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Abstract. This paper describes the parallelization of a commercial molecular dynamics simulation
code, GROMOS96, on a SCI (Scalable Coherent Interface) interconnected PC cluster. The underly-
ing programming model is that of shared data structures, exploiting SCI’s capabilities of enabling
access to segments of remote memory in an entirely transparent way. Methodologies are elaborated
that allow to obtain high performance in presence of the NUMA (Non-Uniform Memory Access)
performance characteristic of the cluster platform. It is demonstrated that this type of cluster plat-
form allows a step-by-step parallelization process in distinction to a message-passing paralleliza-
tion with it’s partitioned and distributed data structures. Performance figures of the resulting
parallel code are presented and discussed.
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1 Introduction

This paper describes the parallelization of GROMOS96, a molecular dynamics simulation code, on
recently emerging parallel cluster architectures [17]. In distinction to dedicated parallel computing sys-
tems (like Cray T3E), cluster systems comprise out of commercial off-the-shelf compute nodes (PCs or
workstations) that are coupled with some kind of communication network. This paper focuses on clus-
ters, equipped with one of the most noticeable high-speed cluster networks in light of it’s functionality,
the Scalable Coherent Interface (SCI) [10]. SCI differs from most other networks, which just possess
message passing capabilities, in that it implements transparent read and write access to memory of
remote compute nodes.
With the aid of the respective device driver services, each process of a parallel application can allocate
SCI memory segments. These can be mapped into the allocating process’ virtual address space as well
as into that of any other (remote) process. Subsequently, each process can transparently access this
memory. Accesses to remote memory are mapped to the PCI-based SCI-adapter and serviced by a net-
work transaction with the assistance of the corresponding remote SCI-adapter. Although being entire
transparent, remote memory accesses show a latency that is about one order of magnitude higher than
local one. Due to this performance characteristic, such systems are commonly classified as NUMA
(Non-Uniform Memory Access) parallel systems.
The simulation of the dynamics of molecular systems is one of the central fields of compute-intensive
technical/scientific computing. It has therefore been subject to parallel processing already for a long
time. GROMOS96 [20] is one of the major well-known codes in this area that has already quite a long
history. It is the completely re-designed successor of GROMOS87, regarding it’s functionality as well
as it’s implementation. Due to it’s irregular and time-varying data structures that are processed by dif-
ferent kinds of algorithms this code is well-suited to discover a lot of aspects of application paralleliza-
tion on the cluster platform under consideration. This is virgin territory in that most projects so far,
dealing with NUMA cluster platforms, are concerned with lower-level performance issues and pro-
gramming models but do not yet deal with larger application parallelization. The herein presented effort
is part of a larger application parallelization project [16] that is concerned with codes from different
areas, e.g. a module from decision a support system [12] and an acoustics simulation code.
The parallelization of GROMOS96 exploits the shared memory capabilities of the cluster platform via a
comfortable parallelization library, the Shared Memory Interface (short SMI [5]) which serves as the
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basis for an efficient and comfortable parallelization process and the resulting code performance. SMI
aims at supporting the programmer regarding the following subjects:

• Providing a richer and more comfort set of functionality than the pure SCI device driver. All
common services for shared memory programming are available, e.g. dynamic shared memory
allocation, synchronization mechanisms, loop-scheduling, etc.

• Hiding platform peculiarities (regarding performance and functionality) from the programmer.

• Allowing a simple migration from a given sequential code to a parallel one that can be performed
in a step-by step fashion.

This is one of the first parallelization efforts that deals with a relevant commercial code and is directly
based on SCI-shared memory within a cluster system. The common, more conservative but neverthe-
less justified approach, is to implement message-passing on top of SCI [23] and to deal with message
passing application parallelization (e.g. [9]). But in light of the fact that memory-coupling becomes the
more and more dominant architectural principle of parallel systems, developing techniques for the
direct exploitation of this feature should be of high interest.
Section 2 provides some more information about GROMOS and it’s code structure. The SMI program-
ming library is described in section 3. Based on this, section 4 describes the parallelization of
GROMOS96 which has two different aspects. The first one regards the overall principles and software
engineering issues, while the second one eventually sketches the parallelization of the kernel algo-
rithms. Succeeding, section 5 discusses the resulting performance and relates it to similar paralleliza-
tion efforts. Finally, some conclusions are drawn in section 6.

