
FEASIBILITY OF ASYNCHRONOUS PARALLEL MOLECULAR DYNAMICS
SIMULATIONS

Marcus Dormanns, Walter Sprangers, Thomas Bemmerl
RWTH Aachen, Lehrstuhl für Betriebssysteme
Kopernikusstr. 16, D-52056 Aachen, Germany

e-mail: contact@lfbs.rwth-aachen.de, phone: +49-241-807634

Keywords: molecular dynamics simulation, parallel process-
ing, asynchronous algorithm, data coherence.

Abstract. This article proposes asynchronism as an alternative
computation methodology in parallel molecular dynamics sim-
ulations. As already shown for areas like iterative solution of
linear equations, asynchronism is able to hide message passing
latencies and load or processing power fluctuations. Therefore,
this innovative computation strategy, in combination with a
flexible scheduling strategy of computation progress, provides
the basis for good scalability even for moderate-size problems.
Besides algorithmic issues, first promising simulation results
are presented and discussed.

1 INTRODUCTION

Parallelization of algorithms from different areas,
employing the methodology of asynchronism, e.g. from
iterative solution of linear equations (Bertsekas and Tsit-
siklis 1989), combinatorial optimization (Hong and
McMillin 1995) and event driven simulation (Lin and
Fishwick 1995) has received a considerable amount of
attention in the last years. This paper introduces asyn-
chronism in parallel molecular dynamics simulations.
Asynchronous parallel algorithms are characterized by
the property, that they contain no blocking receive oper-
ations (at least up to a certain extend). Therefore, such
an algorithm has to cope with individual processes deal-
ing temporary with outdated information about the com-
putation progress of other processes without becoming
incorrect. Or it must be able to compensate this with
marginal extra computation. Due to these properties,
asynchronous parallel algorithms exhibit highly desir-
able properties, like:

• the ability of hiding large network latencies caused
by inexpensive mainstream hardware or a bad ratio
of computation to communication, frequently
present for relevant problems which are of medium-
size (in opposite to the so-called grand-challenges,
e.g. (Lomdahl et al. 1993); see also (Plimpton 1995))

• the ability to compensate temporary load unbalance
in dynamically changing computation structures of a
problem or computation power variations of differ-
ent time scales of the allocated compute nodes; these

may arise in real-world computation environments,
e.g. due to additional background load if the parallel
platform is operating in an overlapping space-shared
mode (like the very popular networks of worksta-
tions as an extreme example)

These are the typical circumstances which are responsi-
ble for poor efficiency and limit scalability of classic
synchronous parallel molecular dynamics simulations.
Not surprisingly, most studies of parallel molecular
dynamics on networks of workstations do not consider
more than just four or six machines (Amundsen 1993;
Boryczko et al. 1994; Bubak et al. 1994). The methodol-
ogy of asynchronism provides the potential to overcome
these limitations.
The proposed strategy is a generalization and adoption
of the multiple time step method proposed in (Street et
al. 1978). Therein, a division of the interaction range of
the particles in a primary component, wherein the inter-
actions are updated each time step, and in a secondary
component, wherein interactions are only computed
every few time steps, leads to a reduction in (sequential)
computation. In (Nakano et al. 1993) this method was
employed in a parallel molecular dynamics code. But in
distinction to our work, besides reducing computation it
is just exploited to reduce the communication volume in
parallel processing. Govindan and Franklin (Govindan
and Franklin 1994) applied a methodology named spec-
ulative computation, to N-body simulations. They
employed estimations of particle positions derived by
first-order Taylor approximation (similar to (Nakano et
al. 1993)). But due to the non-spatial particle decompo-
sition of the problem, which can lead to large errors
employing outdated information, they have to check
their results afterwards when the real position informa-
tion is available. Upon exceeding a certain error thresh-
old, a rollback has to be performed, reducing the
possible performance gain due to asynchronism.
In (Dormanns and Sprangers 1995) we demonstrated
how the general strategy of asynchronism can be applied
in principal to molecular dynamics simulation and
proved it’s justification by deriving reasonable error
bounds for the precision decay in calculation. This effect
is not unique to the method we propose, but common

among other methodologies too (e.g. hierarchical multi-
pole algorithms), which exchange computation com-
plexity with precision. But in contrast to our approach,
these strategies aim at reducing the sequential computa-
tion complexity, whereas we aim at increasing the
potential for parallel processing. Besides the fact that
the methodology obeys certain precision restrictions, a
lot of implementation issues have to be considered.
The organization of the paper is as follows: in section 2,
we give an outline of the algorithm and it’s paralleliza-
tion. In the following section 3, we identify issues and
problems arising from asynchronism and discuss how
they can be solved. We illustrate these solutions with
some early simulation results in section 4 and finish with
some conclusions in section 5.

