
Experiences with Asynchronous Parallel Molecular
Dynamics Simulations

Marcus Dormanns, Walter Sprangers
RWTH Aachen, Lehrstuhl für Betriebssysteme
Kopernikusstr. 16, D-52056 Aachen, Germany

e-mail: contact@lfbs.rwth-aachen.de, phone: +49-241-807634

Abstract. This article provides some insight in the runtime behavior of asynchronous
methods for parallel molecular dynamics simulations that we recently introduced.
From this, the advantages of the asynchronous mode of operation becomes very obvi-
ous, i.e. the abilities to hide message passing latencies, to reduce network congestion
and to level out processing power and/or load fluctuations. The conclusions are vali-
dated by simulation runs on a network of up to 12 workstations, comparing the
results to a synchronous mode of execution.

Keywords: molecular dynamics simulation, parallel processing, asynchronous algo-
rithm, performance analysis.

1 Introduction
Computer simulation of molecular dynamics is one of the major applications of high
performance computing. Moreover it is an important assistance to material science and
biotechnology, which have been identified as key-technologies for the future. The most
time-consuming part of such simulations are force computations at the atomic level,
which determine the exact particles’ motion over time [1].

This paper deals with asynchronous parallel algorithms for the N-body dynamics prob-
lem (see [2] for various other examples). Asynchronous parallel algorithms are charac-
terized in that they contain no blocking send/receive operations (at least up to a certain
extend). Instead, they exchange messages with non-blocking send and non-blocking or
redirecting receive operations and are able to deal with somewhat outdated informa-
tion. Therefore, this class of algorithms possesses capabilities to

• hide even large communication latencies which are caused by e.g. inexpensive
mainstream hardware (e.g. a network of workstations) or a bad ratio of com-
putation to communication, frequently present in daily medium-size prob-
lems, and

• compensate short-term load and/or processing power fluctuations of the com-
pute nodes (e.g. caused by background computation load on a parallel
machine with time-shared multiprogramming).

However, these highly desirable properties are not free of charge. Instead, it has to be
paid for them with a decay in calculation precision. Fortunately, this error can be
bounded to above and is not unique to the asynchronous mode of operation, but also
present in other strategies, frequently employed to speed-up computation (e.g. multi-
pole algorithms [6]).

In distinction to other efforts in parallelizing molecular dynamics simulations (e.g.

[9]), which aim at developing the best suited parallelization of a given (classical) algo-
rithm, our work is concerned with the roots of the problem. I.e. to relax the coupling
between different subproblems, and even more specific, with the time-related issue.

In section 2, we give a brief outline of the computation methodology and summarize
some analytical results regarding the precision decay. The following section 3 gives
some insight into the mode of operation and the potential performance gain. This paper
ends with section 4 by drawing some concluding remarks.

2 Outline of the Algorithm
Particle interactions are described by the potential, in which a specific particle i,
located at , resides at time t caused by all the other particles:

(1)

Typically, each pair potential is approximated by a polynomial in the
distance of the particles. The dynamic is given by the resulting force acting on the par-
ticle, from which Newton’s equations of motion determine the actual trajectory, which
is numerically integrated in a time-step fashion. For short-range interactions, only
those particles contribute to the potential which reside inside a given cut-off radius.

The asynchronous mode of operation is enabled by allowing position information to be
incorporated in potential/force evaluations which are somewhat outdated:

(2) where

It was shown in [4] that for a simulation domain, parqueted into small cells of size d (a
fraction of the cut-off radius), a time step size and an upper bound of the particles’
velocities , the maximum relative error in the potential can be bounded to above by

(3)

where it is assumed that the degree of obsolescence in the particle positions (as a mul-
tiple of) is at most proportional to their distance, measured in d. p is the exponent
of a potential, stated as a one-term polynomial in the particles’ distance. Furthermore,
it was demonstrated, that this magnitude of the potential error stands in a good rela-
tionship to those encountered by other strategies, e.g. multipole algorithms [6]. Actual
errors in a real simulation are much smaller, because the upper bound (3) relies on
worst-case assumptions, e.g. regarding the velocity of the particles that determines the
maximum displacement between and t. Furthermore, it was assumed that the direc-
tions (in physical space) of all displacements due to asynchronism which influence the
error, are the same.

