application. Router processes are set up and run automatically on
the accurate nodes by the mpirun-tools of MetaMPICH.

The following figures should help to point up the different communication architec-
tures MetaMPICH is able to support. Figure .1l shows the classical router-to-router
architecture with one single point-to-point connection. Internally, the nodes are con-
nected by a high performance cluster interconnect, for the external communication a
TCP connection between two dedicated nodes is used.

A typical multi device architecture is shown in figure[5.2 on the facing pagel No router
processes are needed because all nodes can communicate directly using a secondary
ethernet. The number of application processes increases by the number of saved router
processes.

Even mixed architectures are possible. As you can see in figure [5.3 on the next page|
pairs of meta hosts can use either the secondary device or an external point-to-point
router connection to communicate. Note that there can be only one secondary network
in the whole meta system, so that if a meta host doesn’t share this network, it has to
use router connections to all other meta host.

As one would guess from these simple examples, the configuration and set-up of meta
systems is the central feature of MetaMPICH, because a complex communication archi-
tecture results in a complex configuration. This configuration is stored in a so called meta
configuration file which contains everything MetaMPICH needs to run the processes via
mpirun and connect the applications.

The following chapters show how to configure, compile and install MetaMPICH, and
how to create the mentioned meta configuration files.

Meta Host A Meta Host B

external connection

switch

O application process ’ network interface

router process

Figure 5.2: Meta system with multi device communication

Meta Host A Meta Host B

external connection

N\
|
switch
—Or
Meta Host C
O application process ’ network interface

router process

Figure 5.3: Meta system with router and multi device communication

5.1.1 Feature list

5.2

Operating Systems Linux, Solaris, Windows (with limitations, no mpirun support)

Primary Networks: ch smi (Scalable Coherent Interface and shared memory),
ch_usock (TCP/IP), ch_shmem (shared memory), (ch_mpx)

Secondary Networks: ch usock, ch _smi, (ch mpx)
External Networks (for router processes): TCP, ATM AAL5
Manual configuration of asymmetric and symmetric router connections

Automatic router configuration

Installation

The installation does not differ much from the normal installation of MPICH. Only the
differences are noted in this chapter. Refer to the original MPICH documentation for
further information.

5.2.1 Requirements in Hard- and Software

Due to its internal design, MetaMPICH runs on virtually any platform on which the
original MPICH can be used. It has been tested on Solaris (Sparc and Intel) and Linux
(Intel). However, the target system must fulfill the following prerequisites:

MPICH must provide an ADI-2 device for internal communication on this system.

IPC message queues must be available system wide (needed system calls msgget (),
msgsnd (), msgrev(), msgetl()). Some MPP systems do not provide this feature,
but work-arounds are possible and have been realised for the Cray T3E (see chap-
ter [5.5.3 on page 111J)

POSIX threads must be available.

The router processes must have access to a TCP/IP connection towards the other
hosts. A number of ports must be available (the base for these portnumbers can
be configured in the source code).

To use the mpirun script, the Gnu version of awk (gawk) must be found in the
path.

5.2.2 Compiling

To generate the required MPI library, just proceed as described in the MPICH docu-
mentation. The only differences are the additional options for the configure pass:

--enable-meta This option is required to build the special MetaMPICH version of the
library. Next to some changes in the Makefiles, it sets the name of the library to
be generated to libmetampi.a

--enable-hetero Per default, the option --enable-meta does build the library for use
in a homogeneous environment where the binary representations of the datatypes
are identical on each participating machine. If you are planning to use MetaMPICH
in a heterogeneous environment (i.e. mixing machines with big and little endian or
different floating point formats), this additional option will generate a version of
the library in which all messages between the hosts are transmitted XDR, encoded.
Message within one host will not be sent in native encoding, which means that
using XDR will slow down the intra-cluster communication.

--enable-meta-atm This enables the ATM support for MetaMPICH.

--enable-router-threads This activates the multi-threaded router. It has to be tested
on every hardware platform which version is performing better.

Remember to configure all devices which you want to use, including primary and
secondary device. E.g. if you want to couple SMP servers and SCI-clusters with
MetaMPICH and make use of direct socket communication for coupling, you should
use the following configure option:

--with-device=ch_smi,ch_shmem,ch_usock The order of devices does not matter for
MetaMPICH, but if you use the library without meta functionality, the first con-
figured device is the default device.

After configuring, call make to build the whole MPICH distribution, or call make
mpilib to build only the library, but no additional tools and tests. The library which is
built is called 1ibmpich.a (or .so) and can also be used without using the Metacomputing
extension.

5.2.3 InfiniBand-Support

Although InfiniBand is not natively supported by MP-MPICH, the ch mpx device can
be used to utilize InfiniBand communication based on the MVAPICH libarry. There-

fore, the ch _mpx device has to absorb the required communication functions from the
MVAPICH source tree.

The configuration procedure is as follows:

e select MVAPICH as underlying MPI library for ch _mpx:

— to MP-MPICH’s configure: --with-mpx-dir=/path/to/mvapich-0.9.8

configure MVAPICH via MP-MPICH:

— to MP-MPICH’s configure: --with-mpx-conf="..."

set the path to the InfiniBand driver library:

— as an "mpx-conf" argument: --with-ibhome=/path/to/ib-1ibs

select the right host channel adapter:

— as an "mpx-conf" argument: --with-hca=MLX_PCI_EX_DDR

configure and make:

./configure --with-device=ch_mpx --with-mpx-dir=/path/to
/mvapich-0.9.8 --with-mpx-conf="--with-ibhome=/path/
to/ib-1ibs ..." ... ; make

5.3 Configuration

The meta hosts in a MetaMPICH setup are linked solely via point-to-point connections,
i.e. for each pair of meta hosts the connection between them must be configured. In the
current release of MetaMPICH, the routers on the different meta hosts communicate via
TCP/IP or ATM. Future releases might use other communication means, but this won’t
affect the general communication design of MetaMPICH because every communication
method supplies at least point-to-point connections.

The building blocks of the inter-meta host communication in a MetaMPICH setup are
routers, connections and sockets. This concept is presented in chapter 5.3.1l The derived
syntax of the configuration files which describes such a setup is explained in chapter 5.3.2
on the facing page followed by a detailed example in chapter [5.3.3 on page 104l Some
more examples for typical setups are given in chapter [5.3.5 on page 106]

5.3.1 Principles of MetaMPICH inter-meta host communication

Router A Router is a process that manages the communication from the own meta
host towards one other meta host. It utilises the MPI functionality for internal commu-
nication and other communication means (currently, TCP/IP and ATM are supported)
for external communication. At least one pair of routers is required between each pair
of meta hosts in a MetaMPICH configuration because one router communicates with
exactly one meta host.

Secondary Device A device is an incarnation of the MPICH driver layer, supporting
the communication over a network, e.g. the ch_usock device enables the communication
over a TCP/IP network. For a given meta host, a primary device must always be present
for communication inside the meta host. To connect two meta hosts, a secondary device
may be used. In such a case the connection between these two meta hosts is done via
the secondary device instead of router processes.

Connection Two routers on different meta hosts communicate via connections. Each
router needs at least one connection, but may have multiple connections. Thus, it is
possible to define 1:1, 1:N and N:N setups between two meta hosts (see figure 5.4 to
adapt to given hardware setup.

