Computing on a Cluster of PCs: Project Overview and
Early Experiences

Swven M. Raas, Marcus Dormanns, Thomas Bemmerl, Karsten Scholtyssian Sfles
Lehrstuhl fur BetriebssystemeVYWR'H Aachen
Kopernikusstrl6, D-52056 Aachen, German
Email:cont act @ f bs. r wt h- aachen. de
WWW:htt p: //ww. | fbs. rwt h- aachen. de

Abstract. This paper summarizes somejpcts that deal with paflel computing

on clustes of PCs. Although quite tBfent appoaces have beerhosen, the
have in common that theaim at shaed data paallelization on the cluster plat-
form. One apprad is based on a SCI (Scalable Cadrdrinterface) network that
provides teanspaent emote memory access. Agramming interface as well as
first application paallelization results ae summarized. The second aph
relies on SVMlIib, a ne all-softwae Shaed \irtual Memory subsystem (SVM) for
Windows NT In this paperwe discuss design issues, implementation details and
first performance measements of SVMlib

1 Introduction

As the performance of commodityfdhe-shelf PCs approaches that obrisstations, the
become increasingly attraedi for performance-critical applications, both from the technical
computing area as well as from the commercial se€twe graving number of Beaulf-like
clusters and their successful application emphasizes this [2,21]. Recently introduced high-per-
formance interconnects, 8kMyrinet [5], the IEEE-standardized SCI [13] (Scalable Coherent
Interface), etc. all to huild clusters of compute nodes with a balanced computation/commu-
nication performance ratio, further increasing their suitability for parallel processing.

We huild such a PC cluster at our ldbis interconnected with a general-purpoastfEthernet
network to handle TCP/IP communication, e.g. for message-passing and thewldstéie
system. Furthermore, it is equipped with a SCl-interconnect from the giawempay Dol-

phin [7]. SCI implements entirely transparent access to memagryeses also at remote
nodes. This special purpose netlwis intended for parallel processing. The cluster is operat-
ing under Vihdows NT.

This paper praides an wervien of some projects that aim atmoiting this cluster platform

for parallel/distrinted processing and reports about tkpeeiences we athered during the

work. In distinction to other cluster computing projects, we are mostly interested in shared data
parallelization. This paper starts with introducing our cluster platform in section 2. Section 3
describes someark that aims inxploiting SCI's hardvare-based shared memory capabilities

for parallelization. In section 4, a sofive-based shared virtual memory system (SVM),
named SVMlib, is described.

2 The Cluster Platform

The cluster at our lab comprises out of 4 Intel Pentium singleprocessors and 2 Intel
PentiumPro dualprocessors (soon to xgaaeded by another four). Besides a 100 MBitlstF
Ethernet LAN, it is equipped with PCI-SCI adapters from the ngiamecompaw Dolphin [7].

These, in conjunction with the dee drivers allav to allocate sgments of memory on each
compute node that can be mapped into the virtual address space of local processes as well as of
processes on remote compute nodes. A process on the compute nodedisatah a ggment

has access to it in the ordinanay Accesses of processes on remote nodes (called remote
accesses) are fully transparently operated via the SCbretiWonever, this comes not for
nothing: a remote memory access is on the order of one magnitudexpensie than a local

one. A remote write access s¥wa lateng of about 2.5us, a read access about g When
writing or reading lager chunks of memoygeveral stream bffers of the SCI adapter card that

can handle multiple outstanding transactions and some prefetching, capld&e@. This

leads to a peak bandwidth of about 28 MByte/s for writing and about 8 MByte/s for reading.
Due to this performance characteristic, such architectures are classified as NUMA (Non-Uni-
form Memory Access) shared memory platforms.

A serious issue that influences application parallelization is that although SCI defines a cache
coherenyg layer, the PCI-SCI adapters do not implement it. It is not possible due tadtibt

the PCl-lus as an I/O s does not participate in the local cache cohgrarerhanisms of the
compute nodes.