2 The GROMOS Code

2.1 General

The purpose of molecular dynamics simulation is to track the dynamics of a molecular ensemble whose
individual atoms interact via several types of forces over time. Depending on the concrete application,
results of interest are the particles’ trajectories (or time-evolving quantities that can be computed from
them) as well as the final configuration.
The whole program package consists of several programs. Besides pre- and post-processing programs,
the main component is the actual molecular dynamics simulation program. It consists of 31 source code
modules with about 42,000 lines of Fortran 77 code altogether. The difference to the former
GROMOS87 becomes obvious, relating these quantities to the 22 modules with just about 9,000 lines
of Fortran 77 code of GROMOS87.
GROMOS87 was already subject to several parallelization efforts. UHGROMOS and EulerGromos
have been developed at the Texas Center for Advanced Molecular Computation (Univ. of Houston)
[3,13,15]. Furthermore, GROMOS87 was parallelized within the framework of the European Commu-
nity sponsored Europort project [6,14]. Both efforts led to message passing programs. The new
GROMOS96 code has only been parallelized once, using threads for shared-memory Silicon Graphics
multiprocessors [7].

2.2 Structure of the code

The code structure is highly pre-determined by it´s underlying physics and it´s numerical solution
method (see e.g. [1,20]). Denoting the spatial position of an atom i with mass mi at a specific point in
time t by , a set of coupled (nonlinear) differential equations is solved in the time domain that
determines the atoms’ trajectories due to Newton’s equations of motion considering an interaction
potential E:

ri t( )
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(2.1) i = 1, 2, 3, ...

This is done in a time-step fashion. Starting from a given initial configuration, for each point in the dis-
retized time the forces acting on each particle are computed and accumulated. From these, Newton’s
equations of motion allow to determine position and velocity of all particles at the following time step
by integration.
Relevant forces can be divided into two types:

• Non-bonded interactions that act between any pair of atoms. These can further be divided into
long-range and short-range interactions, depending on their decay rate with increasing distance.

• Bonded interactions result from chemical bonds between atoms. They capture e.g. bon-lengths,
-angles and -dihedral angles.

Short-range interactions are typically neglected for all atom pairs beyond a certain cut-off radius. To
allow an efficient evaluation of all relevant forces, all interacting atom pairs are kept in a so-called pair-
list. Due to the dynamic’s smoothness, it is sufficient to update the pair-list just every tpl time steps (e.g.
tpl=10). Analogously, long-range interactions are evaluated only from time to time and assumed to be
constant in between. In GROMOS96, long-range interaction evaluation is paired with pair-list construc-
tion.
Additional to these mechanisms, it is often required to restrain some degrees of freedom of the molecu-
lar ensemble, e.g. bond-lengths, that would undergo forbidden modifications within the simulation pro-
cess. This is achieved with an iterative procedure, commonly called SHAKE. SHAKE adjusts the
ensemble iteratively according to the (partially contrary) restrictions. The code structure is summarized
in figure 1. For an exemplary molecular ensemble, a protein molecule thrombin (3,078 atoms) together
with 5,427 solvent water molecules (altogether 19,359 atoms), calling frequencies and computation
time contributions of the major modules are given.

3 The Parallelization Library - SMI

The parallelization of GROMOS96 is based on the Shared Memory Interface (short: SMI) paralleliza-
tion library. This section provides a short overview of it’s principles and functionalities. More details
can be found in [5]. The library has been implemented on SCI-coupled clusters of workstations and PC
and is available for Windows NT, Solaris and Linux.

3.1 Principles of SMI

An application that is parallelized with SMI is executed by a couple of concurrent complete processes
in a SPMD style. Initially, all processes possess entirely private address spaces. Using the respective
SMI functions, regions of shared memory can be established among them. To allow data-locality opti-
mizations, each region can comprise out of several segments. Each one can be physically located on a
different compute node, it’s home. All accesses from processes on the home node are fast local
accesses, all others are expensive remote accesses.