Socket Sockets are the base unit in the MetaMPICH communication architecture.
Each connection uses at least one socket. If a router has access to multiple, independent
transmission channels towards another meta host, it can be configured to use them
concurrently (each socket is handled by its own thread) and transmit messages faster by
splitting and combining them.

router router
processes processes
. O o)
application application
processes processes
Host A Host B
IP1.1.1.X IP1.1.2.X
router processes Host C
IP1.1.2.X
—— socket MPI
router process, has access application
to network device with
@ last 8 host bits = X processes

Figure 5.4: Advanced configuration: 3 hosts with N:1 and multi-socket connections

5.3.2 Syntax of the configuration file

To setup a MetaMPICH configuration, more information is required than can be pro-
vided by MPICH and the standard command line arguments. Thus it is necessary to

use a configuration file which is passed to the MetaMPICH application at start-up (see
chapter [5.4.2 on page 109). This configuration file consists of three parts, which are
separated by the keywords OPTIONS and CONNECTIONS.

Listing of the meta hosts

This section starts with a line of the following syntax with nh being the number of meta
hosts in this setup:

NUMHOSTS <nh>

The following nh lines supply the names of each meta host and the number nmpi of
MPI application processes that shall be run on this meta host. The name of the meta
host can be chosen arbitrarily by the user and is used in the remaining lines of the
configuration file to reference that meta host. The number nmpi does not include the
router processes. This gives a syntax like:

<meta-hostname> <nmpi> <mpi-root-path> <mpirun_args>

<nmpi> is the number of application processes which should be run on the meta host.
If you set this to 0, no user processes will be spawned, if you set it to MAX, the maximum
number of processes will be started. To use MAX, you will have to specify the number of
available processors (<maxprocs>)for each meta host node in the meta host definition,
which is described in

mpi-root-path is the root path for the mp-mpich installation on that specific meta
host. This is useful if you connect heterogeneous systems which have different paths.

The mpirun_args are any meta host-specific options for the mpirun which is started
on this meta host. The mpirun option -np x is always generated from the given number
nmpi.

General options

This section starts with the Keyword OPTIONS. Now, some global parameters can be set
at this point if the given default values need to be changed.

HETERO

If your MetaMPICH-Cluster is heterogeneous concerning the binary representation of
data (little endian mixed with big endian etc.), use this switch to let MetaMPICH use
XDR-routines for data conversion. Of course, a heterogeneous cluster won’t work with-
out this keyword which shows up by the routing processes being unable to synchronise
(error message "wrong magic number" will be displayed). To successfully use this op-
tion, the Meta-MPICH library must have been compiled for heterogeneous use (option
--enable-hetero for the configuration, see chapter [5.2.2 on page 95]).

(Default value: cluster is homogeneous, no data conversion)

EXCHANGE_ORDER <byte_order>

If you have a heterogeneous configuration, you may set up an exchange byte order
here. This can be useful if one of the hosts is faster than the other, because in this case
it can be forced to do the data conversion for the MetaMPICH router-router connections
by setting this parameter to the order of the slower host. Note that this doesn’t touch

| Option | Short description

HETERO 1 = use XDR

EXCHANGE ORDER | 0: little endian (default)
1: big endian

SPLITSIZE Threshold for splitting messages over multi-
ple connections

PORTBASE Base for TCP ports. Needed to avoid con-
flicts between applications

I[SEND NUM Number of concurrent non-blocking send op-
erations

NICDEF Assigns a network interface address to a
name

ROUTERTIMEOUT Number of seconds routers wait for connec-
tions

SECONDARY _DEVICE | Configure the secondary device

Table 5.1: Options

the XDR data conversion, but only the exchange of internal MetaMPICH data. Possible
values for byte_order: are:

0: little endian (default)
1: big endian

SPLITSIZE <split>

This parameter is relevant for connections made of multiple sockets and defines the
threshold for splitting messages. If a message to be transmitted is bigger than split
bytes, it is sent via multiple sockets. The effective number of sockets ng,. used for
transmitting a message of size msgsize is determined by the formula

Nsock = Msgsize/split + msgsizeYosplit

with " /" being an integer division, "%" the modulo operation and the available number
of sockets of the connection being an upper limit for ng,. SPLITSIZE can be used to
optimise the use of the available bandwidth. (Default value: 1500)

PORTBASE <pb>

The offsets used in section 3 of the configuration file are added to PORTBASE to form
TCP/IP portnumbers. If the resulting portnumbers cannot be used, set this parameter
to a suitable value.(Default value: 2500)

ISEND_NUM <in>

This parameter tells the routing process, how many unreceived MPI_Isends are to be
expected. This is a problem because the router has to copy the data and store it until
the receiver does his work.

NICDEF <nicname> <nicaddr>

To make the subsections in the following connection-section more readable, you can
assign a network interface address to an arbitrary identifier at this point. Currently
TCP and ATM addresses are supported.

<nicaddr>:= TCP <ip-address>
| ATM_PVC <atm-pvc>
| ATM_SVC <atm-svc>
|

GETIP(<dns-hostname>)

ROUTERTIMEQOUT <timeout>

In distributed environments it is nearly impossible to run the processes on the meta
hosts synchronously. Therefore, the routing processes waits <timeout> seconds for the
other processes before they give up. Setting this value to 0 will let the routers wait
forever, which requires to explicitly kill the processes if the startup fails.

SECONDARY_DEVICE <secdeftype> <secdefopts>

With this option, a secondary device can be configured to be used to connect two meta
hosts if no router connection is set up. <secdeftype> declares the type of the secondary
device and must be given. Currently, ch_usock is the only valid secondary device
type. <secdefopts> is optional and may declare the following options (for ch_usock):
PORTBASE (similar to the general option PORTBASE, but for the secondary device instead
of the routers) and NETMASK (used to select NICs for the secondary device if there are
multiple NICs defined on some hosts).

Definition of Meta Computer Components

MetaMPICH supports the use of clusters of nodes as one so called meta host. These
meta hosts have to be declared in the OPTIONS section. The syntax is:

<metahostdefinition> := METAHOST <metahostname> ’{’ TYPE <hosttype>;
[<option>; 1]
[<option>; ...]
[DEVOPTS = <options>;]
TYPE = ch_smi | ch_usock | ch_shmem | ch_gm ;
NODES= <nodelist>;
[ROUTERS = <nodelist>;]
EXTRAPROCS = <node> : <np> : <executable-path> : [<user>] : [<args>]
[, <node> : <np> :]
)})
<nodelist> := <node>
| <nodelist> , <node>

<node> := <nodename> [<maxprocs>] [< ’(’ <network-address>
[,<network-address]* ’)’] [: <executable-path>]
| <noderange> [<maxprocs>] [<network-address>]

<option> := ’ENVFILE’ ’=7 <path>

| EXECPATH’ ’=? <path>

| EXECNAME’ ’=? <filename>
| EXECARGS’ ’=? <args>

| ’CONFPATH’> ’=’ <path>

| *CONFNAME’> ’=’ <filename>

| *MPIROOT’ ’=’ <path>

| *ROUTEREXEC’ ’=’ <path>

| *FRONTEND’ ’=? <nodename>

| ’USER’ ’=? <username>

| >DEVOPTS”’ ’=? <literal>

<literal> := ’’’ <string> ’’’

The most important thing in this definition is the comma separated node list, which
enumerates the cluster nodes which should be used in the application. The network
interface addresses which will be used in the CONNECTIONS section have to be declared
after the nodes. Larger numbers of nodes can be enumerated by giving a name range
like p4-101| - p4-164]| using the delimiter | to mark the numeration area of the node
names. It is also possible to exclude nodes or node ranges from the list by prepending a
"1" Tt is important to understand that the definition is processed from left to right, so
that an exclusion has to be defined after all other definitions concerning the nodes to be
excluded to have an effect. The maximum number of processes can be specified with the
node range as well as a start IP-address for the first node. The following nodes will get
a subsequent IP-address. This feature is very helpful to define addresses of secondary
network interfaces for the router processes, which are not in the DNS. Because nodes can
be redefined in the list, it is possible to add differing properties of node range members
later.