2 OUTLINE OF THE ALGORITHM

Subject of this work are algorithms for molecular
dynamics simulations and other N-body dynamics prob-
lems, which rely on a calculation of particle pair-interac-
tions, defined by potentials of the general form

(2.1)

Here, settings with short- or medium-range interactions
are addressed, which are assumed to vanish beyond a
certain radius, the cut-off radius . Hence, interactions
between particles with greater distance can be
neglected, saving a lot of computation compared to the
total of N(N-1)/2 pair-interactions.
The way, asynchronism comes into game is by allowing
to incorporate somewhat outdated information in the
potential calculation:

(2.2)

where t2 may be smaller than t1 within certain limits,
caused e.g. by network latencies. For a detailed descrip-
tion and comparison to the multiple time step method,
see (Dormanns and Sprangers 1995).
To be able to access all particles inside the cut-off radius
of each individual particle efficiently without searching
among all particles, the today frequently used strategy is
to divide the simulation domain into cells with a fraction
of the cut-off radius as their boarder lengths (see figure
2.1 top). The particles are assigned to the cells, comply-
ing their location in space. Therefore, all particles in the
neighborhood of a given particle can be accessed by
simply visiting the particle lists in the corresponding
neighboring cells (Beazley and Lomdahl 1994).
Because molecular dynamics simulations show a

Φ xi() ϕ xi xj,()
j 1 j i≠,=

N

∑=

rc

Φ xi t1()() ϕ xi t1() xj t2(),()
j 1 j i≠,=

N

∑=

dynamic behavior, this assignment has to be maintained
during the whole simulation run.

2.1 Parallelization in an Asynchronous Framework

The parallelization strategy we employ is based on a
spatial decomposition of the simulation domain. Each

Figure 2.1: Top: 2D-simulation domain, parqueted with
cells. Bottom: Partitioning into three subdomains with the
enlargement due to an overlap domain and the ghost
region.

processor is responsible for the calculation of all partial
forces, acting on it’s particles (Plimpton 1995). For may
reasons, we deal with an one-dimensional decomposi-
tion of the simulation domain. This helps keeping the
algorithm simple and reduces management overhead.
Additionally, an one-dimensional decomposition simpli-
fies load-balancing, which is highly desirable because of
the dynamic properties of molecular dynamics simula-
tions (Boryczko et al. 1994). Last but not least, the loss
due to higher communication volume for larger domain
boundaries for medium-grain parallelism remains small.

2.2 Data Organization

Meeting the requirements of the algorithm framework
regarding partitioning into subdomains, communication
and asynchronism issues (as will become clear later),
the uppermost level of data structure organization is to
divide the particles into planes of cells, perpendicular to
the direction of partitioning.
To visualize the progress in computation, we depict the
data of all particles in one plane of cells for one specific
time step as a single box. According to the nature of the
domain the box represents, it is shaded correspondingly.
Besides the exclusive local data, data of neighboring
processes in the range of the cut-off radius is mir-
rored which is required to perform the local compu-

ro rc

partitioned solution domain

subdomain 0 subdomain 1 subdomain 2

exclusive local part ghostpart

overlap part

rc

Figure 2.2: (a) Depicting planes of cells as boxes. (b)
Visualization of computational progress in time.

tation. This can be further enlarged by an additional
overlap domain of size to enhance the possible
degree of asynchronism, coming along with marginal
redundant computation.
Boxes, i.e. planes of cells of the same time step are
arranged in horizontal direction, while the progress in
time is expressed along the vertical axis (see figure 2.2).

