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Abstract. We describe a programming interface for parallel computing on NUMA (Non-
Uniform Memory Access) shared memory machines. Although the interest in this archi-
tecture is rapidly growing and more and more hardware manufacturers offer products of
this type, there is still a lack in parallelization support. We developed SMI, the Shared
Memory Interface, and implemented it as a library on an SCI-coupled cluster of work-
stations. It aims at providing sophisticated support to account for the NUMA perfor-
mance characteristic and to allow a step-by-step parallelization. We show it’s
application to the parallelization of a sparse matrix computation.
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1 Introduction
The recently emerging trend in parallel computer architecture is directed towards scal-
able shared memory machines [17]. I.e. machines with a globally shared address space
across the entire machine but comprised out of distributed compute nodes. Each node
is equipped with a local memory module and adapted to an interconnect, serving mem-
ory accesses to addresses residing in a non-local memory module. This architectural
principle results in a NUMA (non-uniform memory access) performance characteris-
tic, i.e. local memory accesses are served much faster than remote ones. Due to the at
least partially separated memory access transactions among the compute nodes, these
machines scale to a higher degree of parallelism than traditional bus-based symmetri-
cal multiprocessors (SMPs) that suffer from central bottlenecks.
There are quite a lot of good reasons for this trend. From an application programmer’s
point-of-view, the global address space allows shared data parallelization, that is com-
monly preferred to message passing due to it’s simplicity and the opportunity of a
smoothly step-by-step parallelization considering the amount of code running in paral-
lel. Considering performance, data exchange on a very fine-grain but low-latency basis
(i.e. single cache-lines) permits comfortable parallelization also for algorithms with
very irregular and maybe dynamically changing access patterns.
Besides several research prototypes [17,21], already available commercial machines of
this type are the HP/Convex Exemplar series [7] and the SGI Origin. Data General [6]
and Sequent [18] announced enterprise server clusters comprising of off-the-shelf Intel
PentiumPro multiprocessor modules. Those from HP/Convex, Data General and
Sequent are based on the IEEE-standardized Scalable Coherent Interface (SCI) [14].
SCI defines the physical link and logical protocol layer of a high-speed network (based
on Gigabit and Gigabyte signalling technology). Additionally, SCI contains a memory
coherence protocol layer, which is the most distinguishing feature, since it provides
cache coherency of physically distributed memory across an entire cluster. DEC’s
Memory Channel is something similar but based on the different Reflective Memory



 

technology [13]. Beside these systems, a very interesting good value alternative is the
clustering of workstations or PCs with SCI adapter cards that are already available for
Sun’s SBus and announced for the PCI bus from the Norwegian company Dolphin
[8,9]. Common to all those platforms, in contrast to former parallel machines, is that
they are targeted to the commercial market sector: e.g. transactions processing systems
and decision support systems. This raises the hope that parallel machines of this type
might spread and survive. Nonetheless, they also offer an exciting new perspective for
low-cost parallel scientific computing (cf. [3]).
Not unusual in computer science, software support to facilitate the comfortable devel-
opment of parallel programs and parallelization of already existing ones on these plat-
forms hangs behind the hardware development. In this paper, we attend to this issue in
that we present a programming interface, SMI (Shared Memory Interface), for parallel
computing on NUMA shared memory machines, mainly but not exclusively targeted
to the technical/scientific area. SMI is implemented as a library, to be used as a high-
level parallelization extension to common programming languages like C and Fortran,
like most of the message passing libraries for distributed memory machines. It is build
on top of the common rudimentary capability of the underlying platforms to install
segments of shared memory between processes. The main design goals are:

• Ease-of-Parallelization: Comfortable step-by-step parallelization, requiring only
minor code changes without the need to tackle the whole code right from the begin-
ning.

• Performance: Providing sophisticated support for the parallelization work, particu-
larly accounting for the NUMA performance characteristic [1].

• Portability: The interface should not rely on any capability special to a single
NUMA system.