The optional [: <executable>] property allows to specify a different executable for
a node. This is useful for special processes with different assignments in an application.

The keyword ROUTERS allows to separate router and node list and helps to make the
configuration file more readable. In fact, it is just an alias for the NODES keyword and
the router list is just appended to the node list internally.

The <metahostname> is an arbitrary name, but has to match a name in the first
section.

Following is an example for such a definition:

METAHOST clusterB {

TYPE=ch_smi;

FRONTEND=p4-00;

EXECPATH=/home/martin/src/myprog ;

MPIRO0T=/home/martin/mp-mpich_linux_smi ;

ENVFILE=/home/martin/metacfg/solaris_linux_smi_env ;

NODES= p4-101| - p4-164] 2 (192.168.2.1), p4-08,
p4-02 5 (111.112.113.114),

Option ‘ Short Description

ENVFILE This shell script is sourced before executing the
application

EXECPATH This is the working directory.

EXECNAME The name of the executable (if not provided to the
mpirun command).

EXECARGS The arguments for the executable (if not provided
to the mpirun command).

CONFPATH The path to this configuration file (if it differs on
a remote metahost).

CONFNAME The name of this configuration file (if it differs on
a remote metahost).

MPIROOT The root of the MPI-installation on the metahost.
TYPE The type of the internal network. One of:
ch_usock, ch_shmem, ch_smi

FRONTEND Name of the cluster frontend, which must be acces-
sible over the network via ssh or rsh. This option
is used by mpirun.

USER This user name is used to log in the meta host.
DEVOPTS Command line options for the device-mpirun on
the meta host.

EXTRAPROCS | This option allows to define extra processes on ded-
icated nodes which have to run in any case.
ROUTEREXEC | A dedicated default router process for the
metahost is declared here, for example
$MPIR_HOME/bin/metarouter.

Table 5.2: meta host options

| p4-08, ! p4-132| - p4-148];
}

It is possible to configure some important paths for each meta host to make it easy
to use different instances of the MetaMPICH library on different platforms.

The EXTRAPROCS option makes it possible to run so called extra processes, which
are run besides the application processes. This can be useful for special 10-processes
or visualization tools. EXTRAPROCS= is followed by a comma separated list of process
specifications, which have a similar syntax to procgroup file entries. For example

EXTRAPROCS=p4-03 : 1 : /home/martin/cpi2 : martin : ’-verbose’,
p4-04 : 2 : /bin/ioserver : : ’’ ;

would run one process of cpi2 on p4-03 and 2 processes of ioserver on p4-04. Note
that these processes reduce the number of usable processors for the normal application
processes.

Description of the host connectivity

This section is the most complicated, but also most important part of the configuration.
After the keyword CONNECTIONS, it describes the setup of routers, connections and
sockets for each pair of meta hosts from both sides. This leads to nh*(nh—1) subsections
(one for each pair of meta hosts).

Each subsection starts with a line of the following syntax:
PAIR <from_host> <to_host> <nbr_routers> <router_executable>

from_host and to_host are names from the meta host list in section 1, defining the
pair of meta hosts whose connectivity will be described now. nbr_routers is the num-
ber of router processes on meta host from_host handling messages towards meta host
to_host. For each of these routers (one or more), a separate configuration is given in
the nbr_routers lines following this line. Finally, a fully qualified filename for the exe-
cutable of the router can be supplied. If instead a -’ (minus sign) is given, MetaMPICH
knows that a separate router executable is not required on this platform and the router
process will be spawned from the MPI application processes (see chapter[5.5 on page 110]

for more information on external or internal router process creation).

For the following lines, we define a simple syntax in figure to help describing the
setup of connections and sockets for each router.

<src_address> ’->’ <dest_address>
<address_list>

<dest_address> <dest_address> | <address_list>
<address_list>,<address_list> | <address>

IP | IP : OFFSET

<router_line>
<src_address>
<dest_address>
<address_list>
<address>

Figure 5.5: Syntax of the router configuration entries

An IP is given in the usual form (i.e. 123.43.5.111); OFFSET is a single number
(default value if omitted is 0). This offset, in fact, is added to the basic TCP/IP port
number (see chapter [5.3.2 on page 97} option PORTBASE) to distinguish multiple sockets
between two hosts. Whenever more than one connection or socket is used between two
hosts, they must use appropriate endpoints.

There are two modes for a router connection definition: an uni-directional definition
is marked by the mapping operator "->". This does not mean that the connection is
uni-directional, but that this is only one direction of the definition. The other direction
has to be defined in the appropriate section of the other meta host. This is only needed
for asymmetric router connections, where two or more routers on the one meta host are
mapped to one on the other. If you use symmetric connection, the use of the bidirectional
mapping operator "<->" is recommended to avoid errors.

Secondary Device Connection Setup

If a secondary device has been configured (keyword SECONDARY_DEVICE in the options
section), it is used to connect two meta hosts if there is no router connection configured
between them. To leave out the router connection between two meta hosts, the number
of router processes must be set to 0 and the router configuration entries be left out.

Automatic Router Setup

The easiest way to set up router connections is to use the keyword AUTO_ROUTER after
CONNECTIONS. Now MetaMPICH will try to set up a pair of routers for each pair of meta
hosts. You will get nh-1 routers on each meta hosts. MetaMPICH will search for usable
NICs in the meta host nodes. Because there are nh — 1 routers, nh — 1 NICs are needed
on each meta host. First, the explicitly specified addresses of the nodes are used, and
then, if they aren’t enough, the node names are resolved to get more addresses. You can
control this behaviour by either specifying AUTO_ROUTER NO_DNS, which will suppress
the creation of addresses by name resolving, or AUTO_ROUTER ONLY_DNS, which will only
use the node names and skip the defined addresses. If MetaMPICH cannot find enough
network addresses, it will abort the application startup with an error message.

5.3.3 Example configuration and further explanations

To make things more clear, we discuss a sample configuration file for the setup given
in figure 5.4 on page 97| There are some caveats to take precautions when writing a
configuration file.

We recognise that we have two possibilities to connect two host via more than one
channel: we can use multiple routers with one or more connections each, or we use single
routers with multiple sockets within a connection. It depends on the configuration of
the host which solution we should use:

e If asingle process can access the different channels, the multi-socket solution should
be used to take advantage of the higher bandwidth even for single messages (con-
nection between hosts B and C in our example).

e If the different channels can only be accessed from different processes on a host, the
multi-router solution has to be used (resulting in the multiple connections between
hosts A and C in our example).