In [5], it was shown how to derive a parallel program from this abstract computation

xi t()

Φ xi t()() ϕ xi t() xj t(),()
j 1 j i≠,=

N

∑=

ϕ xi t() xj t(),()

Φasync
xi t()() ϕ xi t() xj t'(),()

j 1 j i≠,=

N

∑= t' t≤

∆t
vb

εΦ 1 1
vb ∆t⋅

d
---------------–⎝ ⎠

⎛ ⎞ p
–=

∆t

t'

Figure 1: Exemplary simulation domain, parqueted with 10 x 10 x 48 cells, with
4800 particles. The domain is partitioned into 6 subdomains for parallel processing,
with the particles shaded accordingly.

methodology exploiting the possibility of a process to employ outdated non-local data
at times, using spatial decomposition of the simulation domain. This covers issues
regarding a suitable (flexible) computation progress strategy and ensuring consistency
of the data which is prone to message passing. The asynchronous mode of execution
only makes sense, if also particle migration to maintain the spatial decomposition is
performed asynchronously. To ensure that no particle gets lost or exists twice for a
time step in one process, a suitable protocol has to be obeyed. Figure 1 exemplarily
shows a decomposition of the simulation domain, on which the parallelization is
based.

This methodology is strongly related to the so-called multiple time step method, pro-
posed in [10], which evaluates forces with different frequency according to the dis-
tance. But in contrast to our method, the multiple time step method aims at reducing
the (sequential) computational complexity, not the parallelization capabilities of the
algorithm.

3 Communication Characteristics and Performance
To give a somewhat more detailed insight into the mode of operation, we discuss the
progress of execution for the simple example of figure 1. Particles interact via the fre-
quently employed short-range Lennard-Jones potential:

(4)

All simulations were performed on SUN SparcStation Classic, connected via standard
Ethernet. To visualize the program behavior over time, the upshot utility was used,
which comes with the MPICH MPI implementation [7] and provides similar capabili-
ties to ParaGraph [8].

Figure 2 shows the different phases of the individual processes in the course of time

ϕ xi t() xj t(),() 4ε σ
xi t() xj t()–

-------------------------------------⎝ ⎠
⎛ ⎞ 12 σ

xi t() xj t()–
-------------------------------------⎝ ⎠

⎛ ⎞ 6
–=

Figure 2: States of the individual processes in the course of time in a strictly syn-
chronous execution mode. The total time and it’s distribution among the occurrences
is shown for the states communication and blocked (x-axis: duration, y-axis: fre-
quency).

for a strictly synchronous mode of execution. From this, the root of the performance
degeneration is quite obvious. A communication phase starts not before all processes
arrive at this point.

This is due to the 3-way flow protocol, implemented in the MPI message passing
library (see e.g. [3] for a discussion). Therefore, part of the communication time (total
85 sec.) consists of time, processes are just blocked (50 sec. light grey, surrounded by
dark grey, indicating the whole communication phase). This synchronization forces all
processes to send/receive data simultaneously, what makes the actual data exchange
even more inefficient due to a lot of contention on the Ethernet.

In contrast to this, figure 3 shows a clip of the program behavior over time for an asyn-
chronous framework. Therein, a process sends a message whenever it has collected all
necessary data. So it happens that a process which has actually two communication
partners sends its update messages to both at two different points in time. Messages are
incorporated either, when a message has already arrived and the process is in a suitable
state, or it exhausted all its progress credit due to asynchronism (remember the
assumptions made in section 2 regarding the maximum degree of obsolescence
allowed) and has to wait for a message anyway. However, within the employed simu-
lation settings such a situation never occurred. So it is possible that a process incorpo-

communication

blocked

force evaluation

Figure 3: Course of time in an asynchronous mode of operation.

rates a message without sending an update messages itself (process 4 in figure 3).
Eventually, it finds itself in a situation when it has computed all the necessary data to
compile the next update message for one of its neighbors. Altogether, the communica-
tion overhead in the asynchronous framework for the simulated problem is just 18 sec.,
what is just 21% of that in the synchronous mode of operation.