3.2 SMI functionality

Functions provided by SMI can be divided into five categories:

• Initialization of the run-time environment and information gathering about it.
Several functions exist to request the number of participating processes and machines, ranks of
processes and machines, and information about where each process is executing.

• Establishment and management of shared memory regions.
Shared memory regions can be allocated with several policies that guide the way they are com-
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posed out of individual segments. Such a region can be used to store a single flat data structure in
it (e.g. an array) or for dynamic memory allocation within it (with the aid of a memory manager).

• Synchronization primitives.
They cover mutex and barrier synchronization as well as what is called progress counters. A
progress counter is an integer variable for each process that can be incremented to signal other
processes the current state of computation progress of a process. Several functions exist to ensure
that a process waits until the counter variables of the other processes signal that the computation
process has reached at least a specific state. Furthermore, memory consistency is ensured at syn-
chronization points. An explicit handling of this issue is necessary due to load- and store-buffers
on the SCI adapters.

• Loop-scheduling.
Advanced loop-scheduling and -splitting facilities exist that can be used to parallelize a loop
[19]. They are scalable and account for minimal overhead. They allow e.g. dynamic load balanc-
ing with respect to data locality maximization.

• Services that enable a step-by-step parallelization.
A set of functions is provided that allow to temporary switch to replication of a shared memory
region in each process. Later on, it is possible to switch back to sharing, providing various ways
to combine the replications to a single consistent global shared region, which may have evolved
differently in the meantime.

4 Parallelization

The parallelization of GROMOS96 has been performed in accordance to SMI´s philosophy of enabling

Count Time
(in %)

main

load configuration data 1 ~0

perform T time-steps of simulation

all tpl time-steps: assemble pair-list

and compute long-range interactions

solute-solute and -solvent T/tpl 13.8

solvent-solvent T/tpl 33.3

compute short-range interactions

solute-solute and -solvent T 10.4

solvent-solvent T 36.1

SHAKE 4+2T 2.6

integrate to next time-step T ~0

all tout time-steps: write data fo file T/tout ~0

write final configuration data to file 1 ~0

Figure 1: GROMOS96 code structure together with the modules’ computational com-
plexity and frequency for a thrombin molecule (3,078 atoms) with 5,427 solvent water
molecules.
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a step-by-step parallelization. This methodology has several advantages:

• Reduced complexity. Especially for the parallelization of given sequential codes (in distinction to
the development of a parallel application from scratch) it is critical to deal with all data structures
and sub-algorithms at once.

• Scalability of the parallelization process. I.e. the parallel performance of the code should scale
with the amount of work spent on the parallelization process. A sophisticated analysis of where
the most time is spend in the sequential code may allow to achieve huge performance improve-
ments while just parallelizing small code sections. This is especially desirable in projects with
limited (financial) resources.

Shared memory is an essential requirement for both issues. Being forced to a message-passing paralleli-
zation that comes along with partitioned and distributed data structures, it is impossible to proceed in
such a step-by-step process. The possibility to start with the parallelization of just a few code parts is an
enormous advantage especially for a code like GROMOS96, which consists of a couple of different
algorithms. Although contributing not considerably to the computational complexity, some of them are
quite complex to parallelize which can be omitted in the first steps. Therefore, SCI-based NUMA
shared-memory cluster show much more advantages than just performance considerations would sug-
gest.
The individual steps undertaken in the GROMOS96 parallelization effort are described in the following
subsections.

4.1 Starting with parallelism and coordinating I/O

The very first step is just to ensure a start-up mechanism for the application that establishes a desired
couple of parallel processes and coordinates their I/O. Although sounding quite trivial, it turned out to
be of considerable importance and afflicted with more problems than one might imagine on a Windows
NT operated cluster (in distinction to e.g. Unix).
The parallel SMI-based version of GROMOS96 is started with the aid of a shell script. It contains some
variables that have to be set from the user:

• name and path of the executable

• the names of the input files (e.g. configuration data, simulation parameters, etc.)