Of course, you can use multiple routers, connections and sockets on a host even if it
would not be necessary to verify configuration files or just for fun. Probably, some slow
down will be noticed, but the overhead is very small due to the statical mapping of the
routers and connections.

When a message is to be sent from one host (the source host) to another host (the
destination host), the following rules are applied:

e If more than one connection exists between two hosts, the available connections
are statically mapped to the MPI processes of the destination host.

NUMHOSTS 3 meta host

A 12 -xxgdb declarations
B8 -v

C 17

OPTIONS Options

NICDEF addr_B TCP 1.1.2.1

METAHOST A {

NODES=hostA (1.1.1.1,1.1.1.2,1.1.1.3); }
METAHOST B {

NODES=hostB (addr_B,1.1.2.2,1.1.2.3); }
METAHOST C {

NODES=hostC (1.1.2.4,1.1.2.5,1.1.2.6); }

CONNECTIONS

PAIR A B 1 - subsection AB section 2A
1.1.1.1 -> addr_B1

PAIR A C 2 - subsection AC

1.1.1.2 -> 1.1.2.3

1.1.1.3 -> 1.1.2.3

PAIR B A 1 - subsection BA section 2B
1.1.2.11.1.1.1

PAIR B C 1 - subsection BC
1.1.2.2,1.1.2.3 -> 1.1.2.5,1.1.2.6

PAIR C A 1 - subsection CA section 2C
1.1.2.4 -> 1.1.1.21.1.1.3

PAIR C B 1 - subsection CB

1.1.2.5,1.1.2.6 -> 1.1.2.2,1.1.2.3

Table 5.3: Configuration file for the MetaMPICH setup in figure [5.5 on page 103

e If more than one router process exists for the communication between the two
hosts, the MPI processes of the source host are statically mapped to one of the
available routers.

e If more than one socket is available in a connection, a message that is transferred
via this connection is split in pieces and transferred in parallel via a number of
sockets (see chapter [5.3.2 on page 97} SPLITSIZE option).

Important issues:

e Socket numbers (the offsets following an IP) must be unique within each host-to-
host connection.

5.3.4 Checking the configuration with checkmetacfg

There is a tool which checks a configuration files syntax in the bin directory named
checkmetacfg. The tool outputs a detailed list of all meta hosts and their configuration
and a list of routers on the meta host given on the command line. If you have trouble
finding an error in your meta config file, you can use the -yydebug option to switch the

parser in debug mode - this may give helpful information to users with experience with
bison /yacc.

5.3.5 More example configurations

To help you in setting up your own MetaMPICH cluster, we provide some more example
configurations, but without detailed explanation.

e Two SMP servers, configured as ch_shmem meta hosts, each with one IP address,
running one routing process towards the other meta host.

NUMHOSTS 2
stug 1
wikkit 1

OPTIONS

ISEND_NUM 15

SPLITSIZE 2000000

PORTBASE 2500

NICDEF tcpwikkit TCP 134.130.62.106
NICDEF tcpstug TCP 134.130.62.104

METAHOST wikkit {
TYPE=ch_shmem ;
NODES=wikkit ;

}

METAHOST stug {
TYPE=ch_shmenm ;
NODES=stug ;

CONNECTIONS
PAIR wikkit stug 1 -
tcpwikkit tcpstug

PAIR stug wikkit 1 -
tcpstug tcpwikkit

e The same as above, but now the meta hosts are connected via a secondary device
instead of router processes.

NUMHOSTS 2
stug 1

wikkit 1

OPTIONS

ISEND_NUM 15

SPLITSIZE 2000000
PORTBASE 2500
SECONDARY_DEVICE ch_usock

METAHOST wikkit {
TYPE=ch_shmem ;
NODES=wikkit ;

}

METAHOST stug {
TYPE=ch_shmem ;
NODES=stug ;

CONNECTIONS
PAIR wikkit stug O -

PAIR stug wikkit 0 -

A mixed configuration with one pair of meta hosts connected via router processes
and two pairs connected via a secondary device. This examples also shows how
options for the secondary device can be set, including the selection of a network
for secondary device communication.

NUMHOSTS 3
stug 1
wikkit 1
pé4cluster 4

OPTIONS

ISEND_NUM 15

SPLITSIZE 2000000

PORTBASE 2500

SECONDARY_DEVICE ch_usock (PORTBASE=3000,
NETMASK=134.130.62.0)

METAHOST wikkit {

TYPE=ch_shmem ;

NODES=wikkit (134.130.62.20);
}
METAHOST stug {

TYPE=ch_shmenm ;
NODES=stug (134.130.62.21);

}
METAHOST p4cluster {

TYPE=ch_smi ;

NODES=p4-01 (134.130.62.70, 192.168.0.70),
p4-02 (134.130.62.71, 192.168.0.71),
p4-03 (134.130.62.72, 192.168.0.72),
p4-04 (134.130.62.73, 192.168.0.73);

}
CONNECTIONS

PAIR wikkit stug 1 -
134.130.62.20 -> 134.130.62.21

PAIR stug wikkit 1 -
134.130.62.21 -> 134.130.62.20

PAIR wikkit p4cluster 0 -

PAIR p4cluster wikkit O -

PAIR stug p4cluster 0

PAIR p4cluster stug O

5.4 Usage

For users familiar with MPICH, the use of MetaMPICH instead won’t cause any prob-
lems. If you are not familiar with MPICH or even with programming in MPI, you’ll have

to read the according documentation. This chapter does only deal with the differences
between the use of the standard MPICH and MetaMPICH.

5.4.1 Creating MetaMPICH applications

Writing the application One of the design targets for MetaMPICH was transparency
for the MPI application. Therefore, every MPI application should run on a working
MetaMPICH configuration. However, to give the user the ability to optimise the appli-
cation for the underlying MetaMPICH configuration, a new default communicator (next
to MPI_COMM_WORLD) has been added. It is called MPI_COMM_LOCAL and includes all MPI
processes on the meta host that the current MPI process runs on. Of course, it does not
include the routing processes as they are transparent to the MPI application and can
not be accessed from there.

Compiling the application An additional compiler option is required for compil-
ing MPI programs for MetaMPICH. This option has to define the preprocessor macro
META. Usually, an option like -D is used to define symbols on compile time. In this case,
a compiler argument like -DMETA fulfils the task. Look at your compiler documentation
if this option should not lead to the desired results. If you use the script mpicc, this
symbol is already defined and you don’t have to worry about this.

5.4.2 Running MetaMPICH applications
The classic way

A new command line argument for mpirun is required to launch MetaMPICH applica-
tions. The simple syntax of the argument is

-meta config_file

This indicates MetaMPICH that the given application shall be run on the MetaMPICH
configuration that is defined in the supplied configuration file. The according mpirun
script gathers all required information to start the application from the config file and
finally starts the application on each participating meta host via remote shell (rsh) and
the meta host-specific mpirun command. This "real" call of mpirun is done with the
option -metarun, but the user will not have to deal with this internal mpirun option. Just
make sure that the config file is accessible under the given name from every participating
host and that the remote shell has the correct path to start mpirun.

The mpirun script uses a tool named metapars to choose the needed nodes from a
meta host and determine the destinations of all routing processes. metapars generates
the second-stage command lines using the normal non-meta mpirun commands to run
the application.