Assembling such a cluster pides the freedom of choosing between a lot of singleprocessor
machines or somevieer dualprocesseor even faver quadprocess€8MPs (Symmetric Multi-
Processors). Looking at the price, dualprocessors possessvds firice per processaut
considering the ratio of local to remote memory for aditotal number of processors in such

a cluster quadprocesseBMPs might be attrast. Hovever, scalability of a multiprocessor
itself is an issue due to limited bandwidth of each local memory systdite T shas the
accumulated memory bandwidths for deliént number of aacte processors in a quadproces-
sor PentiumPro SMH hey were measured by performing operations ogdaectors accord-

ing to the STREAM benchmark [17].

number of performed ector operation

processors copy scale add triad
1 170.3 172.6 201.0 187.7]
2 177.0 178.3 204.8 198.8
3 173.4 170.8 198.2 196.6
4 176.6 176.0 203.2 202.6

Table 1: Accumulated STREAM memory bandwidth (in MByte/s) for dedi#nt num-
ber of processors in a quadprocessor Intel PentiumPro SMP system.

These results shoclearly that the memory system of-tiie-shelf PC multiprocessors satu-
rates for memory inteng code (as manfrom the technical/scientific computing sector are)

already for a single process8utting it all togethemssembling such a cluster out of dualproc-
essors seems to be a well balanced compromise.

3 Parallel Programming on a SCI-Cluster

The SCl-related part of the cluster computirfgrefaims at shared data parallelizatioxpleit-

ing the capabilities of the SCI neatvk to establish global genents of shared memorVhis
differs to other approaches that enyp&ClI just as adst message-passing interconnect to run
message-passing codes on such a cluster [11,12].

3.1 The Shared Memory Interface: A Programming Interfacefor NUMA Clusters

We hare developed a programming intade, SMI SharedMemorylnterface), for shared data
parallelization on a SCI-Cluste8MI is implemented as a librarip be used as a highvéd
parallelization gtension to common programming languages {ik C++ and 6trtran. It eists

a \ersion for Solaris, Linux and Mtdows NT. A SMI application is xecuted by a couple of
concurrent processes (e.g. standard UNIX process), initially all withvatgwirtual address
space. By calling the respaai SMI functions, processes can instaljreents of globally
shared memorylrhe programmer can use a SPMD programming m&iedlé ProgramMul-

tiple Data), in which all processesexute the same program, or a MPMD programming model
(Multiple ProgramMultiple Data). Havever, some restrictions apply to MPMD programming
model because certain SMI functionyé&#o be called colleately.

The SMI library includes currently about 30 functions, which can\idedi into catgories:
* Initializing and eecution emironment
» Shared rgions
» Dynamic allocation of globally shared memory
* Synchronization
* Loop-splitting and -scheduling support
More details than in this paper can be found in [8].

3.1.1 Initializing and Execution Environment

The functionSM _I nit (i nt* argc, char** argv) initializes the SMI libraryThis
function must be called collegtly from all processes. After theexution of this function the
following information is accessible:

* the total number of concurrent processes

* the indvidual rank number of each process

* the total number of compute nodes on that processes of a SMI applicatizer@ree on
» the indvidual rank of the compute node

3.1.2 Shared Regions

A shared rgion with total size sz can be established among the processes with a catlecti
call to the function:

error t SM _Create_shreg(int tsz, int dist_policy,
int* dist_param int* id, void** adr)

The parametedi st _pol i cy determines he a raggion is composed of sharedyseents and
on which home nodes these are located. Ol VI DED policy allocates the ggons as a
single sgment that is located on the compute node on that prdceds par amis executed
on. If BLOCKED is specified, the ggon is composed of as masegments as compute nodes
are irvolved, plysically located one per compute node. The size of eaphes# is chosen
proportional to the number of SMI processes on the corresponding node. Anothgrgolic
CUSTOM ZED that allaws to arbitrary specify iwo a region is composed out of geents and
their assignment to nodes.

3.1.3 Synchronization

SMI offers eclusive locks and barriers as synchronization priregi Both are implemented
by pure useftevel software algorithms with aate waiting (also called spinning). Definitely
active waiting is a vastefulness of processor timet there are some reasons to do so:

» Current applications that are parallelized based on SMI come from the technical/scientific
computing sectofFor this application area, it is typical to install as snprocesses/threads
as processors are under disposal. An essential precondition for good performance is that
there is just minimum idle time due to synchronization. But in such circumstances, acti
waiting is no problem, because it is rare and does not block a processor that could other-
wise perform morealuable tasks.