2.3 The Algorithm

Within each process, one sweep through the simulation
loop of this lock-step algorithm starts with the determi-
nation of a subset of planes that is to be integrated to the
next time step. In opposite to a synchronous mode of
operation, where simply each plane is considered in
each sweep, taking a snapshot in the asynchronous
mode of operation, different planes can be integrated up
to different time steps. A plane can be scheduled for
integration if only the bounds are observed, which deter-
mine how many time steps the data of another plane
inside it’s cut-off radius is allowed to be outdated.
The send procedure of traditional molecular dynamics
algorithms is adapted in that the send operation might
not be supplied with all the necessary data of one time
step and all the part of a subdomain necessary to com-
pile a complete update message at once. Rather, the send
operation has to collect newly integrated particle posi-
tions of the required planes from several sweeps to com-
pile an update message for a neighboring process.
Therefore, it must be able to store data for more than
one update message in preparation at the same time.
Due to the asynchronous mode of operation, the time
step of some messages might be ahead the local integra-
tion process. Therefore, the incorporation of received
data must be handled with care.
Particles moving across domain boundaries need to be
migrated from the responsibility of one process to the
neighboring one, to maintain the proper assignment of
particles to cells not only inside one subdomain but also
across process boundaries.

rc ro

run through of the simulation loop
planes, integrated in the last

exclusive

subdomain

ghostpart

overlap part
local part

exclusive
local plane

overlap
planeplane

ghost

(b)(a)

space

time

Explanation of different shadings:

ro

1 While ∃ plane ∈{exclusive local domain}
with plane.timestep < tmax Do

2 determine_integration_region(region);
3 calculate_forces(region);
4 integrate(region);
5 send_update_messages(region);
6 receive_update_messages();
7 assignment_maintenance_interior(region);
8 assignment_maintenance_boundary();
9 End While

Algorithm 2.1: Algorithmic skeleton of parallel multi-cell
molecular dynamics simulation codes.

Algorithm 2.1 shows the general algorithmic skeleton as
just explained.

3 PECULIARITIES DUE TO ASYNCHRONISM

Two main problem areas have been identified during
this work. The first one concerns the strategy, which
determines the scheduling of planes for integration, the
second one the maintenance of data coherence in an
asynchronous environment with dynamically changing
problem structure. I.e. it must be guaranteed, that at any
time the local view of each process sees each particle
residing really in it’s subdomain once and only once.

3.1 Computation Progress Strategy

In (Dormanns and Sprangers 1995) we derived a reason-
able error bound for polynomial-like potentials in view
of the sufficient condition that the differences in the time
steps of two interacting particles is at most equal to their
distance, measured in cells, minus one. Firstly, the
choice of a suitable computational progress strategy is
driven by this hard constraint. For sake of simplicity, we
pick out an individual process p ∈{0, ..., P-1} and let it’s
planes be numbered from 0 to np-1. We can state this
hard constraint for a plane i formally as a boolean predi-
cate:

(3.1)

where the last two conditions consider the cases where
the subdomain of the process is just the left- or right-
most one.
The derivation of the computational progress strategy
(which is interchangeable with the shape of the so-called
computation progress skyline in the time-domain; see
figure 2.2) is guided by the following considerations:

(1) the computation progress skyline should be as flat
as possible, maximizing calculation precision,

ready i() j, 0 j np≤ ≤ , i j≠ :∀≡

plane i[] .timestep plane j[] .timestep– i j– 1–≤()
j i p 0=∧<() j i p P 1–=∧>()∨ ∨

(2) the computation progress of each process skyline
should not contain any ‘valleys’ (so it should be
unimodal); there is no reason for them, because if
the planes at their ‘slopes’ were ready for integra-
tion, planes inside are also; this also maximizes
calculation precision,

(3) progress in the overlap region of the subdomain
should only be performed if nothing else can be
done, avoiding redundant work whenever possible,

(4) the set of planes, scheduled for integration in a sin-
gle sweep of the simulation loop should be as large
and compact as possible to exploit Newton’s third
law as much and as simple as possible, reducing
computation complexity and

(5) the total set to be integrated in one sweep should
be at least subdivided into a left and a right region,
to meet the different progress situations at both
domain boundaries caused by asynchronism.

The strategy we employ, obeys (2) and (5) as are and
tries to incorporate the other points as far as possible.
At this point of the discussion, the justification for the
additional overlap at the domain boundaries and the
advantages of the asynchronous mode of operation
becomes clear.
If only the required mirrored data (regarding the time
step) of a neighboring process is available, no redundant
work is spent in the overlap region. But if this data is
late, e.g. due to computation power or load fluctuations
within the processes, the flexible computation progress
strategy enables an individual process to proceed with
planes of cells inside the domain until the maximum
progress is exhausted. The additional overlap domain
enhances the amount of computation a single process
can temporary be ahead of it’s collaborating processes.
Therefore, load or computation power fluctuations of
short time-scale can be leveled out without any effi-
ciency decay.
Up to this point no asynchronism at all is required. But
if messages are not just once but frequently late, e.g. due
to network latencies, the total amount of progress that a
process can be ahead will be exhausted soon. This is
where asynchronism comes into game. Allowing pro-
cesses to deal with somewhat outdated data enables the
whole set of processes just to pass over this fact and pro-
ceed with computation, at least to the extend granted by
the ready predicate.