The metarun option may be useful for testing or debugging purposes when you may
need or want to manually start the application on the participating meta hosts. To do
so, start the application like you would start an ordinary MPICH application and supply
the options -metarun config file and -metahost metahost name as a parameter to the
application itself (not for mpirun). The timing of this launch is not critical as the router
processes will try to connect for a period of time while the real MPI processes wait for
them.

Please notice that all other options for mpirun, which would be used if the application
were directly launched on a specific host, have to be placed into the according meta host
line (section 1 of the configuration file, see chapter [5.3.2 on page 97). The options that
are designated for the application have to be appended to the command line and are
passed to the application as usual.

NUMHOSTS 2
foo 16 -xxgdb
bar 32 -v

Figure 5.6: Section 1 of a meta configuration file metatest

To give an example, see the meta configuration file metatest in figure 5.6 on the
preceding page (only section 1 of the configuration file is displayed since only this section
is relevant for mpirun). If you launch a command like

mpirun -meta /home/joe/metatest my_prog gridsize 1000

mpirun will launch the following commands concurrently:

rsh node_in_foo mpirun -np 16 -xxgdb my_prog gridsize 1000
-- -metahost foo -metarun /home/joe/metatest

rsh node_in_bar mpirun -np 32 -v my_prog gridsize 1000 -- -
metahost bar -metarun /home/joe/metatest

The correction of the number of processes (in this case, MPI_COMM_WORLD will contain
48 MPT processes plus the router processes) is done internally in the MetaMPICH library.

If a MetaMPICH application crashes, it is possible that an IPC message queue or
semaphore which was created for the initialisation is not deleted which, on certain plat-
forms, gives problems when starting the application again. In this case, the message
queue or semaphore has to be removed manually using the ipcs and ipcrm commands.
You may also try the cleanipcs script in $MPIR00T/util.

The short way

The short way of starting a meta-run can be seen in this example:

mpirun -machine ch_smi -nodes p4-01,p4-02 -np 2 : -nodes p4
-03,p4-04 ./cpi args

Here, the ’:” delimits the definition of a metahost from another one. The mpirun
script first generates a temporary meta-config-file (which can also be viewed by adding
-show to the mpirun-call) and then runs mpirun again with that meta-config-file as a
parameter. It is important to know, that by this call, a secondary-device-configuration
is being made. By default, ch_usock is the secondary-device of choice, but it can be
changed by adding --with-sec-device=XXX to the MP-MPICH-configure script.

5.5 Platform notes

Some platforms have certain problems with MPICH or the MetaMPICH extension. We
try to give hints to solve these problems (which often are problems with MPICH itself
and not originating from the MetaMPICH extension).

5.5.1 Solaris 2.6(Intel)

e If the Gnu compiler gcc is used, MetaMPICH has to be configured not to sup-
port Fortran (switch -nof77) due to a symbol resolving problem in the concerned
libraries.

e If the ch_shmem device is used, make sure that the maximum size of shared seg-
ments is set to a value big enough for your application (a multiple of the maximum
message size, depending on the number of nodes in your cluster) by setting a pa-
rameter in /etc/system.

5.5.2 Linux 2.x(Intel)

e The setup of the shared memory needs a patch in mpid/ch_shmem/p2p_shmalloc.
h. The following two blocks must be swapped when using Linux (this is already
done in the MetaMPICH distribution, depending on the definition of MPI_LINUX):

/* If there is nothing special then

we will use mmap if we have it. */

#if !'defined (SHMEM_PICKED) && defined (HAVE_MMAP)
define USE_MMAP

define SHMEM_PICKED

#endif

/* Reluctant default: System V shared

memory segments. Look out for ipcs. */

#if !'defined (SHMEM_PICKED) && defined (HAVE_SHMAT)
define USE_SHMAT

define SHMEM_PICKED

#endif

5.5.3 Cray T3E

e Due to the lack of system wide IPC facilities, a special version of the pre-MPI-
synchronisation routines had to be implemented. This is realised via the function
shmem_barrier_all() in the files src/env/pidsync.c and src/env/pidsync.h,
enclosed in #ifdef _CRAY. This is not noticeable by the user.

5.6 Internal Design

The goals of the MetaMPICH development were to enable the cooperation of het-
erogeneous, locally distributed systems within one MPI application, known as "meta-
computing". As a first step towards an efficient meta-computing, the MPI implemen-
tation MPICH which is available on nearly every platform was to be extended into this
direction considering the special setup of the test-configuration and to minimise the time
to implement the software. The principle of the extensions included in MetaMPICH are
illustrated in figure [5.7 on page 115]

5.6.1 Modifications to MPICH

The functionality of MetaMPICH as an extension to MPICH is located in three source
directories (mpid/ch_gateway, mpid/ch_tunnel and src/routing) and is separated
from the original MPICH functionality. Although this means that one design target of
MetaMPICH was the avoidance of modifications to the existing MPICH source code to
make the extension clean and simple, some minor changes in the existing code could not
be avoided due to fundamental design limits. However, these changes only do concern
the initialisation and finalisation of MPICH and the native ADI-2 devices. The most
important changes are explained in this chapter; see chapter [5.8.2 on page 121] for a
complete listing of modified files.

Initialisation For proper initialisation of more than one ADI-2 device, some minor
changes had to be done in mpid/ch2/adi2init and some more changes (for the setup of
the meta configuration and environment) in src/env/initutil.c. These modifications
include:

e MPIR_Parse_Metaconfig(metacfg_file, devcfg)

IN char *metacfg_file the name of the configuration file
OUT MPID_Config **devefg device initialisation information

New function to transfer the meta configuration from the configuration file into a
global structure (metampi_cfg, defined in include/metampi.h)

e MPIR_Copy_collops (comm)

IN/OUT struct MPIR_Communicator *comm Communicator to get new
collops
New function to copy the field of function pointers pointing to collective opera-
tions. Each communicator owns such a field, but actually this have been the same
pointers for every communicator. To be able to assign different collective opera-
tions to different communicators, this pointer field has to be copied. This function
copies the function pointers of the supplied communicator back into the same com-
municator so they can be modified without interfering with other communicators.

e Parsing of meta-relevant parameters in MPIR_Init() (src/env/initutil.c, line
466), as there are:

-metarun filename This is the parameter which makes an MPI application run
in a meta environment. The configuration of this environment is described in
the configuration file whose name is supplied.

-routing On different platforms, different launching procedures for the applica-
tion and routing processes are needed. This parameter indicates that this
process shall become a routing process making it possible to specifically place
a routing process on a certain node.

-barrier For debugging and testing purposes, this parameter sets the global vari-
able meta barrier to true. This variable is used in various places to halt
processes in an endless loop, allowing to attach with a debugger.