* Blocking synchronization primites are operating system functions. All such functions
come along with a significantverhead. Uselevel synchronization primies &oid this
overhead.

e Last hut not least, implementing blocking €nel-level) synchronization primiies
requires to be able to trigger interrupts at a remote compute node. The SCI standard defines
such transactions,ub the currently @ailable hardware/drver does not prade this func-
tionality. Therefore, it is currently not possible to implement blocking synchronization
primitives.

Besides pure synchronization, mxge and barriers in SMI taa to fulfill another @ry impor-

tant duty: thg have to pravide the user with a manageable memory model. All kind of read and
write buffers, as thg are used within the processor cache and the SCI adapters, raise data con-
sisteng problems. SMI ensures cohergrat least at synchronization points. This is done by
invalidation of the SCl-adapter readfters at lock-, successful trylock- and barogrerations

at the processor that performs one of these operations. At unlock- and dyaeregions, the
invoking processors’ writewsfers and those on the SCI adapter are flushed to meifioey
resulting memory model is release consisgenc

3.1.4 Dynamic Memory Allocation

A shared memory geon can either be used as a flat piece of mengogy to store a single
array or for dynamic memory allocation by all processes. Thisvallto cooperately and
dynamically assemble shared data structures.aFrgion that shall be used in thisaw a

memory manager has to be installed. This can be done fgiaa neith the identifiei d by

calling the functionSM _I ni t _shregMMJ(i nt i d). This function initializes all data
structures thatéep track of the already allocated and the still free portions of memory and cre-
ates all necessary locks to guarantee atomicity of a memory allocation request in this parallel
execution emironment. The necessary data-structures are allocated withingioa rieself.

The accessibility of these structures for all processes is necessaryvtalafpoocess to allo-

cate memory therein. Memory can thereafter be allocated/freed by all processes calling the
functions

SM _{I,Cmalloc(int size, int region_id, void** address)
and
SM _{I,Cfree(voi d* address)

While anl -type function is called from a separate process, returning the address of the allo-
cated piece of memory just to the calling processCthgoe function is a colleate function

that must be called by all processes and therefore states a global synchronization point. The
SM _Cmal | oc function also allocates just a single piece of memurtyafterwards, all pro-

cesses arenare of its address and can directly access it.

3.2 Application Parall€elization

Employing SMI, shared data parallelization of a quiteedse set of application codes is in
progress. Some firsikperiences ha already been obtained in parallelizing a matagtor
multiplication kernel for lage sparse irgular matrices [9]. Wo other just starting projects
deal with the parallelization of a room-acoustic simulation code and a performance-critical
module of an airline flight schedule code.

The parallelization ébrt that has adanced mostdr till this point in time concerns the molec-
ular dynamics simulation code @RIOS 96 [20]. In a time-ste@$hion, trajectories of atoms

of a molecular ensemble (e.g. a protein in aestlvare computed. The dynamic is determined
by the forces, acting between pairs of atoms. Maduation of all the forces, fefcting each
atom, that cannot be glected in magnitude, i.e. all those between atoms that are geometri-
cally adjacent within a specific cutfohdius, is a gry time consuming algorithm. It is based

on a sparse irgalar grid, the so-called pdist of atoms, that has to be processed. This mod-
ule, together with the module that generates theligainare been parallelized.able 2 shars

the first results for a minimum cluster configuration.