3.2 Cell-Assignment Reorganization Inside one Pro-
cess

This issue is raised by the observation, that particle
migration between planes that are processed up to dif-
ferent time steps, is forbidden. The migration of a parti-
cle one time step behind the target plane means to
consider the data of that particle (position, velocity,
acceleration) from a preceding time step as the data of
the time step of the target plane, which is indeed wrong.
Therefore, it is not possible to reorganize the assignment
of particles to cells regularly within the whole sub-
domain, as usually done in synchronous environments.
But for each time step and for each boundary between
each two planes, there exists a sweep of the main simu-
lation loop, when both are simultaneously at the same
time step. These situations must be recognized and the
assignment reorganization between these two planes
performed at this time (this strategy is outlined in algo-
rithm 3.1).

1 Function assignment_maintenance_local
(region)

2 Foreach planeNo ∈ region Do
3 If plane[planeNo].timestep

= plane[planeNo-1]
and planeNo,planeNo-1 not domain

boundary
and reassignment not already done
Then

4 boundary_reorganize
(planeNo-1,planeNo);

5 End If
6 If plane[planeNo].timestep

= plane[planeNo+1]
and planeNo,planeNo+1 not

domain boundary
and reassignment not already done
Then

7 boundary_reorganize
(planeNo,planeNo+1);

8 End If
9 inside_plane_reorganize(planeNo);
10 End Foreach
11 End Function

Algorithm 3.1: Maintenance of particle assignment to
cells locally.

The boundary between exclusive local domains of dif-
ferent processes is not considered, it will be processed
separately.

3.3 Coherence Protocols for Data Exchange

Due to the dynamic nature of the problem, i.e. particles
moving around in the simulation domain, crossing cell
and domain boundaries and the asynchronous mode of
operation, some attention must be payed to ensure that

no inconsistencies occur in the local view of the pro-
cesses on non-local data.

3.3.1 Particle Migration across Process Boundaries

The first point under consideration is the migration of a
particle residing in a cell of the exclusive local domain
of one process to that of a neighboring process. In clas-
sical synchronous execution, the particle is migrated in
one indivisible operation between two iteration steps,
which never can lead to inconsistencies. On the other
side, in an asynchronous mode of execution, it can hap-
pen with an unfavorable sequence of migration actions
and update messages, that a particle temporary exists
twice or gets lost at all. Such a situation can occur
because the migration is not an indivisible operation, but
asynchronously executed in both processes.
The protocol employed is shown in figure 3.1. The pro-
cess, containing the cell in whose exclusive local sub-
domain a particle resides, is called the owner of that
particle. Particle migration is always owner-initiated. It
starts, when the owning process (i+1 in the figure)
detects that a particle left it’s exclusive subdomain, with
sending a migration-initiation message to the corre-
sponding neighboring process (marked with (1) in the
figure). This process waits until itself reaches the time
step at which the initiating process detected the bound-
ary-crossing (2). Then, it performs the migration into it’s
local data structures and sends back an acknowledge
message to the initiator. Upon reception (3), the initiator
can also migrate the particle (4), being sure that in the
meantime the target process became the owner and the
particle cannot get lost. With this last step, the particle
migration is completed (for performance reasons, a
whole bulk of particles can be migrated in one opera-
tion). Temporary, the particle resides in both exclusive
subdomains. Thus, a received update message of one or
the other process (e.g. those depicted in the figure) may
contain the particle of interest, while at the same time
the particle is contained in it’s exclusive local sub-
domain also. To avoid that the particle exists twice,
incoming update messages are checked for those parti-
cles and erased from the update message.
This protocol rules out any problems which might occur
if a particle moves back to the initiating process while
the migration is still in progress, because a succeeding
migration process cannot conflict with the first one.

3.3.2 Sending, Receiving and Incorporation of Parti-
cle Data

Due to the asynchronous mode of operation and the flex-
ible scheduling of planes of cells for processing, two sit-
uations may arise forcing the

Figure 3.1: Protocol for particle migration which ensures
data consistency in an asynchronous environment.

