
Computing on a Cluster of PCs: Project Overview and
Early Experiences

Sven M. Paas, Marcus Dormanns, Thomas Bemmerl, Karsten Scholtyssik, Stefan Lankes
Lehrstuhl für Betriebssysteme, RWTH Aachen
Kopernikusstr. 16, D-52056 Aachen, Germany
Email:contact@lfbs.rwth-aachen.de

WWW:http://www.lfbs.rwth-aachen.de

Abstract. This paper summarizes some projects that deal with parallel computing
on clusters of PCs. Although quite different approaches have been chosen, they
have in common that they aim at shared data parallelization on the cluster plat-
form. One approach is based on a SCI (Scalable Coherent Interface) network that
provides transparent remote memory access. A programming interface as well as
first application parallelization results are summarized. The second approach
relies on SVMlib, a new all-software Shared Virtual Memory subsystem (SVM) for
Windows NT. In this paper, we discuss design issues, implementation details and
first performance measurements of SVMlib.

1 Introduction
As the performance of commodity off-the-shelf PCs approaches that of workstations, they
become increasingly attractive for performance-critical applications, both from the technical
computing area as well as from the commercial sector. The growing number of Beowulf-lik e
clusters and their successful application emphasizes this [2,21]. Recently introduced high-per-
formance interconnects, like Myrinet [5], the IEEE-standardized SCI [13] (Scalable Coherent
Interface), etc. allow to build clusters of compute nodes with a balanced computation/commu-
nication performance ratio, further increasing their suitability for parallel processing.

We build such a PC cluster at our lab. It is interconnected with a general-purpose Fast Ethernet
network to handle TCP/IP communication, e.g. for message-passing and the cluster-wide file
system. Furthermore, it is equipped with a SCI-interconnect from the norwegian company Dol-
phin [7]. SCI implements entirely transparent access to memory segments also at remote
nodes. This special purpose network is intended for parallel processing. The cluster is operat-
ing under Windows NT.

This paper provides an overview of some projects that aim at exploiting this cluster platform
for parallel/distributed processing and reports about the experiences we gathered during the
work. In distinction to other cluster computing projects, we are mostly interested in shared data
parallelization. This paper starts with introducing our cluster platform in section 2. Section 3
describes some work that aims in exploiting SCI’s hardware-based shared memory capabilities
for parallelization. In section 4, a software-based shared virtual memory system (SVM),
named SVMlib, is described.

2 The Cluster Platform
The cluster at our lab comprises out of 4 Intel Pentium singleprocessors and 2 Intel
PentiumPro dualprocessors (soon to be expanded by another four). Besides a 100 MBit/s Fast
Ethernet LAN, it is equipped with PCI-SCI adapters from the norwegian company Dolphin [7].
These, in conjunction with the device drivers allow to allocate segments of memory on each
compute node that can be mapped into the virtual address space of local processes as well as of
processes on remote compute nodes. A process on the compute node that owns such a segment
has access to it in the ordinary way. Accesses of processes on remote nodes (called remote
accesses) are fully transparently operated via the SCI network. However, this comes not for
nothing: a remote memory access is on the order of one magnitude more expensive than a local
one. A remote write access shows a latency of about 2.5µs, a read access about 4.5µs. When
writing or reading larger chunks of memory, several stream buffers of the SCI adapter card that
can handle multiple outstanding transactions and some prefetching, can be exploited. This
leads to a peak bandwidth of about 28 MByte/s for writing and about 8 MByte/s for reading.
Due to this performance characteristic, such architectures are classified as NUMA (Non-Uni-
form Memory Access) shared memory platforms.

A serious issue that influences application parallelization is that although SCI defines a cache
coherency layer, the PCI-SCI adapters do not implement it. It is not possible due to the fact that
the PCI-bus as an I/O bus does not participate in the local cache coherency mechanisms of the
compute nodes.

Assembling such a cluster provides the freedom of choosing between a lot of singleprocessor
machines or some fewer dualprocessor- or even fewer quadprocessor-SMPs (Symmetric Multi-
Processors). Looking at the price, dualprocessors possess the lowest price per processor. But
considering the ratio of local to remote memory for a fixed total number of processors in such
a cluster, quadprocessor-SMPs might be attractive. However, scalability of a multiprocessor
itself is an issue due to limited bandwidth of each local memory system. Table 1 shows the
accumulated memory bandwidths for a different number of active processors in a quadproces-
sor PentiumPro SMP. They were measured by performing operations on large vectors accord-
ing to the STREAM benchmark [17].