4 SVMlIib

4.1 Overview

SVMIib (Shared Mirtual Memory Library) is an all-softvare, page based, usevdeshared vir-
tual memory [3] subsystem for clusters ofrfdbws NT workstations. The library has been
designed to benefit fromral Windows NT features lig preemptie multithreading and sup-
port for SMP machines. Unkkmost soft@re DSM systems, SVMlib itself is truly multi-
threaded. It also ales to create seral preemptie user threads to speed up the computation
on SMP nodes in the clust&urrently the library uses TCP/IP set&for communication pur-

Thrombin | Thrombin| _ Water Water
N=3,078 | inwater | (medium)| (large)
N=19,359| N=5,184 | N=41,472
original code 484 101.9 189.3 305.0]
(sequentiel)
1 proc. 44.0 95.1 170.5 259.2
2 procs.on 1 31.2 54.4 101.1 154.2
parallel code| SMP node
2 procs on 2 37.0 64.2 122.5 165.1
SCI-connec-
ted nodes

Table 2: Run times (in seconds) for thifent benchmark problem (N states the tot:
number of atoms of the molecular ensemble) of the original and the parallelifad C
MOS 96 code on the PentiumPro cluster

poses bt it will also support dicient message passing using Dolphins implementation of SCI.

SVMIib provides a C/C++ API that alws the user to create and degtregions of virtual
shared memory that can be accessed fully transpar@igty different synchronization primi-
tives like barriers and mutes are part of the APl.oTkeep track of accesses to the shared
regions, SVMIib handles pagaudilts within the rgions via structuredxeeption handling pro-
vided by the C++ run time system ofilows NT.

At the current stage, mwdifferent memory consistepenodels are supported by thredeliént
consisteng protocols. The first consistgnmodel ofers the widely used thoughifly ineffi-
cient sequential consistency [16] model. This model is supported by single writer as well as
multiple writer protocols. Secondlthe distriluted lock basedcope consistency [14] is imple-
mented.

Our main goal in this project is tox&mine the impact of &fient distrituted synchronization
protocols to the performance of a SVM system.

4.2 Memory Consistency Models

Uniprocessor systems present a simple model of the memory to the progrémeset oper-
ation alvays returns the ,last“alue written to a gen memory location. Liéwise a write
operation changes thalue at the gen location. ,Subsequent” reads at this location will
return the ,last* written &lue until the ,ngt* write operation occurs.

When multiple processors arevatved, the memory model becomes more complecause
the definitions of ,last alue written®, ,subsequent read" and xhevrite® become unclear
Hence, seeral consistenc models hae been proposed [5,6,10,14,15] that place specific
requirements on the order that shared memory accesses from one processor &é bypserv
other processors. In otheowds, memory consisteyenodels define which orderings argde

when accessing a common set of locations.

The sequential consistency model [16] requires thexecution of a parallel program to appear

as some interle@ng of the &ecution of the parallel process on a sequential machine. 8eftw
implementations of this consistgnmodel are straightforard hut fairly inefficient and pro-

vide a bad scalabilityrhe problem is an ffct calledfalse sharing. False sharing occurs when
different processors try to accesdatiént memory locations that are located in the same mem-
ory page. Because the SVM system maintains coherence on page granularity this kind of
access pattern causes the page to hedivom one processor to the otheereif the accessed

data is logically independent. @busly this can cause a great performance leak.

To avoid these undesiredfetts so calledveak consistency models hae been deeloped. The
basic idea behind these models is that distiedb synchronization is needed to madarallel
programs deterministic. Race conditions in parallel programs result in an unpredictaite beha
ior even if sequential consistenes used. So weak consistgnmodels combine synchroniza-
tion events with memory updates.

One of these weak models we use within SVMlilscigpe consistency [14]. In scope consis-

teng/, each lock forms a synchronization scope of W& @nd all changes made within the
scope of a lock are associated with this lock. So when a process acquires a lock (or opens a
scope) it will be informed which memory locationsy&deen changed by other processes in
earlier incarnations of this scope. It wiibt be informed about changes made outside this
scope.

4.3 Design of SVMlib

When designing a SVM system,veeal design choices v to be made. Our primary goal
when we started this projeciaw to deelop a highly flible and &tendable research instru-
ment. W& therefore decided taulbd SVMIib as a set of independent modules where each can
be exchanged without influencing the other modules.

Another important choice as the platform tolld SVMIib on. As Windows NT is a modern
operating system with some interesting featurestlike preempte kernel threads, SMP sup-
port and a rich APl we decided to userlstations running Widows NT as primary platform.
However, as UNIX workstations also play an important role, a compatibility lapegugix)
implementing a subset of theiV82 APl was deeloped for Sun Solaris(tm). Figure 4.1 siso
the overall design of SVMIibOn the top leel four modules are used.