In contrast to shared object libraries like e.g. Global Arrays [19], which also provide
high-level support for shared data structures but that can only be accessed and pro-
cessed with certain library functions, SMI directly allows entirely transparent shared
data structures - just shared memory. SMI provides user-control over the physical loca-
tion of shared data structures, which finally determines which process(es) has a local,
fast access to it and which process(es) a remote, expensive one. Moreover, an address
space region of a single data structure can be partitioned with each part mapped to a
different memory module but still remaining continuously addressable. SMI allows to
temporarily switch-off the very expensive but often unnecessary consistency protocol
between shared data. After a phase, during that consistency is not necessary, a consis-
tent globally shared view can be re-established with a couple of partially general-pur-
pose and partially application-specific functions. 
At this time, we have implemented SMI on a cluster of Sun multiprocessor worksta-
tions, coupled with plug-in SCI adapter cards from Dolphin [8,9,11,20]. 
The reminder of this paper is structured as follows: section 2 explains and provides
arguments for the chosen operational model. The design of the programming interface
to write parallel programs for such an environment is described in section 3. To dem-
onstrate it’s comfort and capacities, section 4 discusses the parallelization of an irregu-
lar sparse matrix vector multiplication as a small but typical example. Finally, in
section 5 some conclusions are drawn and an outlook is given onto our future work.



 

2 The Operational Model
A SMI application is executed by a couple of concurrent processes (e.g. standard
UNIX processes), initially each with a private virtual address space. By calling the
respective SMI function, processes can install segments of shared memory among
them to store certain data structures inside (see figure 1). This is a SPMD (Single Pro-
gram Multiple Data) model, in that each process executes the same code (asynchro-
nously if not explicitly synchronized) on different portions of shared data.
In contrast to a thread-based model, that is already available for several years on most
small-scale SMPs with an entirely shared address space, our model possesses several
advantages:

• Typically, a considerable amount of memory accesses regard data structures that
are more or less entirely accessed by all processes, e.g. tables of physical properties
of atoms in a molecular dynamics simulation. Even more, a lot of them are
accessed read-only. Within a thread-model, just one instance of this data in the
whole system exists. In a NUMA system, all but the processes on the home node of
such data suffer from expensive remote memory accesses to this data. A replication
has to be performed explicitly together with the code changes coming along. Not so
in our framework where only some data structures are shared. All but these are rep-
licated, i.e. accesses are local to them. 

• In a thread-model no facility is provided to take care of the physical home node of
shared data, that is performance critical as outlined above. Most times, a reasonable
parallelization means that most of the data is processed by just one process, real
data sharing is restricted to a small fraction. Therefore, a reasonable mapping is not
only required but also possible.

Besides these performance motivated arguments, another one comes from portability
consideration. Spreading threads of a single process among several compute nodes of a
NUMA multiprocessor is only possible if they are managed collectively by a single
system-wide operating system. This is not true for SCI-clustered workstations or PCs
wherein an independent copy of the operating system runs on each (SMP-) node, mak-
ing use of the shared memory only at user-level.

Figure 1: Exemplary operational model, consisting of two multiprocessor nodes and
two processes executing on each node with one common shared region. The shared
region is partially located in the memory of node 0, partially in that of node 1.
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3 The Interface Design
The most fundamental of SMI is it’s flexibility in allocating a piece of memory, shared
among the processes, especially in the NUMA environment. This is treated in a first
subsection, followed by a short description of all the essential but common features of
a parallel programming library like process identification and synchronization facili-
ties. We then describe the possibilities to switch between different modes of consis-
tency in a separate subsection though it is the central issue to obtain high performance
and to allow a step-by-step parallelization.

3.1 Building Blocks: Pieces of Shared Memory
Within SMI, an individually manageable piece of shared memory is called a shared
region. The intention is, that a single data structure corresponds to a shared region
(whether it is static or dynamic). This notation follows [23], who introduced a shared
virtual memory (SVM) system that maintains cache coherency not on page- but on
region-granularity, typically a single data structure. A shared region can be composed
out of several consecutive addressable shared segments, each locatable on a different
compute node, accounting for the NUMA architecture. A shared region can be allo-
cated with the function:

SMI_Create_shreg(int size, int dist_policy, int* dist_value, 
 int* region_id, void** address)

size specifies the amount of memory allocated. The distribution policy, i.e. the
detailed composition of shared segments and their physical home node, is specified
with the dist_policy parameter in conjunction with dist_param. At this time,
three different policies are implemented:

• UNDIVIDED: The whole region consists of a single segment that is entirely
located on the compute node of the process given in dist_param.

• BLOCKED: The region is split evenly into as many segments as there are processes.
Segment i is located in the memory module of the compute node of process i.