Table 1: Accumulated STREAM memory bandwidth (in MByte/s) for a different num-
ber of processors in a quadprocessor Intel PentiumPro SMP system.

These results show clearly that the memory system of off-the-shelf PC multiprocessors satu-
rates for memory intensive code (as many from the technical/scientific computing sector are)

number of
processors

performed vector operation
copy scale add triad

1 170.3 172.6 201.0 187.7
2 177.0 178.3 204.8 198.8
3 173.4 170.8 198.2 196.6
4 176.6 176.0 203.2 202.6

already for a single processor. Putting it all together, assembling such a cluster out of dualproc-
essors seems to be a well balanced compromise.

3 Parallel Programming on a SCI-Cluster
The SCI-related part of the cluster computing effort aims at shared data parallelization, exploit-
ing the capabilities of the SCI network to establish global segments of shared memory. This
differs to other approaches that employ SCI just as a fast message-passing interconnect to run
message-passing codes on such a cluster [11,12].

3.1 The Shared Memory Interface: A Programming Interface for NUMA Clusters
We have developed a programming interface, SMI (SharedMemoryInterface), for shared data
parallelization on a SCI-Cluster. SMI is implemented as a library, to be used as a high-level
parallelization extension to common programming languages like C, C++ and Fortran. It exists
a version for Solaris, Linux and Windows NT. A SMI application is executed by a couple of
concurrent processes (e.g. standard UNIX process), initially all with a private virtual address
space. By calling the respective SMI functions, processes can install segments of globally
shared memory. The programmer can use a SPMD programming model (SingleProgramMul-
tiple Data), in which all processes execute the same program, or a MPMD programming model
(Multiple ProgramMultiple Data). However, some restrictions apply to MPMD programming
model because certain SMI functions have to be called collectively.

The SMI library includes currently about 30 functions, which can be divided into categories:

• Initializing and execution environment

• Shared regions

• Dynamic allocation of globally shared memory

• Synchronization

• Loop-splitting and -scheduling support

More details than in this paper can be found in [8].

3.1.1 Initializing and Execution Environment
The functionSMI_Init(int* argc, char** argv) initializes the SMI library. This
function must be called collectively from all processes. After the execution of this function the
following information is accessible:

• the total number of concurrent processes

• the individual rank number of each process

• the total number of compute nodes on that processes of a SMI application are executed on

• the individual rank of the compute node

3.1.2 Shared Regions
A shared region with total sizetsz can be established among the processes with a collective
call to the function:

error_t SMI_Create_shreg(int tsz, int dist_policy,
 int* dist_param, int* id, void** adr)

The parameterdist_policy determines how a region is composed of shared segments and
on which home nodes these are located. TheUNDIVIDED policy allocates the regions as a
single segment that is located on the compute node on that processdist_param is executed
on. If BLOCKED is specified, the region is composed of as many segments as compute nodes
are involved, physically located one per compute node. The size of each segment is chosen
proportional to the number of SMI processes on the corresponding node. Another policy is
CUSTOMIZED that allows to arbitrary specify how a region is composed out of segments and
their assignment to nodes.

3.1.3 Synchronization
SMI offers exclusive locks and barriers as synchronization primitives. Both are implemented
by pure user-level software algorithms with active waiting (also called spinning). Definitely,
active waiting is a wastefulness of processor time, but there are some reasons to do so:

• Current applications that are parallelized based on SMI come from the technical/scientific
computing sector. For this application area, it is typical to install as many processes/threads
as processors are under disposal. An essential precondition for good performance is that
there is just minimum idle time due to synchronization. But in such circumstances, active
waiting is no problem, because it is rare and does not block a processor that could other-
wise perform more valuable tasks.

• Blocking synchronization primitives are operating system functions. All such functions
come along with a significant overhead. User-level synchronization primitives avoid this
overhead.

• Last but not least, implementing blocking (kernel-level) synchronization primitives
requires to be able to trigger interrupts at a remote compute node. The SCI standard defines
such transactions, but the currently available hardware/driver does not provide this func-
tionality. Therefore, it is currently not possible to implement blocking synchronization
primitives.