The first is thememory manager that handles the creation and destruction of shared memory
regions, catches pagadlts and implements the memory dependent part of the useadeterf
The memory manager manages a set@bres where each geon can use a ddrent consis-
teng/ model and coherence protocol.

The second part is theck manager that pravides an intedice that allars to create and desyro
primitives for distrilnted process synchronization - mugs as well as global barriers and
semaphores.

For internode communication purposes ¢hexmunicator is used. The user will mer directly
use this module. It is for internal purposes ofilye communicator pvwides a simple intesice

SVMIib API [SMI, SPLASH,

MemoryManager | LockManager

Page I nterval M anager
Fault .
Handling Communicator

vy

WinSock 2.0 APl | Win32 API

Windows NT Kernel Services

Figure4.1: SVMIib components.

containing a barrier, a broadcast algorithm and the possibility to send messages to each other
node. This module has been designed to be active itself. To take advantage of the SMP support
of Windows NT the communicator uses threads to handle incoming messages.

The last main module is the interval manager that allows to implement weak consistency mod-
els like lazy release consistency [15] or the currently used scope consistency [14]. The user
will never have to access this module directly. It is used as a bridge between the memory and
the lock manager when weak consistency models are used. This is needed because both locks
and memory pages handle a part of the weak consistency model.

SVMIib provides several APl personalities to the application programmer. First of all, a native
C and C++ API isprovided. For compatibility to other SVM systems and existing shared mem-
ory implementations, other interfaces to shared memory programming are supported. Cur-
rently, these interfaces include the Shared Memory Interface (SMI) [8], the macro interface of
Sanford Parallel Applications for Shared Memory (SPLASH) [22] and the Coherent Virtual
Machine (CVM) [19]. Other interfaces are planned to be supported in the future.

On the operating system side, we use a hybrid approach to support the native Windows NT
environment as primary platform and the UNIX world (i.e. Sun Solaris SPARC/x86) as sec-
ondary platform. As mentioned above, to achieve this goal, we developed a small emulation
layer called nt2unix to support all Win32 API callswe use under NT on the UNIX system.

4.4 Implementation Details

SVMIib is implemented as a static or dynamic library. It is fully implemented in C++ and
makes heavy usage of the polymorphism provided by this language. That results in a good
extensibility. It is obvious that the usage of virtual methods affects the performance. But we
think that the advantages predominate the disadvantages.

4.4.1 Memory management and page fault handling
As described in the previous paragraph, the memory manager is responsible for the memory

management. It handles a list of memorgioas represented by C++ classesgiBes are
identified by unique identifiers chosen by the usars approach mas it possible to create a
region only in a subset of the processe®ived in the computation.

To keep track of the memory accesses to the shared virtual meswjib uses the memory
protection &cilities of Windows NT on a per page basis. Internadigch virtual shared page is
represented by a class dexd from a generic class call@Page. These classes contain code
to handle the consistepprotocol. This alls to add n& protocols just by dering a nev
class fromCPage. Neither the memory manager nor thgioas hae to be changed to add a
new protocols.

Page aults are handled using a uniqguéendbws NT mechanism called structurexteption
handling (SEH). @ catch a pageatilt, the library implements @ain() function that just
calls the user main functioBVMmain. The call ofSVMmain is protected by a try -

__except() block. The code fragment looksdikhis:

__try{
ret = SVMmain(argc, argv);
} __except(MemoryExceptionFilter(GetExceptioninformation())){};
So wheneer an @&ception occurs the functioklemoryExceptionFilter() is called.
This routine just checks if it @ a memoryxeeption and calls a method of the memory man-
ager that searches the page tkeeption occurred in and calls its handérhen the call
returns, the page is accessible and the program can continue:

