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Abstract. The recently emerging trend in parallel computer
architecture is directed towards logically shared but physically
distributed memory machines. Besides complete systems, it is
possible to cluster off-the-shelf workstations with a suitable
network to build such machines. This article focuses on perfor-
mance considerations of such a cluster and their impact on
grid-based code parallelization. We describe the capabilities of
the interconnect and provide basic shared memory perfor-
mance figures for different usage modes. We then discuss how
application code performance is influenced by these character-
istics. We concentrate on matrix-vector multiplication for
irregular sparse matrices and show how to obtain satisfactory
performance for different algorithmic / data-access patterns.

1 Introduction
Workstations, clustered with the IEEE-standardized SCI
(Scalable Coherent Interface; IEEE.1596) interconnect
[9], offer an exciting new perspective for low-cost paral-
lel scientific computing. While the standardization took
already place in 1992, it’s only recently that commercial
products become available or are announced. Plug-in
adapter cards for Sun workstations [4] are already avail-
able and those for PCs will be in 1997. The HP/Convex
Exemplar SPP [1], was the first entire system. Clustered
off-the-shelf Intel PentiumPro based multiprocessors
from Sequent [10] and Data General [3], which will
additionally be sold by other companies as an OEM ver-
sion, are announced for 1997.
SCI firstly defines the physical link and logical protocol
layer of a high-speed network (based on Gigabit and
Gigabyte signalling technology) which enables message-
passing with latencies of just a few microseconds and
tens of MByte/s sustained throughput. Additionally, SCI
contains a memory coherence protocol layer. This is the
most exciting feature, since it provides physically dis-
tributed shared memory by virtual inclusion of memory
segments of one machine from an SCI-cluster into
another’s virtual address space at user-level.
To achieve this, SCI directly maps memory-accesses tar-
geting a remote memory address (which become visible
on the system bus) into SCI transactions, which perform
the requested operation on the remote memory without
involving the remote processor. This enables all commu-
nication between systems to be done transparently by
ordinary read and write operations from the user’s point
of view. Although, this is completely implemented in
hardware, it does not come for free. Remote memory

accesses are about one order of magnitude more expen-
sive than local ones. The resulting distributed shared
memory parallel machine model is called NUMA (Non-
Uniform Memory Access), accounting for this architec-
tural property. Employing this technology, it is now pos-
sible to extend the shared data parallelization
programming model, which is the broadly accepted
model of choice on SMP (Symmetrical MultiProcessing)
machines, beyond a single SMP to whole clusters of
workstations/PCs and most effectively clusters of SMPs.
It should be noted that SCI is not the only technology,
aiming at providing hardware-based NUMA distributed
shared memory. DEC’s Memory Channel offers similar
capabilities to SCI, but employing Encore’s reflective
memory as it’s technological basis [8]. SGI’s Origin is
based on technology of the former Stanford DASH
project [19]. Also, there are a lot of ongoing research
project in this area, some of which are summarized in
[16].
In section 2, we briefly discuss the capabilities of our
SCI-coupled multiprocessor workstation cluster as far as
they result from the specific implementation of the
employed adapter cards and provide some performance
figures in section 3. Both is done with special emphasis
on aspects that influence application parallelization. In
section 4, we study the performance potential of grid-
based codes on such a platform. We end with some con-
clusions and remarks how forthcoming SCI-adapter
cards might change the situation in section 5.

2 The Cluster Platform
At this time, our small development cluster comprises
out of two Sun SS20 multiprocessor workstations
equipped with two 50 MHz SuperSparc processors,
capable of delivering 50 MFlop/s each. The SCI adapter
cards from Dolphin Interconnect Solutions [4] come
already in their second generation with an enhanced
throughput and are simply plugged into the worksta-
tions’ SBus (see figure 1a). Via their device driver, they
are capable of:

• delivering low-latency, high-throughput message-
passing and

• mapping memory segments of processes from each
node (i.e. a workstation) into virtual address spaces of
all other processes at all nodes (see figure 1b).



A serious drawback of this solution is that the adapters
are plugged into the I/O-bus and not into the processors’
bus itself. It is typically not possible to interrogate into
the cache-coherence protocol within the SMP from an I/
O-bus though it takes place on the processor bus. This
limits the fraction of the SCI standard which is sup-
ported, the performance and finally influences the paral-
lelization of applications:

• the SCI cache-coherency protocol is not implemented
at all

• to hide complexity from the application programmer
caused by the missing cache coherency protocol, the
current device driver (version 1.5c.5) disables caching
of remote memory segments (however, caching of
globally shared memory segments at the owning node
is not affected by this)

• though caching is disabled for remote memory
accesses, remote memory fetches are not performed
on the granularity of an entire cache-line; just the
accessed data is fetched (e.g. 4 byte for an integer
variable)

Despite those limitations, the SCI interconnect enables
to build clusters of standard workstations (and also PCs
in the future) with a (partial) common address space
which is not possible with other standard interconnects.