-np nbr_of_proceses This is a standard parameter of MPICH, but it is modified
according to the real number of processes running in the meta environment
(this number is gained from section 1 of the configuration file) before the
initialisation of the devices. This is necessary on some platforms to let MPICH
initialise and use data structures according to the global ranks of the processes
in the meta environment.

e Creation of the additional communicators MPI_COMM_ALL, MPI_COMM_META, MPI_
COMM_HOST and MPI_COMM_LOCAL (Src/env/initutil .c, line 803)

e Call of the routing routine MPIR_Router () for the processes which have identified
themselves as routing processes (src/env/initutil.c, line 1537)

Native ADI-2 devices MetaMPICH was first implemented on Sun Solaris SMP-Work-
stations (Sparc, Intel), which use the ch_shmem device for communication between the
processes of an MPI application. The modifications that were necessary in the ch_shmem
device (and might be necessary for using other ADI-2 devices in a similar way) are caused
by the difference in the number of processes that the ADI-2 device needs to know and
the ranks it has to serve. In the ch_shmem device, the following modifications had to be
performed:

e a device-internal barrier needs to be set to the number of local processes (mpid/
ch_shmem/shmempriv.c, line 152)

e the offset MPID_shmem->globid for the numbering of the processes on the local
host has to be set to the rank of the first process on this host according to the
meta configuration (mpid/ch_shmem/shmempriv.c, line 180)

e the number of processes to be spawned on this host has to be calculated according
to the information from the meta configuration file and not from the argument n
of the -np parameter (see above, modification in mpid/ch_shmem/p2procs.c, line
450)

When another ADI-2 device is to be used in a meta environment, similar changes which
are all located in the initialisation section of the device might be necessary.

Message processing To determine the routing for a message that the MPI appli-
cation sends, the first decision is based on the communicator used and its mapping.
The mapping from the internal communicator ranks to global ranks is generated in
MPID_Set_mapping(). For the global ranks, one mapping from the global ranks to the
device to be used exists (MPID_devset->dev).

e MPI_COMM_LOCAL The mapping of this communicator is limited to processes run-
ning on the same host as the calling MPI application process. All messages are
directly sent via the internal ADI-2 device.

e MPI_COMM_WORLD This communicator has a mapping that includes all global ranks
without the router processes. In fact, MPI_COMM_WORLD gets replaced by the pri-
vate MetaMPICH communicator MPI_COMM_META. Another private communicator
MPI_COMM_ALL has the meaning that MPI_COMM_WORLD usually had (including all
running processes, the application and the router processes) but is only used in-
ternally.

When the mapping indicates that the message has to be sent via the gateway device,
the message is processed as described in chapter [5.6.3 on the next pagel

Shutdown Upon completion of the MPI application, all processes in MPI_COMM_WORLD
call MPI_Finalize (). The router processes, however, do need to get told that they are
expected to shut down by calling MPI_Finalize(). For this purpose, MPI_Finalize()
was extended: on each host, the application process with rank 0 sends a special message
to all router processes (via the MPI_COMM_HOST communicator) telling them to shut
down. They in turn synchronise with all other router processes that they are connected
with before closing this connection.

5.6.2 Ranking System

The different communicators contain different groups of processes. To understand the
internal design of MetaMPICH, it is necessary to understand the pattern by which the
different ranks are assigned to the processes. As an example, regard the configuration
file in figure [5.8 on page 116/and the resulting meta configuration with the ranks of the
processes in the different communicators in figure [5.9 on page 116] We recognise the
rules that are applied for assigning ranks:

1. The hosts are treated in the order of their appearance in section 1 in the configura-
tion file. In the example, this means the processes on host A are given lower global
ranks than the processes on host B relative to MPI_COMM_WORLD and MPI_COMM_ALL.

2. On each host, the application processes are given lower host-internal ranks than
the router processes. For our examples, this means that the application processes
have the ranks 0 through 3, the router processes the ranks 4 and 5 relative to
MPI_COMM_HOST.

3. The relative order of the processes remains the same through all communicators:

Rank(Py, CommA) < Rank(P,, CommA)
=> Rank(Py, CommB) < Rank(Py, CommB)

MPI COMM LOCAL routing process

export threads socket
inport threads | threads

standard MPI process
(application)

ADI - A —— —— | - -

gateway

intemall

<% internal E

TCP/IP \:fia sockets

Figure 5.7: Concept of the meta extension to MPICH

4. The router processes are not part of MPT_COMM_LOCAL.

5. To the application processes, the communicator MPI_COMM_WORLD is equivalent to
the communicator MPI_COMM_META (which they do not know of).

6. To the router processes, the communicator MPI_COMM_WORLD and MPI_COMM_ALL
are equivalent.

5.6.3 Gateway- and Tunnel-Devices

The gateway device (ch_gateway) and the tunnel device (ch_tunnel) appear as ADI-2
devices towards the upper layers of MPICH, but actually work as wrappers with some
added functionality to the real, internal ADI-2 device of the system. This allows the use
of these pseudo-devices on any system featuring an ADI-2 device. The gateway device
is used for sending messages from a MPI application process to a router process; the
tunnel device is used for sending a message from the router process to the destination
application process after it has been transmitted via the two router processes. The way
that a message between two MPI application processes on different machines takes is
noted below:

1. The message is sent inside the MPI_COMM_WORLD communicator. From the mapping
of the global ranks to devices, the MPIR-Layer chooses to call the appropriate

NUMHOSTS 2

A4
B 4
OPTIONS
CONNECTIONS
PAIR A B 2 -
1.1.1.1 > 1.1.1.3
1.1.1.2 > 1.1.1.4
Figure 5.8: example configuration file
Host A Host B
0/0 1|1 ary 13 0[0
00 11 /14 19 416
AR 33 '5:// 22 11
212 33 15 68 517

application process OCRL | Rank MPI_COMM_HOST

router process ORLD | Rank MPI_COMM_ALL

Figure 5.9: resulting meta environment

send-function from the gateway device.

2. This function prepends a meta message header (defined as Meta_Header in src/
routing/mpi_router.h) to the MPI message. This header contains all the infor-
mation that is necessary to send a message between two MPI processes on the
device level. This information contains:

e the original global source and destination ranks of the message

the tag and the context id of the original message

the mode in which the message was sent (blocking or non-blocking)

the byte size of the original message contents (which is appended to the header
exactly like it has been sent from the source MPI process)

e the "message representation” of the message contents which defines the en-

coding (none, byte-swap or XDR encoded)

3. The original MPI message with the prepended header is sent to the routing process.
The global rank of the routing process is derived from a mapping of the global

MPT ranks to the available router processes (MPIR_Meta_cfg.granks_to_router,
established in the function MPID_Gateway_init ()). This mapping may be different
for the MPI processes of one host due to multiple available router processes towards
a remote host. To send the message, the internal ADI-2 device of the system is
used.

4. The export thread of the router process accepts the message, reads the global
destination rank of the message (stored in the prepended header) and decides
which connection will be used for this message (get_conn_for_dest() in mpi_
router.c). The message is then transmitted via this connection, possibly handled
by multiple threads if the connection is a multi-socket-connection.

5. The receiving threads of the router process on the other hosts recombine the mes-
sage if necessary and handle it to the import thread of the router process which
own the connection used. This import thread sends the message including the
meta header to the global rank given in the meta header as a MPI message with
MPI_BYTE datatype. In any case, this send is done via the tunnel device due to the
mapping being set up accordingly.

6. The tunnel device gathers all information from the meta header before stripping
it from the message. It then sends the original MPI message via the ADI-2 device
using the rank of the original sender instead of his own rank as return address.

5.6.4 Router

Every MetaMPICH application running on at least 2 hosts needs at least one router
process on each host. Theses router processes change the SPMD structure of the normal
MPI application, because now there are different programs communicating via MPI.
Although the router processes are not in the MPI_COMM_WORLD communicator, they are
part of the MPI application. But the MPI application programmer does not have to
cope with this structure modification because MetaMPICH tries to hide it.