/I This function actually handles memory exceptions.
LONG MemoryExceptionFilter(EXCEPTION_POINTERS *Exceptioninfo) {
Il get detailed exception information
EXCEPTION_RECORD *ExRec=Exceptioninfo->ExceptionRecord;
Il ls it really a memory access violation ?
if(ExRec->ExceptionCode!=EXCEPTION_ACCESS_VIOLATION) {
Il No -> try next handler for this exception.
return EXCEPTION_CONTINUE_SEARCH;
}
Il Yes -> it is really a page fault.
DBG((ExRec->Exceptioninformation[0]?“Write*:“Read")<<
“-violation at“<<(void*)ExRec->ExceptionIinformation[1]);
/l'ls it a page fault in one of our regions ?
if(MManager.HandlePageFault(ExRec->Exceptioninformation[0],
(LPVOID)ExRec->Exceptioninformation[1]))
Il Yes -> continue execution with modified access rights.
return EXCEPTION_CONTINUE_EXECUTION,;
else {
// No -> a page fault somewhere else.
SVM_ERROR((ExRec->Exceptioninformation[0]?“Write":“Read")<<
“-violation at “<<(void*)ExRec->ExceptionIinformation[1]);
return EXCEPTION_CONTINUE_SEARCH;

}
}

4.4.2 Synchronization management

The second main part of the library is the synchronization management. Each synchronization
primitive consists of te parts; the user intexfe and the message handlers. The aterfs

used by the user to acquire a lock, the handlers are used by the lock manager to handle incom-
ing messages.

Currently two different mutges, a ne distributed reader/writer lock algorithm (see [18] for
details) and a global barrier are implemented. Because the main goal of our project is the
examination of diferent synchronization primites this part of the library will gro heavily in

the future.

4.4.3 Communication

The communication subsystem piades basic message passiagilities. As all other parts of

the library it is implemented in a C++ class.Male it easy to change the communication plat-

form an abstract base class is used. CurrentlyeBsr CP/IP sockts from the WhASock32

library of Windows NT are used. In the future we will use the SCI interconnect installed in our

PC cluster to xxchange messagesorreficiency reasons the communicator uses multiple
threads to handle incoming messages. Each message has a special header containing the size of
the message and an identifier describing the recipient of the message, e.g. the memory manager
or the lock managefhe communicator dispatches the message to the appropriate part of the
library where the message is handled. The use of multiple threads ihpkssible to takfull
adwantage of SMP systems. If multiple processors agadle there is no need to interrupt the

user thread when a messagevasi This can help to hide communication layenc

4.5 Fir st performance measurements

As the implementation of SVMIib still is undenagopment (especially for the weskconsis-
tengy models), we can only g some early metrics used to characterize the performance of
SVMIlib:

* Page Fault Detection Time. This walue includes the mean time from the occurrence of a
processor pageatlt on a protected page to the entrance of the handling routine. That is,
this time includes all operating systewethead to deber a pagedult exception to user
code. Note that there seems to be nieéhce between the NT Senand NT Wirkstation

Super SPARC, Pentium, Pentium Pro,
50 MHz 133 MHz 200 MHz
Windows NT 4.0 - 28 s 19 s
Server / Workstation
Solaris2.5.1 135us 92 s 48 us

version with respect taxeeption handling. \& compared theseles with user el page
fault detection under Solaris 2.5.1 for Intel andARB€, respectiely. Under UNIX, the
memory &ception handling mechanism ofidows NT is emulated by catching tBe G

SEGV signal.

* Page Fault Time. This \alue includes the mean time to handle one pagh. fThis time
excludes the pagealfilt detection time mentioned atso It includes thewerhead due to the
coherence protocol and communication subsystem. In the current implementation, the
times measured are mainly influenced by the high TCP/IP jat€he measurements were
made using the FFT application of the set of C\idraples [19]. This application imple-
ments a Bst Fourier Transformation on a 64 x 64 x 16 arrape coherence protocol used

Read / Write/ Average | Read/Write/ Average Read / Write/ Average
#Nodes Fault Time[mg] Fault Time[mg] Fault Time[mg]
(CVM on Solaris) (SVMlib on Solaris) (SVMlib on Win32)
2 11.3/0.8/4.4 45713722 34/11/1.8
3 12.0/0.8/5.8 46/1.8/27 34/14/23
4 16.7/0.9/7.1 49/1.8/3.1 40/15/24

is a multiple reader / single writer protocol implementing sequential consistency. We com-
pared three configurations running FFT: (YM on Solaris. the CVM [19] system run-

ning on Solaris 2.5.1, Sun SS-20, Ethernet;S@Ylib on Solaris. the Solaris version of
SVMIib, running on the same platform as (1); 8Mlib on Win32: the Win32 version of
SVMIib, running on Windows NT 4.0, Intel Pentium-133, FastEthernet. Naturally, the
Win32 time values mainly reflect the improved network performance of FastEthernet.