1 Function assignment_maintenance_boundary()
2 search for particles that left the

exclusive local subdomain
3 include them in a migration

initiation message
4 While an acknowledge message has

been received
or a migration initiation message

with timestep≥local timestep Do
5 If acknowledge message Then
6 perform migration too
7 Else
8 If timestep of initiation

message not reached yet Then
9 defer
10 Else
11 perform migration, send back

acknowledge message
12 End If
13 End If
14 End While
15 End Function

Algorithm 3.2: Particle to cell assignment maintenance at
subdomain boundaries, implementing the proposed proto-
col.

receive_update_message() - function not to be
able to incorporate the whole or part of the message.
The first one is, when the sending process is in front of
the target one (regarding the time step). In this case, the
receive_update_message() - function simply
defers it’s incorporation until the local process reaches

4

3

process i+1
subdomain

process i
subdomain

overlap/ghost
part

overlap/ghost
part

2

1
the process boundary from i+1 to i

migration

migration

process i process i+1

detection of a particle crossing

at local timestep t

local timestep t
wait until

initiation message

acknowledge message

in update messages
ignore particle

migrate

in update messages
ignore particle

migrate

update

update
update

update
update

exclusive local part exclusive local part

Figure 3.2: Two possible scenario, when an update mes-
sage is received.

the same time step (figure 3.2a). Another possibility is
that the local computation process has already overtaken
the sending process at least with some of it’s planes. In
this situation, just the outermost part of the update mes-
sage is incorporated, which does not overwrite already
more actual data (figure 3.2b).
One issue remains to be solved: during the incorporation
of two update messages, particles may have been reas-
signed to the cells, which could lead to particles existing
twice or getting lost at the boundary up to that an update
message was incorporated. To avoid this, a consistency
check (and maybe re-establishment) has to be performed
at this boundary.
The deletion of double particles must also be performed
if an update message is completely incorporated, the
loss of particles cannot occur in this case.

4 EARLY PERFORMANCE FIGURES

We report about some early test runs which should be
sufficient to demonstrate the performance gain potential
of the proposed asynchronous strategy in combination
with the redundant overlap at subdomain boundaries.
More detailed results are in preparation.

4.1 Simulation Setup

We consider the widely employed simulation of an
ensemble of Argon atoms, whose interaction is
described by the Lennard-Jones Potential

t2

t2

t1

t1

(a)

received update message
of timestep

(b)

received update message
of timestep

(4.1)

at reduced temperature T*=0.72 and reduced pressure
ρ*=1.0 (see e.g. (Boryczko et al. 1994; Bubak et al.
1994; Lomdahl et al. 1993; Plimpton 1995)). The well-
known Verlet integration scheme is used with a reduced
time step size of t*=0.00462. The parameters and
are taken from (Allen and Tildesley 1987). The simula-
tion domain consists of cells of width σ,
corresponding to 4800 particles. A cut-off radius of 3σ
was employed. It should be noted, that the problem size
is always the same, irrespective of the degree of paral-
lelism. Boundary conditions are those of a massive wall,
formed also by Argon atoms but with infinite mass. All
tests were run on SUN SparcStations Classic, connected
via standard Ethernet.

4.2 Results

One exemplarily snapshot of the particle positions dur-
ing a simulation run is shown in figure 4.1. Figure 4.2
depicts the measured speedup for up to 12 workstations
in absence of background load. As can be seen, the per-
formance of the asynchronous version outperforms the
synchronous one considerably. This is due to hiding
message passing overhead and even more synchroniza-
tion penalties, coming from different and varying com-
putation complexity within the processes. Choosing
ro=1 leads to a more flat computation progress skyline,
resulting in less computation due to a better exploitation
of Newton’s third law. For a large number of partitions,
however, the computation overhead exceeds these sav-
ings.
As expected, the fraction of time spend in reorganization
the assignment of particles to cells (locally as well as
between different processes) was negligible.

5 CONCLUSIONS AND OUTLOOK

In this paper, we proposed a new methodology for paral-
lel molecular dynamics simulations, especially suited
for relevant, medium-size problems on mainstream
hardware like networks of workstations, but not limited
to. Although some peculiarities arise when implement-
ing this strategy which do not exists in classical syn-
chronous execution modes, it was shown how to solve
them. The main differences affect the scheduling of the
individual subproblems for computation, not the algo-
rithmic skeleton itself, enabling this methodology to be
employed also in parallelizing existing molecular
dynamics simulation codes or enhancing already paral-
lelized codes to meet the before mentioned environment
actualities.

ϕ xi xj,() 4ε
σ

xi xj–
12

⎝ ⎠
⎜ ⎟
⎛ ⎞ σ

xi xj–
6

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

ε σ

48 10 10××

Figure 5.1: One simple illustrative snapshot during a sim-
ilar simulation with 1000 particles employing three work-
stations. Particles are shaded corresponding to the
workstation where they are processed on.