The main loop of the router can be divided into two parts, each working for one
direction of the communication. To avoid deadlocks and high latencies, these parts
are implemented with threads. The problem which occurs is the non-threadsafeness of
MPICH, so a lock has to be used to protect library function calls.

One thread per connection executes select on the sockets, waiting blocking for the
next message. If data is available, one thread per socket begins to read the message,
which is re-assembled when the parts have been received. Now the message is unwrapped
and sent to the appropriate MPI process using the tunnel device.

The MPI part of the router uses MPI_Iprobe to detect available MPI messages which
have been sent to the router by local MPI processes. Unfortunately, this has to be done
by polling with the shared memory device. This is the reason why the routing process
produces a CPU load of 100%. In addition, there is a continuous locking and unlocking
of the MPICH library protection lock.

The router gets MPI messages from the gateway devices of application processes in a
special message envelope which contains the original message. It unwraps this message
and sends it to another router via TCP/IP (or another network, which can be imple-
mented easily because of the modular design). A router MPI message can contain also
a special command for the router itself, e.g. to terminate it.

The implemented TCP interface is prepared to use multiple network interfaces to
transmit large messages. In order to do this it has to be configured with multiple IP
addresses or and/or ports and a parameter called splitsize. This parameter sets the
maximum size of non-split messages.

The router splits large messages into pieces and sends them over the multiple sockets
using one thread per socket. The multi-socket configuration works even with only one
network interface, when a port offset is appended to the IP address in the configuration
file. This offset has to be used too, if multiple routers using one IP address are necessary.

Because a router has only connections to routers on one host, it is not a real router.
Instead it distributes the messages on the routers of the other host. This is done by a
simple modulo operation now, what can easily be changed. Think of a mapping which
is built dynamically using statistics of the load of single router-router connections.

5.7 Performance

5.7.1 Evaluation platform

The performance numbers given in this chapter were all obtained on two Dual-Pentium-
Pro Systems (200MHz, 256kB second level cache, 256 MB memory) running under Solaris
2.6, respectively. The network connection between these systems was realised via a
quad-Ethernet NIC (Adaptec ANA6904 PCI, 10Mbit twisted pair full duplex) providing
a direct, exclusive 4-channel connection without external interference. Additional, the
standard NIC connected the systems via a switched 10Mbit Ethernet channel which was
used as the fifth channel in our experiments.

5.7.2 Network performance

One of the main goals was that the available communication lines between the hosts
should be used as efficiently as possible. Therefore, the routing processes can handle
multiple sockets (to speak in terms of TCP/IP) to transfer a single message in parallel.
This feature leads to a nearly linear speedup in peak transmission speed for messages via
a connection versus the number of sockets which build this connection. This behaviour
is illustrated in figure [5.10 on the facing pagel measured with a pair of benchmark
programs (called "speed send" / "speed recv") which transfer blocks of data with the
given size from one host towards the other one using the according send() / recv()
functions of the MetaMPICH routing process. However, not every message is send via
multiple sockets. The number of sockets used for transmitting a message is depending
on the size of the message and a threshold value called "split size". A simple formula

serves to determine the number of channels Nipanner (Which are represented by sockets
for TCP/IP) from the message size M and the split size S:

Nehannet = Min{ Availablechannels, MdivS + Mmods}

Effective bandwith with use of multiple 10Mbit Ethernet channels, Splitsize = 3000 byte

6000 !
1 h;'annel - N Jpa—— —i
2 chgnnels —+—— P
& chignnels -8-- ot
4 channaels! - ;
5000 chignrgls === 7
r'llI R i —r
.’; - "
; f__.>c'
4000 -
if
) f{}; B4t -B--i-E----8---F-E
2)
% 3000 2},
E h&
g
II_.- ,-"'_ | 1
gL
2000 '5
/
1000 /w’ * &
J'J’/
o e=—F]

10 100 1000 10000 100000 1e+06
WMeszsagesize [byte]

Figure 5.10: TCP/IP performance of the routing process

The value of split size has an important influence on the effective bandwidth and must
be found as a trade-off between higher available bandwidth and higher synchronisation
overhead for the threads when using more channels. The effect of choosing a value too
small can clearly be recognised in figure [5.12 on page 12T] where a split size of 150 byte
leads to performance loss more than 50% when transmitting a 256 byte message via two
channels instead of only one.

To determine the optimal splitsize for a given network connection between two hosts,
a small tool set named optsplit_send/optsplit_recv exists in /src/routing/. Look
at the source code to learn how to use this tool.

5.7.3 MPI performance

To quantify the effective MPI bandwidth relative to the raw network bandwidth, the
equivalent MPI program to the benchmark of chapter[5.7.2 on the facing page| was tested.

Effective bandwith with use of multiple 10Mbit Ethernet channels, Splitsize = 150 byte
G000

1 ghannel; s— . I - S
2 channels; —+— Abban
3 chignnels! -8-- .
4 channels] - o

5000 FEemgriels

4000

3000 T

Bandwith [kB/s]

2000

1000

10 100 1000 10000 100000 1e+0B
Messagesize [byte]

Figure 5.11: Compensation of higher Bandwidth by synchronisation overhead

It is called "mpi_speed" and transfers the same blocks of data, but as a MPI application
process in a meta configuration with one application and router process on each of the
two hosts described in chapter [5.7.1 on page 118 The results are shown in figure 5.12 on
the facing page and should be compared with figure |3.10 on the previous page|to see the
overhead that is involved with the internal transfers of the MPI messages on each host
and the routing in the two routing processes. Most part of this overhead is caused by the
need of polling the internal MPICH device in the routing process which consumes most
of the available CPU cycles. If the internal MPICH device can be used in a blocking
mode, this problem should disappear. Another area for optimisation is locking of the
MPI functions which is necessary because of MPICH not being thread-safe.

Of course, the performance of a MPI application is affected by running it on dif-
ferent hosts as the communication bandwidth between two processes on distinct hosts
will always be a magnitude or more below the internal communication bandwidth on
a typical host. Thus, efficient use of such a meta-computing environment requires the
use of the MPI_COMM_LOCAL communicator where possible. Some efforts where made to
adapt the usual collective operations to this environment. An example for such an oper-
ation is the barrier synchronisation. The meta variation of the barrier (attached to the
MPI_COMM_WORLD communicator) performs a local synchronisation with all application
processes on the host, then a barrier between all processes with local rank 0 on every
host. A final local barrier is required to finish the global barrier. However, it made no
sense to measure the effects of this technique on the used evaluation platform due to the
lack of a significant number of MPI application processes running on the hosts.

Effective MP| bandwidth with use of multiple 10Mbit Ethernet channels, Splitsize = 3000 byte
4500

1 ¢hanngl -+ ,-’!;\ g -
2 channels ——- i .. [-
4000 [+-3-bharnds—8 e
4 channgls -#-- i .
& channgls —— i o A -
K »
3500 i
3000 / B
;.5 = R T
2 -" f I'\ I,'I
E 2500 _'f' -
= 3 i
T ;
£
T 2000
]
m
1600
1000
500 -
,,,.x@"é hRS:! 3l
o et
10 100 1000 10000 100000 1e+0B

MP| Messagesize [byte]

Figure 5.12: MPI Bandwidth illustrating inter-communication and routing overhead

5.8 Implementation details

5.8.1 Restrictions, limits and warnings

e The number of routing processes on a host is limited by #define META_MPI_MAX_RP
in include/metampi.h. Currently, it is set to 16 but may be set to any number if
necessary.