3 Basic Performance Characteristics
While most studies so far, e.g. [7, 14, 15], concentrate on
SCI’s message passing performance, we are mostly
interested in it’s shared memory capabilities for parallel
processing.
First of all, the remote memory access latencies for a sin-
gle datum are of interest. We discuss this for 64-bit float-
ing-point numbers, which should be of most common
interest. The results are summarized in table 1. The
latency of a single remote read access is about 16 times,
higher than a local cache miss that is satisfied by local
main memory, which takes 284ns [12]. A write access,
which does not require as many SCI transactions as a
read access, takes about the halve.
Of special interest is how these numbers change if multi-
ple accesses have to be served at the same time. For mul-
tiprocessor nodes, two cases can be distinguished:
multiple accesses from a single machine (from both pro-
cessors of the SMP node) to remote memory of another
node, competing for the SCI adapter, and accesses from
both machines into the respectively remote memory of
the counterpart machine. It turned out that the current
implementation of the protocol engine of Dolphin’s SCI
adapters is not capable of dealing with multiple out-
standing SCI transactions. Multiple remote memory
accesses are serialized resulting nearly in twofold access
latencies for the case of accesses from two processors
within one SMP node. Concurrent accesses from differ-
ent nodes into the counterpart remote memory are not
such worse, but result also in an increase of the access
latency: about 20% for a read access and as much as
55% for a write access, indicating some congestion at the
adapters also for this situation.
Besides the raw latency for an individual datum, the per-
formance of accessing larger portions of data at the same
time is of interest. One can imagine two situations: a
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Figure 1: (a - top) Hardware configuration. (b - bottom) A
possible logical configuration of two nodes with the
address-spaces of two processes each. The dashed lines
mark segments which are physically located on one node
(dark) and virtually included via the SCI interconnect in
other processes (light).

Table 1: Remote read and write access latencies for differ-
ent modes of operation.

access mode read latency write latency

individual access 4.7 µs 2.2 µs

two processes from
one machine
concurrently

9.1 µs 4.3 µs

one process from
each machine

5.6 µs 3.4 µs



memory region is consecutively accessed by individual
read/write operations or it is accessed as a whole, e.g.
because it constitutes a larger data structure (e.g. veloci-
ties in three dimensions and pressure of a single grid
point of a PDE in a CFD code, or thinking of a small
submatrix for block-structured problems).
The fact that remote memory is not cached with the cur-
rent implementation of Dolphin’s SCI adapter cards,
suggests to firstly copy the whole structure into a tempo-
rary local and therefore cacheable variable, before using
it maybe multiple times. We found that the performance
of accessing a whole remote data structure is dependent
on the detailed compiler generated code, which depends
on the data type and the number of items, comprising the
structure. From this result different mappings of memory
accesses to SCI transactions. The performance is
depicted in figure 2.

In the case of read accesses (figure 2a), all read-opera-
tions of a structure containing up to 8 elements of one of
the data type character (byte), integer (4 byte) and dou-

ble-precision floating-point (8 byte) show nearly the
same linearly increasing latency of about 4.7µs/item
independent of the data type. This favors especially the
access to double-precision floating-point numbers which
refers to the largest amount of data per item. Above 8
items, the latency is exactly proportional to the amount
of accessed data, not just to the number of items con-
tained in a single structure. Similar artifacts occur for
write operations as can be seen from figure 2b. This lin-
ear increase compared to the single access latencies of
table 1 is the consequence of the disability to exploit the
split-transactions, offered by the SCI-standard.
The resulting memory bandwidths amount to 1.52
MByte/s for a read access of up to 8 double-precision
floating-point numbers collectively and 0.84 MByte/s for
more items and different data types. Writes proceed with
2.52 MByte/s regardless of the specific data type (with
an exception for structures of up to 8 characters). This
has to be related to the 75 MByte/s local memory band-
width of a Sun Sparc SS20 workstation, according to the
STREAM benchmark [11].