Besides pure synchronization, mutexes and barriers in SMI have to fulfill another very impor-
tant duty: they have to provide the user with a manageable memory model. All kind of read and
write buffers, as they are used within the processor cache and the SCI adapters, raise data con-
sistency problems. SMI ensures coherency at least at synchronization points. This is done by
invalidation of the SCI-adapter read buffers at lock-, successful trylock- and barrier-operations
at the processor that performs one of these operations. At unlock- and barrier-operations, the
invoking processors’ write buffers and those on the SCI adapter are flushed to memory. The
resulting memory model is release consistency.

3.1.4 Dynamic Memory Allocation
A shared memory region can either be used as a flat piece of memory, e.g. to store a single
array, or for dynamic memory allocation by all processes. This allows to cooperatively and
dynamically assemble shared data structures. For a region that shall be used in this way, a

memory manager has to be installed. This can be done for a region with the identifierid by
calling the functionSMI_Init_shregMMU(int id). This function initializes all data
structures that keep track of the already allocated and the still free portions of memory and cre-
ates all necessary locks to guarantee atomicity of a memory allocation request in this parallel
execution environment. The necessary data-structures are allocated within the region itself.
The accessibility of these structures for all processes is necessary to allow all process to allo-
cate memory therein. Memory can thereafter be allocated/freed by all processes calling the
functions

SMI_{I,C}malloc(int size, int region_id, void** address)

and
SMI_{I,C}free(void* address)

While anI-type function is called from a separate process, returning the address of the allo-
cated piece of memory just to the calling process, theC-type function is a collective function
that must be called by all processes and therefore states a global synchronization point. The
SMI_Cmalloc function also allocates just a single piece of memory, but afterwards, all pro-
cesses are aware of it’s address and can directly access it.

3.2 Application Parallelization
Employing SMI, shared data parallelization of a quite diverse set of application codes is in
progress. Some first experiences have already been obtained in parallelizing a matrix-vector
multiplication kernel for large sparse irregular matrices [9]. Two other just starting projects
deal with the parallelization of a room-acoustic simulation code and a performance-critical
module of an airline flight schedule code.

The parallelization effort that has advanced most far till this point in time concerns the molec-
ular dynamics simulation code GROMOS 96 [20]. In a time-step fashion, trajectories of atoms
of a molecular ensemble (e.g. a protein in a solvent) are computed. The dynamic is determined
by the forces, acting between pairs of atoms. The evaluation of all the forces, effecting each
atom, that cannot be neglected in magnitude, i.e. all those between atoms that are geometri-
cally adjacent within a specific cut-off radius, is a very time consuming algorithm. It is based
on a sparse irregular grid, the so-called pair-list of atoms, that has to be processed. This mod-
ule, together with the module that generates the pair-list have been parallelized. Table 2 shows
the first results for a minimum cluster configuration.

4 SVMlib

4.1 Overview
SVMlib (Shared Virtual Memory Library) is an all-software, page based, user level shared vir-
tual memory [3] subsystem for clusters of Windows NT workstations. The library has been
designed to benefit from several Windows NT features like preemptive multithreading and sup-
port for SMP machines. Unlike most software DSM systems, SVMlib itself is truly multi-
threaded. It also allows to create several preemptive user threads to speed up the computation
on SMP nodes in the cluster. Currently the library uses TCP/IP sockets for communication pur-

poses but it will also support efficient message passing using Dolphins implementation of SCI.

SVMlib provides a C/C++ API that allows the user to create and destroy regions of virtual
shared memory that can be accessed fully transparently. Also different synchronization primi-
tives like barriers and mutexes are part of the API. To keep track of accesses to the shared
regions, SVMlib handles page faults within the regions via structured exception handling pro-
vided by the C++ run time system of Windows NT.

At the current stage, two different memory consistency models are supported by three different
consistency protocols. The first consistency model offers the widely used though fairly ineffi-
cient sequential consistency [16] model. This model is supported by single writer as well as
multiple writer protocols. Secondly, the distributed lock basedscope consistency [14] is imple-
mented.

Our main goal in this project is to examine the impact of efficient distributed synchronization
protocols to the performance of a SVM system.