• machines to run the application on (which defines the degree of parallelism at the same time)

This information is sufficient to start the parallel application with an appropriate mechanism. Doing so,
a window-based front-end is invoked on the machine, the user issued the job from. It provides an indi-
vidual console for each process’ console output (standard output and error) and gives control over the
application. There exists functionality e.g. to terminate all processes of the application. Such a front-
end is essential for a cluster that is operated under Windows NT. This operating system lacks support
for I/O redirection to/from other machines and multi-user support which disables to run a process on a
remote machine (on which the user is not logged on) within the entire user´s environment. Figure 2
shows a snapshot of this font-end.
The parallel execution environment within each process is set-up by initializing SMI and requesting
several parameters from it, e.g. the total number of processes, each process´ rank etc. What remains is
coordination of output. GROMOS96 uses several streams of output. Some go to certain files (e.g. tra-
jectory data of the atoms over time), one goes to the console (simulation parameters, error messages,
ensemble-averaged quantities for individual time-steps as well as averaged over the entire simulation
run). For the purpose of parallelization, the standard error stream is used (e.g. for error messages and
performance evaluation). Using SMI’s capabilities, standard error is redirected to the front-end. Stan-
dard output is redirected to files, ensuring a different file-name for each process automatically. File-out-
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put is performed by a single process. This is ensured using the known rank of each process to skip the
corresponding code fragments for each but the process with rank zero. This can also remain in the later
parallelized version due to the fact that within the shared data programming model, each process has
access to all data. Clearly, this approach in not scalable in terms of Amdahl’s law. But the major focus
of this parallelization effort is to study the later algorithm parallelization.
The result is a code that states the basis for the following parallelization of some of the most time con-
suming modules, one after another.

4.2 Parallelization of the interaction calculation kernel

The two most time consuming modules are:

• pair-list construction (including long-range interaction evaluation) and

• short-range interaction evaluation.

The pair-list is constructed not on the basis of individual atoms but on the basis of small clusters of
atoms that together possess a (near-)neutral charge, the so-called charge-groups. A charge-group is for
example an entire solvent water molecule. Besides physical advantages, this also reduces the problem-
size for pair-list construction by a factor of about three.
The pair-list construction that is coupled with long-range force evaluation (if this feature has been
enabled) is a simple O(N2) algorithm that tests the distance of all pairs of charge-groups. If it is only
small enough, a long-range force contribution is evaluated and accumulated in a long-range force array
for the considered atoms. If it is even smaller than the short-range interaction cut-off radius, the respec-
tive charge-group pair is added to the pair list.
The short-range interaction evaluation module consists of a loop over all entries in the pair-list. For

Figure 2: Screen-shot of SMI´s window-based front-end. The output of a GROMOS96
run with 4 processes is redirected to the front-end on the user´s machine.
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each charge-group pair, all interactions between all constituting atoms are evaluated and accumulated in
a corresponding short-range force array.
Three properties of GROMOS96 are worth noting because they influence the parallelization consider-
ably:

• Due to Newton´s law of actio and reactio, forces between atoms are anti-symmetric, i.e. identical
in magnitude but contrary in direction. Once a force has been evaluated, it is crucial to accumu-
late it to both atoms under consideration to gain performance. Therefore, it is impossible to par-
allelize the application in a way that no two processes perform accumulations to the same entries
in the force arrays.

• The GROMOS96 implementation extensively relies on a very specific mapping of atoms to indi-
ces in the force arrays. One major assumption is that all solute atoms precede the solvent atoms.
Furthermore, all atoms of each individual solute molecule (if there are several) are consecutive in
the force array, again in a specific common order. Departing from this would result in major
implementation changes although it might be very reasonable considering parallelization solely.

• The code to compute a single solute-solute or solute-solvent differs considerable from pure sol-
vent-solvent interactions (this applies to long- as well as short-range interactions). Due to this,
the computation of the two sets of interactions is separated in the code. To retain it’s structure, a
parallelized code should do this as well.

4.2.1 Pair-list construction and long-range force evaluation

The major data structures, affected by a parallelization of this module are:

• the array of all atoms’ forces that is subject to accumulation operations and

• the pair-list.