While it could be recognized that the network bandwidth became a limiting factor in
synchronous execution for a high degree of parallelism, it was not in an asynchronous
mode of execution where the total amount of data to be exchanged is much more
evenly distributed over time, resulting in less network congestion. Table 1 shows the
obtained speed-up figures, which are significantly better for the asynchronous mode of
execution.

Table 1: Obtained speedup figures for up to 12 workstations within a synchronous
and an asynchronous mode of execution.

Although not considered in the simulations presented in this paper, another point is
worth mentioning. As is quite obvious, a parallel program executed in an asynchro-
nous mode of operation possesses the principal capabilities to hide blocking times of
individual processes due to short-term processing power or load fluctuations of other

procs speedup (sync.) speedup (async.)

1 1.0 1.0

2 1.6 1.9

3 2.0 2.5

4 2.4 3.1

6 3.0 4.3

8 3.4 4.9

12 3.7 6.4

send

receive

force
evaluation

nodes. This works best, if they are only evenly distributed among all participating pro-
cessing nodes, their occurrences do not scatter to much in time and their durations are
at most of the order of the extra computation progress credit due to asynchronism.

4 Conclusions and Outlook
The analysis of the runtime behavior confirms the expectations we had when we
started thinking about asynchronism in parallel molecular dynamics simulations. As
demonstrated, asynchronism is a powerful means to enhance performance of daily rel-
evant, medium-size problems on mainstream hardware, i.e. a network of workstations.
Moreover, as a computational methodology it is the next step beyond classical latency
hiding techniques, e.g. restructuring of the code [11], in that its capability to relax syn-
chronization constraints is much larger.

As a next step towards applying it to real production codes, we will study the behavior
of the proposed kind of algorithms under the influence of background load in more
detail. This is an important point, because very typical in real-world computation envi-
ronments, where computations are not performed on a dedicated parallel machine but
on a collection of desktop machines, which should be primary at the disposal of their
owners.

References

[1] Allen, M. P.; Tildesley, D. J.: Computer Simulation of Liquids. Oxford University Press,
1987.

[2] Bertsekas, D. P.; Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, 1989.

[3] Butenuth, R.: Message Passing in Parallel Operating Systems and Applications. Proc.
High Performance Computing ‘96, New Orleans.

[4] Dormanns, M.; Sprangers, W.: On the Precision of Asynchronous Parallel Molecular
Dynamics Simulations. Technical Report, Chair for Operating Systems, RWTH Aachen,
Oct. 1995.

[5] Dormanns, M. Sprangers, W.; Bemmerl, T.: Feasibility of Asynchronous Parallel Molec-
ular Dynamics Simulations. Proc. High Performance Computing ‘96, New Orleans.

[6] Elliot, W. D.: Revisiting the Fast Multipole Algorithm Error Bounds. Technical Report
94-008, Duke University, Dept. of Electrical Engineering, Durham, NC, Jan. 1995.

[7] Gropp, W.; Lusk, E.;Skjellum, A.: Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, 1994.

[8] Günther, H.; Bemmerl, T.: Programming Scalable HPC Systems: Tools and their Appli-
cation. Speedup Journal, Vol. 9, No. 1, pp. 68-71, 1995.

[9] Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular dynamics. J. of
Comp. Phy., Vol. 117, pp. 1-19, March 1995.

[10] Street, W. B.; Tildesley, D. J.; Saville, G.: Multiple time step methods in molecular
dynamics. Mol. Phys., Vol. 35, No. 3, pp. 639-648, 1978.

[11] Strumpen, V.; Casavant, T. T.: Implementing Communication Latency Hiding in High-
Latency Computer Networks. Proc. HPCN ’95, Springer LNCS, pp. 86-93, 1995.