• CUSTOMIZED: A user-defined splitting can be specified. dist_param is an
array of parameters: the first element specifies the number of constituting seg-
ments, the following specify each segment’s size and physical location.

An identifier for the region and it’s starting address in the virtual address space is
returned. SMI ensures that the region is mapped to identical virtual addresses in all
processes. This is important since it allows the mutual exchange of pointers between
processes to locations inside such a region. A region can be used to store a static data
structure, e.g. an array of some type. For this purpose, no further special support from
SMI is required. Alternatively, it can be used for dynamic memory allocation. If this is
desired, SMI initializes all necessary data structures of a memory manager for a speci-
fied shared region. To make use of it, SMI provides the following four functions:

SMI_Cmalloc(int size, int region_id, void** address) 
SMI_Cfree(void* address)

and

SMI_Imalloc(int size, int region_id, void** address) 
SMI_Ifree(void* address)



 

Using these function, each process can allocate/free a piece of memory inside a speci-
fied region. The C- and the I-functions differ in their scope. While C denotes that the
function has to be called collectively by all processes to allocate a single common
piece of memory, I means that it is just individually called from a single process. The
result regarding the memory allocation is both times the same. But in the first case, all
processes gain knowledge of the address of the allocated piece of memory while in the
second case just the calling process does. If another process needs to now it, it has
explicitly to be notified about it. The memory management data structures are also
kept globally shared such that each process can request a piece of memory in each
region. This mode of usage only makes sense in conjunction with the distribution pol-
icy UNDIVIDED. In all other cases, the performance-critical property of the physical
home node of an allocated piece of memory is beyond the control of the user. A typical
usage could be to allocate one UNDIVIDED shared region for dynamic memory allo-
cation at each process and to store their identifiers in a special array, indexed by pro-
cess number. With this, shared memory can simply be allocated on each’s process node
on demand.

3.2 The Normal: Process Identification, Synchronization, ...
The usage of SMP compute nodes as building blocks for a NUMA shared memory
cluster is highly recommended though they state the most cost-effective way of cou-
pling some few processors. Therefore, not all memory accesses to a shared region that
are to a segment of a remote process are necessarily also to a remote compute node
coming along with high latencies. To account for this in SMI, each process is not only
assigned an unambiguous process rank, but also a machine rank. These can be
requested by calling respective SMI-functions. Also, a process can inform itself about
the machine rank of another process, e.g. to decide if both reside on the same machine.
A function is provided to map any process rank to it’s corresponding machine rank. To
simplify the exploitation of several processes residing on the same machine, SMI guar-
antees that such processes posses consecutive process ranks. From this follows, that
shared segments of consecutive processes of a BLOCKED shared region also possess
consecutive addresses in the virtual address spaces.
Another essential facility of parallel programming libraries and especially for the
shared data model is synchronization. SMI provides barrier- and mutex-synchroniza-
tion. At this point in time, we experiment with several purely software-based algo-
rithms, especially taking into account the hierarchical UMA/NUMA performance
characteristic (cf. [25]). 

3.3 The Advanced: Switching Between Different Modes of Consistency
The typically employed protocols to ensure cache consistency are known to influence
overall performance of shared memory parallel applications considerably [12].
Accordingly, a lot of work has been done to weaken the rigid sequential consistency
[16]. Results are general purpose cache consistency protocols that normally behave as
the strict sequential consistency at least to the typical application programmer, like
Total Store Order and Processor Consistency [1] but are not as restrictive and therefore
result in a better application performance. Especially for software SVM systems,
whose performance is very sensitive to overhead induced by cache coherency, even
weaker protocols like Release Consistency have been developed. Though they are still



 

general purpose, some of them require the programmer’s involvement, e.g. by insert-
ing respective acquire/release synchronization primitives into the code, associ-
ated with certain data. The SVM system Munin [4] is an excellent example how a
sophisticated choice of the cache coherence protocol in dependence of the data refer-
ence pattern can improve performance considerably. One step further goes the mixed
software/hardware DSM system Tempest/Typhoon from the Univ. of Wisconsin-Madi-
son [10]. They describe application-specific cache-consistency protocols to improve
application performance that are no longer general purpose but especially developed
and implemented for certain algorithms.
These findings influenced the design of SMI but the derived solution differs from
Munin and Tempest/Typhoon considerably because of the following reasons:

• We want to rely solely on standard hardware, e.g. SCI connected compute nodes.
This restricts the consistency protocol to that offered by the underlying hardware,
e.g. to sequential consistency in the case of SCI. This prevents SMI from solutions
as implemented e.g. in Munin.