The basic principle is to split the outer-most loop of the N2-algorithm among the processes. This means
that contributions to an atom’s long-range force may come from all processes. To allow this, the long-
range force array is placed in a globally accessible SCI shared memory region. The region is allocated
with the BLOCKED directive, i.e. it is assembled from equally-sized segments on each machine to bal-
ance the number of remote memory accesses among the processes. Then, an essential requirement for
correctness is to perform accumulations from different processes to identical atoms under mutual exclu-
sion.
The straight-forward way to ensure this would be to guard each accumulation operation by a mutex.
Although SCI allows to implement efficient synchronization mechanism, their cost (on the order of 50
µs) is much to high to allow the guarding of each single accumulation operation. The implemented
solution for this problem is to block the execution of the (spited) loop (see e.g. [11]). The resulting tem-
poral locality is advantageous and useful in several ways:

• The cache usage is improved.

• For each atom that is processed within this algorithm, quite an amount of data that influences the
computation has to be looked-up in several different data structures. For a small and determinis-
tic number of atoms it is possible to do this just once during the processing of the entire loop-
block and to keep it in a suitable data structure during that phase. This saves look-up overhead.

• If already some kind of software-caching is done it can be expanded to also capture the atoms’
(partial) forces. An accumulation to the global force array is then performed for all atoms at the
end of the processing of an entire loop-block, capturing all partial forces at once that result from
all inter-block interactions. This compensates the necessary synchronization operation and also
the overhead due to remote memory access.
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The scheduling of loop-blocks to processes is performed by SMI’s advanced loop-scheduling facilities
[19] that minimize load imbalance while introducing only a minimum of scheduling overhead. The
resulting code fragment is sketched in figure 3.
Besides long-range forces, the results are per-process pair-lists corresponding to the considered atom-
pairs within each process. This implicit partitioning of the overall list of atom pairs is already the basis
for the parallelization of the short-range interactions. So far, load balance has been optimized for pair-
list computation itself, but not for the resulting pair-lists. This will eventually result in load imbalance
during the short-range force computation phase. This problem will be addressed below, going along
with that what is understood under the term “scalable parallelization” in the context of this paper.
To hide the parallelization of this module from the rest of the application, SMI’s capabilities to switch
between sharing and replication of memory regions are used (see figure 3). Although not mentioned in
particular, this parallelization scheme is applied to solute-solute or solute-solvent as well as pure sol-
vent-solvent interactions in the same way.

4.2.2 Short-range force evaluation

The parallelization, i.e. the work partitioning, of the short-range force evaluation module is already pre-
determined by the existence of a partial pair-list within each process. Analogously to the pair-list con-
struction, the central data structure that is processed in parallel is the short-range force array for all the

SMI_Switch_to_sharing(long_range_force_array)

SMI_Loop_schedule_init(global_min = 1, global_max = N)

While work Do /* outer loop */

SMI_Get_index_range(oblock_idx_min, oblock_idx_max)

Load data of atoms oblock_idx_min...oblock_idx_max

For iblock = 1 To Nblocks Do /* inner loop */

iblock_idx_min = iblock*BlockSZ;

iblock_idx_max = min(N, (iblock+1)*BlockSZ - 1)

Load data of atoms iblock_idx_min...iblock_idx_max

For i = oblock_idx_min To oblock_idx_max Do

For j = oblock_idx_min To oblock_idx_max Do

Process atom pair (i,j)

- compute distance

- compute long-range force if distance small enough

- insert into pair-list if distance small enough

End For

End For

SMI_Mutex_lock()

Accumulate partial forces of atoms iblock_idx_min...iblock_idx_max

SMI_Mutex_unlock()

End For

SMI_Mutex_lock()

Accumulate partial forces of atoms oblock_idx_min...oblock_idx_max

SMI_Mutex_unlock()

End While

SMI_Switch_to_replication(long_range_force_array)

Figure 3: Outline of the parallelized pair-list construction and long-range force evalua-
tion algorithm.
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atoms. Also, the parallelization of this module is faced with similar problems:

• Minimize the number of force-array accesses because a fraction of them are expensive accesses
of remote memory.

• Minimize the number of lock/unlock operations that are necessary to guarantee atomicity of
accumulation operations from different processes.