4 Performance Potential of Irregular Grid Codes
Irregular grids are the underlying computational struc-
ture of many important problems and algorithms from
computational science. Examples are iterative solvers of
systems of linear equations from FEM and CFD prob-
lems and pair interaction calculation in molecular
dynamics simulations. Exemplarily, we study the perfor-
mance of matrix multiplication with an irregular sparse
matrix, whose structure reflects the underlying problem’s
structure. Although very simple, it’s data access pattern
is representative for a large fraction of applications. For
evaluation purposes, we employ 39 matrixes from the
National Institute of Standards’ MatrixMarket [13]
which show a rich variety in structure (in detail: all
matrices from the Harwell-Boing set [6] with a dimen-
sion greater then 3000 and some from the SPARSKIT
set).
The following discussions are limited to a parallelism
degree of 2. Definitely, this is not the final goal of paral-
lel computing on an SCI cluster. But besides the fact that
our small development cluster comprises just out of two
machines, the focus of this article is not on scalability
issues. Rather, hardware and problem characteristics will
be discussed that have an impact on performance, as it
was also done in [2] with synthetic problems. The matri-
ces of the Harwell-Boing collection are mostly small
ones and it is justified to assume that real parallelized
problems are correspondingly larger but show similar
structure.
The parallel implementation is based on SMI, the Shared

Figure 2: (a - top) Read and (b - bottom) write access time
for structures that contain a varying number of characters
(1 byte), integers (4 byte) and 64-bit floating point num-
bers (8 byte).
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Memory Interface, which we are currently developing
[5]. SMI is a parallelization library that provides comfort
access to the capabilities of an SCI-cluster. Furthermore,
it offers synchronization facilities, allows dynamic allo-
cation of pieces of shared memory and switching
between sharing and replication of data (that will turn
out to be important below). Special emphasis is laid on
accounting for the memory hierarchy: homogeneous
memory performance inside each constituting multipro-
cessor building-block of the cluster and NUMA charac-
teristic across machine boundaries.

4.1 Remote Reading
A first typical algorithm and data access pattern is char-
acterized by each node of the underlying graph structure
requiring data of all those nodes to that it is connected, to
compute a result for it’s own. In terms of linear algebra,
this corresponds to a matrix-vector product  that
is performed row-by-row. Each element can be consid-
ered as a node, each non-zero element as an edge (it is
not unusual that the structure of the graph of a matrix
really corresponds to the structure of a grid, e.g. one
from the discretization of a PDE). The natural (shared-
memory) way to parallelize this is to divide the loop over
the matrix-rows among the processors. The SMI library
allows to store both vectors in globally shared memory
segments, whose underlying physical memory is divided
among the machines corresponding to the loop partition-
ing. While all write accesses to the solution vector are
local, read accesses to the operand-vector are partially
remote.
The point of reference for performance considerations is
the time that is contributed to the total time of the
matrix-vector product by a single non-zero element (one
multiplication and one addition). To avoid modeling the
performance of sparse matrix-vector multiplication that
would be a challenge for it’s own, we estimate it by mea-
surement. For the chosen matrices, the matrix-vector
multiplication is executed with 14% of the peak perfor-
mance on average on a single processor. Therefore, the
desired quantity is about 280ns on our 50 MFlops
machine. This is dominated by memory access time, also
in this strict local case. It should be noted, that this
amount of work per edge, i.e. two floating-point opera-
tions, is quite small, compared to other grid-structures
problems. Examples are molecular dynamics calcula-
tions that perform at the order of 100 floating-point oper-
ations per edge (neglecting all the others, e.g. integer
operations) and block structured systems of linear equa-
tions.
In the parallelized case, the efficiency is decreased by
non-local memory accesses. The performance can be

related to problem-specific properties by looking at the
fraction of non-zero matrix entries that cause a remote
access to an element of the vector , .
The efficiency in the base parallel case without caching
of remote data can be approximated by:

(1)

For the employed matrixes with their concrete structure,
the actual measured efficiencies together with this esti-
mation are depicted in figure 3.
The resulting performance is not very satisfactory. But
what can also be seen from figure 3 is that most of the
problem structures exhibit a sufficiently amount of local-
ity to show a much greater performance if the amount of
work per edge of the underlying graph would be a some-
what more.
To assess how much of the overhead is induced by the
absence of caching, we estimate the increased efficiency
that would be observed with optimal caching. I.e. non of
the vector elements that is reused several times is dis-
placed from the cache during this time. The fraction of
remote memory accesses would decrease by a factor of

, where  is the reuse rate of each remote element.
The resulting best-case efficiency results to:

(2)

To deal with such problems, SMI allows to temporary
replicate certain data structures at each computing node.
Therefore the data is local and caching becomes possi-
ble. Furthermore, data can be replicated with the more
efficient block transfers (see figure 2) than accessing
each individual element. The analytical decrease of the
parallel efficiency lack is proportional to the reuse rate.
The actual observed benefits are depicted in figure 4.
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Figure 3: Efficiency of the brute-force implementation.
Estimations for different compute-times per element and
actual observed efficiencies.
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Two reasons could be identified for the smaller effi-
ciency lack decrease than estimated: first of all, the repli-
cation operation as implemented at this moment is not
very efficient. This induces overhead especially for the
larger data-sets. Secondly, the partitioning of the smaller
problems shows some degree of load imbalance.