5 Summary and Conclusion

Exploiting the capabilities of an SCl-interconnected PC cluster for shared data parallelization
turned out to be ditult on the one hand as well as promising on the other hand. Hicsidjf
because seral peculiarities of the haréwe and déce drivers became ofous: read and

write buffers on the SCI adapter as well as those of the processoestrdéficult to provide a
manageable memory model to the user and to correctly implement synchronization mecha-
nisms. Allocation of lage shared ggons is not alleved due to limitations of the address trans-
lation of the SCI adapters. Suchgi@ns hae to be constructed out ofveeal small one.
Furthermore, mapping of sharedji@ns to the same address in each process made modifica-
tions in the Vihdows NT SCI deice drver necessaryBut this is essential to be able to
exchange pointers. The SMI programming iraed @olved in a vay that all those problems

are hidden from the useutprovides him with a comfortable basis for application paralleliza-
tion. The pleasantxperience is that first applicationsvieasuccessfully been parallelized.
Although there has to beamed a lot more ofxperience with application parallelization, the
off-the-shelf cluster platform, although not being an entire cache coherent DSM system,
together with a suitable programming ingaé turned out to be a well suited platform also for
shared data parallelization.

In a second projectverview, we introduced SVMIib, a library introducing the distriéd

shared memory programming abstraction to clusteretl®¥s NT workstations by a soft-
ware-only approach. It is one of the first published SVM systems runningircdoMg NT.

First performance results running one of the SPLASH applications with sequential copsistenc
were presented.

The project is still in its start-up phase. As SVMIib is currently being implementesate
extensions to the system are beingealeped:

* Parallel Shaed \irtual Memory Allocation While SVMIib supports creating and degtro
ing regions of consecute shared virtual memory pages, atteasion for allocation of
shared memorwithin the rejions is deeloped. This feature is especially useful to emulate
virtually shared data heaps;

» Performance Evaluation anddtalization To help the programmer to deteatse sharing
and synchronization bottlenecks, a tool instrumenting the synchronizationidaehaf
SVMIib applications is deeloped,;

» SCI/SVMIib Intgration. The olvious step to wid the high communication latenof
TCP/IP is to emplpthe SCI netwrk of our cluster as W lateny network. Another direc-
tion we are follaving is to use SCI and SVMlIib toutdd a hybrid DSM system, where
coherence protocols are implemented by cache livaidgations, not by »@licit messag-
ing.

* Cross-platform SVMlibin the current stage, SVMIib runs orinflons NT as primary and
Solaris as secondary platformeVére trying to use bothexsions concurrentlye.g. to use
SVMIib to network NT and UNIX workstations to a virtually shared machine.

References

[1] Ahamad, M., Bazzi, R. A., John, R.oHli, P, and NeigerG. The Pwer of Pocessor Consist-
ency (Extended Abstet). In Proc. of the 5th 8M Annual Symp. on &allel Algorithms and
Architectures (SRA'93), pages 251-260, June 1993.

[2] Bemmerl, T; Ries, B.:Programming ®ols for Distrituted Multipocessor Emronmentsint. J.
of High Speed Comp.,dV. 5, No. 7, pp. 595-615, 1993.

[3] Berrendorf, R.; Gerndt, M.; Mairandres, M.; ZeissetASProgramming Emironment for Shad
Virtual Memory on the Inteld&agon Supesomputey ISUG Conference, Aliquerque, 1995

[4] Bershad, B. N.; Zekauskas, M. Midway: Shaed Memory Brallel Programming with Entry
Consistency for Distrilted Memory Multippcessos. Technical Report CMU-CS-91-170,
School of Computer Science, CagieeMellon Uniersity, Sept. 1991.