Blocking, as done to parallelize pair-list construction is not straight-forward, because the atom-pairs
that are to be processed are determined by the pair-list that states an irregular grid structures (assuming
each charge-group as a node and drawing an edge between all with an Euclidean distance smaller than
the cut-off radius). The original sequential mode of processing was a node-oriented procedure that pro-
cessed interactions in order of the first node. Denoting the number of charge-groups by G and the pair-
list length by P, this requires G+2P atom data load phases with a proportional amount of cache misses
in the sequential case and additionally a proportional amount of remote memory accesses in the paral-
lelized case. P is on the order of one magnitude higher than N, i.e. each node possesses some tenths of
interaction neighbors (60 is a realistic quantity). Furthermore, there is no obvious way of reducing the
number of lock/unlock operations.
For this purpose, blocking is done at the grid level by re-ordering the pair-list in a pre-processing step.
Processing the pair-list after that step corresponds to traversing the grid in a way such that edges con-
necting nodes that already participated in an interaction calculation a short time before are considered
as next edges in the schedule. This ensures temporal locality (see figure 4). Furthermore, the ratio

Figure 4: Three consecutive snapshots of temporal locality optimized grid traversing.
Black edges denote the latest visited edges (a cache-size corresponding to 64 nodes was
assumed).

edges in order of
processing after
reorderingcache

time

......

grid data structure
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between a breath-first to a depth-first search can be adjusted to enforce a working-set size that corre-
sponds best to the size of a ‘software cache’. Introducing such a software cache to keep node data tem-
poral, it is possible to reduce the number of data-load phases for charge-groups for a factor of about 20
for a ‘software cache-size’ of 256.
To decrease the number of required lock/unlock operations, elements are purged from and loaded into
the software cache not solely but in groups. This already helps a lot, but it turned out that it is not yet
sufficient. Ensuring mutual exclusion with a single lock results in considerable contention for that lock.
Fortunately, the locality-enforcing pair-list re-ordering can also be exploited to reduce lock contention.
The idea is to assign different locks to nearby nodes in the grid (those that are geometrically adjacent or
connected by short paths in the grid). Processing interactions in a temporal local way means at the same
time that also the groups of nodes that are purged from the cache show some degree of locality and
therefore correspond to the same lock or at least just some few. Using e.g. 16 locks, which is a quantity
that allows a good scaling behavior in terms of lock contention for reasonable degrees of parallelism, it
was possible to reduce the number of lock/unlock operations to just one for about every 10 nodes that
are together purged from cache as a block. (see table 1 for a summary).
Analogously to the pair-list construction module, the short-range force array is switch to a sharing
mode when this module is entered and switched back to a replicating mode at it’s end to allow to keep
other modules unchanged.

4.2.3 Load balancing

It has already been mentioned that the parallelization as described so far results in load imbalance
within the short-range interaction module. The reason for this is that the outcome of the pair-list con-
struction module per process directly defines the work-load of the short-range interaction evaluation
module. The work-load of the pair-list construction module has been scheduled for load-balance but
computational load of the pair-list construction process is not necessarily proportional to the amount of
generated load for the succeeding short-range interaction evaluation module.
To eliminate load imbalance in the short-range interaction module, a redistribution of the process-local
pair-lists is performed. Besides enforcing load-balance (in terms of an equal number of short-range
interactions per process) this allows even more optimizations. So far, the pair-list grid has been parti-
tioned implicitly by the loop-scheduling within the pair-list construction module among the processes.
Clearly, this results in a distribution in which each process’ pair-list contains edges from allover the
grid. The pair-list reordering step is able to deliver the more temporal locality the more geometrically
adjacent grid-regions are concentrated within single processes. Such a distribution is enforced at the
same time the pair-lists are re-distributed for load-balancing reasons. This is done with a simple geo-

Table 1: Characteristic quantities for a 13,824 water molecule ensemble.

no. charge-groups 13,824
pair-list length 442,584
orig. no. of charge-group data purge/load
operations

13,824 + 442,484
= 456,308

software cache-size 256
no. of locks 16
optimized no. of purge/load operations
of charge-group data

49,154

unoptimized no. lock/unlock operations 49,154
optimized no. lock/unlock operations 2,870
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metrical partitioning of the three-dimensional solution domain (see e.g. [8,22] for grid-partitioning).