4.2 Remote Writing
The other common algorithm and data access pattern is
that each node of the problem structure contributes to the
results of all those nodes to that it is connected. In linear
algebra, this corresponds either to a multiplication of the
transpose of a given matrix with a vector row-by-row or
to an ordinary matrix-vector multiplication if the matrix
is stored in a row-major order. As before, the natural way
to parallelize this is to partition the outer loop of the
problem. With the before-mentioned physical memory
distribution of the global shared vectors, all read opera-
tions of elements  can be served locally, but some of
the accumulation operations  will concern
remote elements. Beside performance issues due to the
remote accesses (a read followed by a write operations in

this case), these accumulations have to be performed
under mutual exclusion to guarantee correctness. The
brute-force method of allocating a lock for each element
that is acquired before and released after each such oper-
ation is prohibited due to it’s overhead. Definitely, there
might be tricky methods if the detailed sequence of
accesses is known to allow locking on a very coarse
granularity. But these are not generally applicable. At
least for the matrix-vector multiplication, fine-grained
locking on a NUMA-type machine (which takes about
15 µs per lock-acquire operation on our cluster) is pro-
hibited.
Instead, we exploit SMI’s capability to temporary switch
to a replication of the globally shared memory region for
the vector  within each process. Then, each process can
perform it’s share completely local. Afterwards, SMI
allows to combine all these local contributions to a sin-
gle, globally shared final result. This can be performed
very efficiently by exploiting locality and sparsity of
accumulations for each process. I.e. for a grid-based
problem which imposes locality that is also preserved in
the problem partitioning (i.e. a row-partitioning of the
matrix whose columns are permuted to reduce band-
width) each process touches only a small fraction of ele-
ments of another partition. This matches the capability of
the SCI-interconnect of fine-grained data transfer very
well. The resulting parallel efficiencies are depicted in
figure 5.
The sequential base time per non-zero element for this
algorithms is 390ns. The efficiencies are quite satisfac-
tory: about 68% on average but only about 1/3 of all
problems with an efficiency below 70%.

5 Conclusions and Outlook
The central conclusion from this work is, that parallel
programming on a shared-memory cluster of the type

Figure 4: (a - top) Reuse rate within the matrices and the
actual observed efficiency increase (b - bottom) Efficiency
with explicite data replication.
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Figure 5: Performance of the remote write data access
pattern.
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that we considered, may result in terrible performance, if
it’s NUMA characteristic is ignored but programmed
like a conventional SMP. At first glance, this might seem
to be possible and attractive due to the great nominal per-
formance figures of the SCI interconnect (its latency and
throughput) in comparison to other cluster interconnects
(e.g. fast Ethernet or ATM).
One of the reasons is the missing caching of remote data.
While the cache coherency protocol layer is imple-
mented in complete SCI-based systems, like those from
Convex, Data General and Sequent, also forthcoming
SCI adapter cards that allow the clustering of off-the-
shelf workstations and PCs will probably not incorporate
it. That’s due to cost and difficulties, raised by the com-
pulsions of the I/O-bus (see [18] for a discussion).
But just caching is not the universal remedy for all those
problems. In the case of frequently write-shared data
(section 4.2), cache invalidation by the cache coherency
protocol prevents all advantages from caching. With the
Shared Memory Interface, SMI, we are developing a par-
allelization support instrument, that allows to employ the
highly attractive shared data parallelization paradigm
also on NUMA clusters. It’s capability to temporary
switch to a replication of memory regions and to possi-
bly combine the individual copies to a consistent shared
view eventually, is one way to allow caching neverthe-
less. However, there is a significant potential to improve
the performance of these functions. An alternative that
we will consider in the future is to allow caching
although the SCI cache-coherency protocol is not imple-
mented. Doing so, a parallelization library like SMI has
to support the programmer with cache-flushing in a com-
fort way.
Forthcoming SCI adapters for PCs will show a slightly
reduced latency and an order of magnitude larger shared
memory bandwidth due to multiple outstanding SCI
transactions and streaming buffers [17]. Together with a
sophisticated software support, SCI-clusters are an inter-
esting platform for parallel processing.
To demonstrate the justification of this approach, we
plan to parallelize the commercial relevant molecular
dynamics code GROMOS. The interactions of adjacent
atoms within a molecular ensemble form an irregular
grid with a comparable large degree of connectivity.
Exploiting the symmetry of pair-interactions results in a
combination of the discussed remote read and remote
write data access pattern.
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