Although this paper demonstrated the methodology in
principal, a lot of work still remains. Of primary interest
is a more detailed evaluation of the performance
enhancement potential, employing simulations as well
as analytic considerations. The simulation results
shown, already proved the justification of the proposed
method. One interesting point is the behavior under
additional background load. Another very important
issue is the application of the concepts of asynchronism
to real production codes, employed in the academic
community as well as in industry. We intend to all these
points in our future investigations.

ACKNOWLEDGEMENTS
We would like to thank Roger Butenuth from Univ. of
Paderborn, Germany, for supplying his raytracer which
was used to generate pictures from simulation runs.

REFERENCES
Allen, M. P.; Tildesley, D. J.: Computer Simulation of Liquids. Oxford
University Press, 1987.

Amundsen, J.: Distributed and Parallel Hamiltonian Molecular
Dynamics. Ph. D. thesis, Univ. Trontheim, Norway, 1993.

Beazley, D. M.; Lomdahl, P. S.: “Message-passing multi-cell molecu-
lar dynamics on the Connection Machine 5.” Parallel Computing 20,
pp. 173-195, 1994.

Bertsekas, D. P.; Tsitsiklis, J. N.: Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.

Boryczko, K.; Kitowski, J.; Moscinski, J.: “Load-Balancing Procedure
for Distributed short-range Molecular Dynamics.” In: Dongarra, J.;

Figure 5.2: Speedup as a function of the number of incor-
porated workstations.

Wasniewski, J. (eds.): Par. Sci. Comp., First Int. Workshop PARA ‘94,
LNCS 879, Springer, pp. 100-109, 1994.

Bubak, M.; Moscinski, J.; Pogoda, M.: “Parallel Distributed 2-D
Short-Range Molecular Dynamics on Networked Workstations.” In:
Dongarra, J.; Wasniewski, J. (eds.): Par. Sci. Comp., First Int. Work-
shop PARA ‘94, LNCS 879, Springer, pp. 127-135, 1994.

Dormanns, M.; Sprangers, W.: “On the Precision of Asynchronous
Parallel Molecular Dynamics.” Tech. Report, Chair for Operating Sys-
tems, RWTH Aachen, Aug. 1995.

Durand, M. D.: “Cost Function Error in Asynchronous Parallel Simu-
lated Annealing Algorithms.” Technical Report CUCS-423-89,
Columbia University, June 1989

Govindan, V.; Franklin, M. A.: “Speculative Computation: Overcom-
ing Communication Delays in Parallel Algorithms.” Proc. Int. Conf.
on Parallel Processing, pp. III-12 - III-16, 1994.

Hendrickson, B.; Plimpton, S.: “Parallel Many-Body Simulations
without all-to-all Communication.” Technical Report, Sandia National
Labs and to appear in J. Parallel and Distributed Computation.

Hong, C.-H.; McMillin, B. M.: “Relaxing Synchronization in Distrib-
uted Simulated Annealing.” IEEE Trans. on Par. and Distr. Systems,
Vol. 6, No. 2, Feb. 1995.

Lin, Y.-B.; Fishwick, P. A.: “Asynchronous Parallel Discrete Event
Simulation.” Tech. Report, Univ. of Florida, submitted to IEEE Trans.
on Systems, Man and Cybernetics, 1995.

Lomdahl, P. S.; Tamayo, P.; Gronbech-Jensen, N.; Beazley, D. M.: “50
GFlops Molecular Dynamics on the Connection Machine 5.” Proc.
Supercomputing ‘93, pp.520-527.

Nakano, A.; Vashishta, P.; Kalia, R. K.: “Parallel multiple-time-step
molecular dynamics with three-body interaction.” Comp. Phy. Comm.
77, pp. 303-312, 1993.

Plimpton, S.: “Fast Parallel Algorithms for Short-Range Molecular
Dynamics.” J. of Comp. Phy., Vol. 117, pp. 1-19, March 1995.

Street, W. B.; Tildesley, D. J.; Saville, G.: “Multiple time step methods
in molecular dynamics.” Mol. Phys., Vol. 35, No. 3, pp. 639-648,
1978.

opt.
speedup

ro=0

ro=1

1 2 3 4 6 8 12

1

2

3

4

6

8

12

5

7

9

10

11

synchronous

asynchronous

asynchronous