4.3 Possibilities to expand the parallelization

The module that is time-critical in third place is the SHAKE module (see figure 1). The next step in the
described step-by-step parallelization process would be to parallelize this one. Although SHAKE con-
tributes only minor to the sequential execution time, it limits the scalability considerably for higher
degrees of freedom according to Amdahl’s law. Parallelizing SHAKE would also allow to eliminate
most of the calls to replicate the force shared memory regions (before SHAKE) and to switch back to
sharing again later on (after SHAKE), together with the respective overhead.
However, this has not been done yet.

5 Performance

5.1 Evaluation platform

The cluster platform used for evaluation purposes comprises out of dual-processor Intel Pentium Pro
multiprocessors (200 MHz; 256 KByte L2-cache) that run under Windows NT 4.0. These, together with
a file-server, are interconnected with a Fast Ethernet e.g. for access to a common, cluster-wide file sys-
tem. For parallelization purposes, the machines are memory-coupled with Dolphin´s first generation
PCI-SCI adapters [4,18]. Based solely on commodity components, such a cluster shows a great price/
performance ratio (currently, each dual-processor compute node equipped with a SCI adapter cost
about $5000).

5.2 Results

The performance of the parallelized code is evaluated using two benchmark problems from Biomos
itself (the distributor of GROMOS) [7]: a thrombin protein molecule in water and a large water ensem-
ble (for some parameters of the data sets, see table 2). The thrombin data set is of interest because it is
the only one of relevant size that considers also long-range interactions. The water data set was chosen
because it’s size is comparable to those problems that are of real interest.

Table 2: Some characteristic quantities of the benchmark data sets.

thrombin in
water

water (large
data set)

no. solute molecules 1 0
no. solute atoms 3,078 0
no. solute charge-groups 1,285 0
no. solvent molecules (H2O; = no.
of solvent charge-groups)

5,427 13,824

no. solvent atoms 16,281 41,472
total no. of atoms 19,359 41,472
pair-list update / long-range force
evaluation rate (tpl)

5 5

no. short-range solute-solute and
-solvent charge-groups interactions

57,735 0

no short-range solvent-solvent
charge-groups interactions

175,326 442,584
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Figure 5 shows the obtained speed-up quantities, running the program on up to four machines, corre-
sponding to a total of eight processors. It should be noted that these quantities have been derived by
relating the measured run-times to that of the original sequential code, not to the parallelized code run-
ning with a single process. However, both perform very similar.
The decay of the speed-up increase with an increasing number of processors has three major reasons:

• The fraction of each global shared memory region that is local to each process decreases.
Because of this and because the data-layout in the regions has not been adapted according to
locality and work partitioning, the fraction of remote accesses grows proportional to the number
of machines.

• The relative overhead of switching between sharing and replication of the shared memory
regions grows.

• Modules that remained sequential limit scalability for higher degrees of freedom according to
Amdahl’s law.

All three issues result from the strategy to limit code modifications for the purpose of parallelization to
just a few functions and to parallelize just the most time-consuming modules, not the whole code. This
approach has been chosen with consciousness and payed off. There are no principle reasons that would
prohibit to remove a large fraction of this overhead.