• We highly aim at simplicity in parallel program development and parallelization of
already existing sequential software. This prohibits to enforce an application pro-
grammer to develop and implement a proprietary application specific consistency
protocol.

SMI relies on the observation, that it is not necessary to maintain the overhead-induc-
ing data consistency of shared regions all the time, if only it can be re-established at
certain points in time. Therefore, SMI provides facility to mutual de-couple the
accesses of individual processes to a specific shared region. When entering this mode,
each process starts with the same view onto the formerly consistent data. Thereafter,
modifications only effect the local processor’s view. To implement this, it is not suffi-
cient to switch-off the system’s cache-coherency protocol. This would eliminate the
cache coherency overhead but would not allow a modification to become not effective
outside a process’ address space. But this is necessary to allow meaningful temporary
inconsistency that can be efficiently recombined to a consistent view afterwards, as
will be explained below. In SMI, this de-coupling is implemented by (temporary) map-
ping a local memory segment within each process to the address, where formerly the
shared region was mapped to, and to replicate the data of the shared region into each
local segment. This is necessary and results in the following advantages:

• All memory accesses are local ones that are not as expensive as remote ones. The
replication can be seen as if local memory is exploited for caching all the data; no
remote memory accesses at all occur any longer (cf. [5]).

• Performance degradation due to false sharing [24] does not exists anymore.

• Unnecessary cache consistency does not exist at all.

This mode of usage of a shared region is entered by calling:

SMI_Switch_to_replication(int region_id)

When switching back to the global sharing mode, consistency between the different
processes has to be re-established. Three strategies have been implemented, some of
them requiring that the data or the inconsistencies induced during replication obey cer-
tain restrictions:



 

• SINGLE_SOURCE: The data of a specified local copy is taken as the afterwards
shared region for all processes.

• MERGE: Assuming that modifications of different processes do not overlap, the
shared region is afterwards a merge of the different instances among the processes,
reflecting all the modifications.

• COMBINE: The re-established consistent shared region is a computed combination
of all processes’ instances. At this point in time, the provided combination proce-
dures assume that the data structure inside the shared region is an array of some
data-type. For each element, the consistent view is computed by an element-by-ele-
ment combination of all processes’ instances with a commutative and associative
function. Beside user-defined functions, accumulation, max and min (of integers,
single- and double-precision floating-point numbers) are predefined.

The corresponding function call is simply:

SMI_Switch_to_sharing(int region_id, int comb_strategy, 
 int param)

Enforcing consistency without switching back to the sharing mode can also be done
with:

SMI_Consistency(int region_id, int comb_strategy, int param)

4 Efficient Programming with SMI
This section discusses the parallelization of a small program that performs a multipli-
cation of the transpose of a sparse matrix with a vector. It was chosen because it allows
to discuss several aspects with a single example. As already mentioned, one of the
major aims of SMI is to simplify code parallelization, e.g. to allow a step-by-step par-
allelization and a maximum of code-reuse. For the actual example, this was necessary
because we wanted to employ the linear algebra library SPARSKIT [22] with as few
changes as possible to speed-up certain time-critical code sections.
First time this applies when the matrix is read from disk. By the exploitation of shared
memory, it is not necessary that each process first evaluates which portion it really
needs, than searches for it in the (sequential) file and reads it. Because for the file
access in a typically environment with a non-parallel file system and with the original
data files of the original sequential code, there is no disadvantage to perform it with a
single process. The data can be distributed with SMI’s comfortable capabilities after-
wards, simply by enforcing consistency with the SINGLE_SOURCE mode. This
allows for a maximum code reuse at maximum performance under the given condi-
tions:

SMI_Init(&argc, &argv); /* Initialization of SMI */
SMI_Proc_rank(&proc_rank); /* inform about process rank */
...
/* allocate shared regions for a sparse matrix in */
/* compressed row storage(CRS) format: pointer arrays */
/* ja, ia and the element array a  */
SMI_Create_shreg(nz*sizeof(double),BLOCKED,&dummy,&a_id,a);
SMI_Create_shreg(nz*sizeof(int), BLOCKED,&dummy,&ja_id,ja);
SMI_Create_shreg((n+1)*sizeof(int),BLOCKED,&dummy,&ia_id,ia);



 

SMI_Switch_to_replication(a_id);
SMI_Switch_to_replication(ia_id);
SMI_Switch_to_replication(ja_id);
...
if (proc_rank==0) {

/* read matrix from file, employing original code */
readmt_(&nmax,&nzmax,&job2,&iounit,a,ja,ia,rhs,&nrhs,

guesol,&nrow,&ncol,&nnz,title,key,type,&ierr);
...