[5] Boden, N. J.; Cohen, D.; Felderman, R. Eujafuik, A. E.; Seitz, C. L.; Seiaac, J. N.; Su, W
K.: Myrinet - A Gigabit-peiSecond Local-Ara NetworklEEE Micro, Febr1995.

[6] CarterJ. B.:Efficient Distributed Shaed Memory Based on Multi-Btocol Release Consistency
PhD thesis, Department of Computer Science, Riceddsity September 1993.

[7] Dolphin Interconnect Solution®CI-SCI Cluster Adapter Specificatiatan. 1996.

[8] Dormanns, M.; Sprangers, .WErtl, H.; Bemmerl, T A Programming Interface for NUMA
Shaed-Memory Clustex. Proc. High Perf. Comp. and Neivking (HPCN), pp. 698-707, LNCS
1225, Springerl997.

[9] Dormanns, M.; Sprangers,.VErtl, H.; Bemmerl, T Performance Btential of an SCI Wtksta-
tion Cluster for Grid-Based Scientific Cod&soc. High Perf. Computing (HPC), pp. 226-231,

1997.

[10] Fu, S. S. and Tzeng, N.:FAggressive Release Consistency for SowRistributed Shaed
Memory In Proc. of the 17th Int. Conf. on Distuted Computing Systems (ICDCS'97), May
1997.

[11] Geoge, A.; Todd, R.; Phillips, W Miars, M.; Rosen, WParallel Processing Experiments on an
SCl-based Wrkstation ClusterProc. 5th Int. Wrkshop on SCl-based High-Perf. ii€Cost
Computing, pp. 29-39, March 1996.

[12] Hellwagner H.; Karl, W; Leberecht, M.Enabling a PC Cluster for HighdPformance Comput-
ing. Speedup JournaloV 11, No. 1, 1997.

[13] IEEE: ANSV/IEEE Std. 1596-1992, Scalable C@mrnterface (SCI)1992.

[14] Iftode, L.; Singh, J. PLi, K.: Scope Consistency: A Briddetween Release Consistency and
Entry Consistencyn Proc. of the 8th 8M Annual Symp. on &allel Algorithms and Architec-
tures (SRA'96), June 1996

[15] Keleher P; Cox, A. L.; Zwaenepoel, W Lazy Release Consistency for Sofev@istributed
Shaed MemoryIn Proc. of the 19th Annual, Int. Symp. on Computer Architecture (ISCA‘92),
pp 13-21, May 1992

[16] Lamport, L.:How to mak a multippcessor computer that cectly executes multigrcess po-
grams IEEE Transactions on Computers, C-28(9), pp. 690-691, September 1979

[17] McCalpin, J. D.A Survg of Memory Bandwidth in Cuent High Rrformance ComputsrlEEE
TCCA Newsletter Dec. 1995.

[18] Paas, S. M.; Scholtyssik, KEfficient Distrituted Synieronization within an all-softwa DSM
system for clusted PCs.1st Workshop ClusteComputing, TU Chemnitz-Zwickau, Nember
6-7, 1997

[19] Thitikamol, K.; Keleher P: Multi-Threading and Remote Latency in Sofv@SMs In: 17th
International Conference on Distnittd Computing Systems, May 1997

[20] van Gunsteren, WE. et. al.:Biomolecular Simulation: The GMMOS 96 Manual and User
Guide vdf Hochschulerlag AG an der ETH Zirich and BIOMOSW Zirich, Groningen, 1996.

[21] Warren, M. S.; Beddr, D. J.; Goda, M. PSalmon, J. K.; Sterling,.TParallel Supecomputing
with Commaodity Componentroc. Int. Conf. on &allel and Distribted ProcessingeEhniques
and Applications (PDPY), pp. 1372-81, 1997.

[22] Woo, S. C.; Moriyoshi Ohara, M.ofrie, E.; Singh, J..Pand Gupta, A.The SPLASH-2 Br
grams: Chaacterization and Methododpcal Consideations.In Proc. of the 22nd International
Symposium on Computer Architecture, pp. 24-36, Santgaita Ligure, ItalyJune 1995