5.3 Comparison to other parallelization efforts

It is interesting to compare the achieved performance figures to other parallelization efforts of GRO-
MOS. First of all, Biomos itself presents some performance figures of a thread-based shared memory
parallelization of GROMOS96 [7] on a SGI Power Challenge. Figure 6 relates the speed-up figures of
the Power Challenge to those of the SCI-cluster.
Within the Europort parallelization project [6,14], different data-sets have been used, but of comparable
size (ranging from ~2,000 to ~30,000 atoms: proteins with water). The evaluation of the resulting mes-
sage-passing code has been done on various parallel machines, e.g. IBM SP1/2, Intel i860 Hypercube
and SGI Power Challenge. For comparison purposes, the speed-up quantities for 8 processors are of
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Figure 5: Speed-up figures of the parallelized code on the SCI cluster.
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interest. Values between 4.4 and 5.6 are reported in [6] and between 4.8 and 6.7 in [14]. The first one
refer to a not entirely parallelized code, comparable to that described herein, while the later refer to an
entirely parallelized code.
The National Center for Supercomputing Application provides performance figures for UHGROMOS
[15] on various platforms (HP/Convex SPP1200 and SPP2000, SGI Challenge and Origin). The
reported speed-ups for comparable data sets of 10,000 to 15,000 atoms (protein in water) employing 8
processors are between 4.3 and 5.4. It should furthermore be denoted that the thereby employed basis
for speed-up calculation is the computation time of the parallel version of this code, running on a single
processor. But this code is already about 15% slower than the original one.
All those benchmarks were run on dedicated (and therefore expensive) parallel machines. Some of
them are pure message-passing machines (IBM SP1/2, Intel i860 Hypercube). Some are UMA (Uni-
form Memory Access) shared memory machines (SGI Challenge and Power Challenge, HP/Convex
SPP1200 and SPP2000 for this number of processors) with a highly sophisticated memory system and
memory interface (a high-performance bus or a cross-bar) and the SGI Origin is a highly sophisticated
CC-NUMA machine. But anyway, the achieved scaling behavior is not significantly better than that,
reported for the herein presented parallelization on the SCI-cluster system.

6 Conclusions

From a technological point of view as well as market observations, it seems that NUMA shared mem-
ory becomes the predominant architectural principle of parallel systems. This regards entire systems,
like those from Sequent, Data General, HP/Convex, SGI, etc., as well as clusters which are assembled
from commodity off-the-shelf components.
The described work is part of a larger effort that aims at application parallelization on especially the
NUMA shared memory cluster systems. In this paper, methodologies are sketched that allow to exploit
the given architecture for shared memory parallelization. At first glance, one might get the impression
that the parallelization effort is quite high. But most of the work spend was to improve temporal data
locality. But as the performance of the processors grows much more rapidly than that of memory, this is

Figure 6: Comparisson of speed-up figures for the thrombin and the water benchmark
data set for the Biomos parallelizationa on a SGI Power Challenge and the herein pre-
sented parallelization on a SCI-cluster.
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highly demanded also for a pure sequential program. Also other studies report the necessity to improve
per-process data locality as a precondition for a scalable parallelization [2].
All of the advantages of shared memory parallelization could be kept also on the present cluster plat-
form:

• the possibility of a “scalable” step-by-step parallelization process and

• the common view of all of the data for all processes which makes parallel programming much
simpler than dealing with partitioned and distributed data structures as usually within a message
passing programming model.

Concretely, for the described parallelization of GROMOS96 just 7 source code modules had to be
touched. 5 of them saw only minor modifications:

• 3 for parallelism- and shared-memory regions initialization purposes (~ 6,500 lines of code) and

• 2 for I/O adoption (~ 2,700 lines of source code).

Just 2 have been modified more extensively, that’s where the actual parallelization took place:

• the pair-list construction with long-range force evaluation (~ 2,200 lines of code) and

• the short-range force evaluation (~ 2,300 lines of code).

The resulting performance of the parallel code is comparable to that of other parallelization efforts that
employed expensive dedicated parallel machines. Considering that the expenditure of work for the par-
allelization (and therefore of money) has been much less than e.g. that of the Europort project and that
the hardware platform is assembled of off-the-shelf components that are on an order of magnitude less
expensive than a dedicated parallel system, this is really impressive.
The experience gained during this work leeds to the conclusion that NUMA shared-memory cluster
platforms are more than just interesting alternative to dedicated parallel systems as well as to LAN-con-
nected cluster systems (e.g. PC clusters of the Beowulf type [21]). Lessons learned during the described
work are that there is a considerable demand for suitable programming interfaces and that it is essential
for a programmer to be used to the NUMA performance characteristic. The development of program-
ming interfaces is an active area of development, e.g. SMI has been developed for the purpose of shared
memory parallelization [5], also the implementation of message passing libraries (MPI and PVM) is on
it’s way [23]. The parallelization of applications should receive even more attention in the future, to
gain experience with the somewhat special performance characteristic of the platform and to demon-
strate the advantages of this type of cluster platform.
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