}
/* distribute data by simply enforcing consistency */
SMI_Consistency(a_id, SINGLE_SOURCE, 0);
SMI_Consistency(ia_id, SINGLE_SOURCE, 0);
SMI_Consistency(ja_id, SINGLE_SOURCE,0);

/* do other initialization on private data with org. code */
...

The most interesting part is the actual multiplication of the transpose of the matrix with
a vector. For the two vectors involved in the operation, shared regions are installed as
for the matrix:

SMI_Create_shreg(n*sizeof(double), BLOCKED, dummy, &x_id, x);
SMI_Create_shreg(z*sizeof(double), BLOCKED, dummy, &y_id, y);

The SPARSEKIT subroutine for the multiplication does not require a real change due
to parallelization but only a minor adaptation of the parameter list, so that not only the
upper loop bound but also the lower one can be passed as an argument.

subroutine atmux (n1, n2, x, y, a, ja, ia)
real*8 x(*), y(*), a(*) 
integer n1, n2, ia(*), ja(*)

do 1 i=n1,n2
y(i) = 0.0

 1 continue

do 100 i = n1,n2
do 99 k=ia(i), ia(i+1)-1 

y(ja(k)) = y(ja(k)) + x(i)*a(k)
 99 continue
 100 continue

return
end

The concurrent invocation of this subroutine to perform the matrix operation
 is simply done by:

SMI_Switch_to_replication(y_id);
atmux_(n1, n2, x, y, a, ja, ia);
SMI_Switch_to_sharing(y_id, COMBINE_ADD_DOUBLE, dummy);

where n1...n2 simple states a local part of the whole index range 1...n in depen-
dence of the local processor rank. The clue comes from the replication and following
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combination of the solution vector y, in which several partial solutions are accumu-
lated from all processes. Without replication, a considerable part of the accesses are
expensive remote ones, that additionally have to be separated from each other with
suitable synchronization primitives which are expensive too. Alternatively, the code
would have to be modified to replicate the array y from hand and combine the copies
afterwards. This is prevented by the general-purpose SMI functionality. Furthermore,
the combination can exploit SCI’s fast message passing facilities [OmP96] that deliver
an order of magnitude more bandwidth than single memory accesses. Or, if each pro-
cess just modifies a separate region of the vector densely but just a few of all the other
elements, this can be exploited by an enhanced version of the combination procedure
that only performs the necessary combination for these few elements.

5 Conclusions and Outlook
Taking into account that remote memory accesses are one to two orders of magnitude
slower than local one, it should be obvious that usual SMP-style parallel programs are
not suited for the highly interesting NUMA shared memory architectures. This implies
that there is really a need for programming interfaces that provide a simple but at the
same time sophisticated support on this architecture. SMI addresses this issue twofold:
firstly, it’s operational process model allows a step-by-step parallelization. It is possi-
ble to start with only a few shared data structures and the respective small fraction of
parallelized code. All other data structures and the code working on them can remain
pure sequential. Furthermore, even not all of the code that deals with the shared data
structures has to be parallelized in the first step. By switching to replication before and
back to sharing after such a sequential phase, such code sections can remain. Secondly,
the capability to temporary de-couple consistency and combine the different views
afterwards to a shared, consistent data structure again addresses the need to reduce
remote accesses and to avoid unnecessary overhead due to the underlying hardware
consistency protocol. Definitely, this subject needs further attention to identify addi-
tional common algorithmic skeletons that allow a temporary de-coupling of consis-
tency but possess a way to re-establish a shared consistent view afterwards. 
A first implementation of the SMI library with a C-binding is nearly complete. How-
ever, the recombination algorithms need further improvements regarding performance.
In the future, we will work on the parallelization of codes employing SMI, e.g. the
molecular dynamics simulation package GROMOS, what requires an additional For-
tran-binding. Surely, our knowledge about requirements on such a parallelization inter-
face will grow during this work. This will find it’s expression in the evolution of SMI.
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