5.8.2 Modified files

A number of source files from the original MPICH distribution had to be added modified
to introduce the meta capabilities. These files are shown in table 5.4 on the follow-
ing page. The filenames are relative to the MPICH root directory. The state "mod"
means that this file was modified, the state "new" indicates a new file or directory.
Although it was the intention for the design of MetaMPICH not to modify the exist-
ing sources of MPICH but only add new source files, this could not be fully avoided.
However, the modifications are very limited in size and number and are embraced with
an #ifdef META ... #endif construct for easy location. If you compile MetaMPICH
without defining the symbol META, you will get the original MPICH 1.1.0 code.

5.8.3 Error messages and solutions

Filename

State | Description of the changes

configure mod | - added the new source files and directories
- modification of mpicc script
util/mpirun.sh.in mod | recognition of option -meta to launch mpirun.meta
util/mpirun.meta.in new new script to start the MPI application on each
host (needs gawk)
include/mpi.h mod | added new MPI_COMM_ communicator values for
ALL, META, LOCAL and HOST and replaced the stan-
dard WORLD communicator by META
include/metampi.h new definition of the global meta configuration struc-
ture
include/pidsync.h new Synchronisation and leader election using IPC
message queues (header file)
mpid/ch2/adi2init.c | mod | some correction for initialisation of multiple de-
vices
mpid/ch gateway/ new this directory contains the gateway device
mpid/ch_tunnel/ new this directory contains the tunnel device
mpid/ch_shmem/ mod | adapted the number of processes to be forked
p2pprocs.c
mpid/ch _shmem/ mod adapted the number of participants on the shared
shmempriv.c memory barrier
mpid/ch_shmem/ mod | included support for heterogeneous communica-
shmemchkdev.c tion in the shmem-packet
ssrc/routing/ new this directory contains the routing process
src/env /initutil.c mod | MPIR_Init():
- parsing of the configuration file
- creation of the new communicators
- start of the router process
src/env /finalize.c mod | MPI_Finalize():
added global synchronisation of the MetaMPICH
cluster prior to local shutdown
src/env/pidsync.c new Synchronisation and leader election using IPC
message queues

Table 5.4: Modified files in MetaMPICH

Message Additional | Possible Comment
Information | Reasons
tcp__bind: error binding socket errno wrong I[P in | the bind
configuration | call cannot
file bind a socket
to a given
inet-address
tcp _accept: accept error errno

tcp__connect: non-existent con-

nection handle

handle value

function

is passed
an invalid
connection
handle

tcp__establish _connection:
existent connection handle

non-

handle value

tcp_send message: non-existent
conn handle

handle value

tcp__receive message:
existent conn handle

non-

handle value

tcp_select: non-existent connec-
tion handle

handle value

tcp__check message:
existent connection handle

non-

handle value

tcp _connect: server must not

CONNECT

a connect 1s
executed on

the server
side of a
connection

tcp__connect: socket already con-
nected

tcp _connect
is called on
an already
connected
connection

tcp __connect: connection not

down

wrong con-
nection state
for this oper-
ation

Table 5.5: MetaMPICH error messages

List of Figures

3.3 Comparison of different compiler versions and linking models. Measured
| on Linux x86. Dual Hentium-IT1 800, Serverworks ServerSet ITI-LE, SMP
mode (node-internal)

2.0 §¥g§§§ gi the router gggﬁguration entriedo

5.7 Concept of the meta extension to MPI(‘:ﬁi
5.9 resulting meta, environmena

. . - . . .
OIMpensation Ol Nigner Handwlidiil DV SVINCATronisatlon overnead

MPI Bandwidth illustrating inter-communication and routing overhead

	Contents
	Introduction
	What is MP-MPICH?
	Contact & Support

	Compiling and installing MP-MPICH from source
	Configuring MP-MPICH

	SCI-MPICH
	What is SCI-MPICH?
	Installation
	Requirements in Hard- and Software
	Setting up the cluster nodes and the SCI interconnect
	Installing the Archives
	Updating an Existing SCI-MPICH Installation
	Configuring and Compiling

	Usage
	Creating SCI-MPICH applications
	Running SCI-MPICH applications
	Host Specification
	Launching SCI-MPICH applications manually
	Shutting down SCI-MPICH applications

	Compatibility
	MPICH ABI
	VAMPIR
	TotalView
	MPICH ch_p4 Startup
	Scali ScaDesktop
	OpenPBS

	Device Configuration
	Protocol-specific Configuration
	Global Device Configuration

	Memory Allocation
	Explicit Memory Allocation via SCI-MPICH
	Implicit Memory Allocation via SCI-MPICH

	MPI-2 One-Sided Communication
	SCI-MPICH under Windows
	Compiling the Library
	Running Applications

	Common Questions and Problems
	General questions concerning SCI-MPICH
	Problems compiling the libraries and MPI applications
	Problems running MPI applications
	Problems Achieving Good Performance

	Performance
	Compiler Optimisation
	Linking model

	Internal Design
	Verbose Startup
	Statistical Information on Device Activity
	SCI resource requirements
	Message buffer sizes
	Asynchronous Transfers
	Source structure

	Known Bugs, Limits & Caveats
	Release History
	Approved Platforms and Configurations
	References

	NT-MPICH
	What is NT-MPICH?
	Differences between NT-MPICH and the original MPICH.NT

	System Requirements
	Installation
	Installing the Source Distribution
	Installing the Binary Distribution

	Compiling MPI Programs written in C
	Compiling the Examples and Running the Tests
	Create your own Applications

	Compiling MPI Programs written in Fortran
	Compiling an MPI Program written in C++
	Starting NT-MPICH Applications
	Generic Startup
	Application Startup using "plug-ins"
	Startup with RexecShell
	Startup with mpiexec
	Available plug-ins
	Starting NT-MPICH programs manually

	More about NT-MPICH and Fortran
	Using the Lahey LF95 compiler
	Using the Compaq Visual Fortran compiler and compatibles
	Using non-supported Fortran Compilers

	Using the Profiling Interface
	Using MPE
	MPE Graphics

	Jumpshot
	Running Jumpshot or Jumpshot-3
	Compiling Jumpshot or Jumpshot-3

	Frequently asked questions

	MetaMPICH
	Introduction
	Feature list

	Installation
	Requirements in Hard- and Software
	Compiling
	InfiniBand-Support

	Configuration
	Principles of MetaMPICH inter-meta host communication
	Syntax of the configuration file
	Example configuration and further explanations
	Checking the configuration with checkmetacfg
	More example configurations

	Usage
	Creating MetaMPICH applications
	Running MetaMPICH applications

	Platform notes
	Solaris 2.6(Intel)
	Linux 2.x(Intel)
	Cray T3E

	Internal Design
	Modifications to MPICH
	Ranking System
	Gateway- and Tunnel-Devices
	Router

	Performance
	Evaluation platform
	Network performance
	MPI performance

	Implementation details
	Restrictions, limits and warnings
	Modified files
	Error messages and solutions