4.2 Memory Consistency Models
Uniprocessor systems present a simple model of the memory to the programmer. A read oper-
ation always returns the „last“ value written to a given memory location. Likewise a write
operation changes the value at the given location. „Subsequent“ reads at this location will
return the „last“ written value until the „next“ write operation occurs.

When multiple processors are involved, the memory model becomes more complex because
the definitions of „last value written“, „subsequent read“ and „next write“ become unclear.
Hence, several consistency models have been proposed [5,6,10,14,15] that place specific
requirements on the order that shared memory accesses from one processor are observed by
other processors. In other words, memory consistency models define which orderings are legal

Table 2: Run times (in seconds) for different benchmark problem (N states the total
number of atoms of the molecular ensemble) of the original and the parallelized GRO-
MOS 96 code on the PentiumPro cluster.

Thrombin
N=3,078

Thrombin
in water

N=19,359

Water
(medium)
N=5,184

Water
(large)

N=41,472
original code
(sequentiel)

48.4 101.9 189.3 305.0

parallel code

1 proc. 44.0 95.1 170.5 259.2
2 procs. on 1
SMP node

31.2 54.4 101.1 154.2

2 procs on 2
SCI-connec-
ted nodes

37.0 64.2 122.5 165.1

when accessing a common set of locations.

The sequential consistency model [16] requires the execution of a parallel program to appear
as some interleaving of the execution of the parallel process on a sequential machine. Software
implementations of this consistency model are straightforward but fairly inefficient and pro-
vide a bad scalability. The problem is an effect calledfalse sharing. False sharing occurs when
different processors try to access different memory locations that are located in the same mem-
ory page. Because the SVM system maintains coherence on page granularity this kind of
access pattern causes the page to be moved from one processor to the other even if the accessed
data is logically independent. Obviously this can cause a great performance leak.

To avoid these undesired effects so calledweak consistency models have been developed. The
basic idea behind these models is that distributed synchronization is needed to make parallel
programs deterministic. Race conditions in parallel programs result in an unpredictable behav-
ior even if sequential consistency is used. So weak consistency models combine synchroniza-
tion events with memory updates.

One of these weak models we use within SVMlib isscope consistency [14]. In scope consis-
tency, each lock forms a synchronization scope of its own and all changes made within the
scope of a lock are associated with this lock. So when a process acquires a lock (or opens a
scope) it will be informed which memory locations have been changed by other processes in
earlier incarnations of this scope. It willnot be informed about changes made outside this
scope.

4.3 Design of SVMlib
When designing a SVM system, several design choices have to be made. Our primary goal
when we started this project was to develop a highly flexible and extendable research instru-
ment. We therefore decided to build SVMlib as a set of independent modules where each can
be exchanged without influencing the other modules.

Another important choice was the platform to build SVMlib on. As Windows NT is a modern
operating system with some interesting features like true preemptive kernel threads, SMP sup-
port and a rich API we decided to use workstations running Windows NT as primary platform.
However, as UNIX workstations also play an important role, a compatibility layer (nt2unix)
implementing a subset of the Win32 API was developed for Sun Solaris(tm). Figure 4.1 shows
the overall design of SVMlib. On the top level four modules are used.

The first is thememory manager that handles the creation and destruction of shared memory
regions, catches page faults and implements the memory dependent part of the user interface.
The memory manager manages a set of regions where each region can use a different consis-
tency model and coherence protocol.

The second part is thelock manager that provides an interface that allows to create and destroy
primitives for distributed process synchronization - mutexes as well as global barriers and
semaphores.

For internode communication purposes thecommunicator is used. The user will never directly
use this module. It is for internal purposes only. The communicator provides a simple interface

containing a barrier, a broadcast algorithm and the possibility to send messages to each other
node. This module has been designed to be active itself. To take advantage of the SMP support
of Windows NT the communicator uses threads to handle incoming messages.

The last main module is the interval manager that allows to implement weak consistency mod-
els like lazy release consistency [15] or the currently used scope consistency [14]. The user
will never have to access this module directly. It is used as a bridge between the memory and
the lock manager when weak consistency models are used. This is needed because both locks
and memory pages handle a part of the weak consistency model.

SVMlib provides several API personalities to the application programmer. First of all, a native
C and C++ API is provided. For compatibility to other SVM systems and existing shared mem-
ory implementations, other interfaces to shared memory programming are supported. Cur-
rently, these interfaces include the Shared Memory Interface (SMI) [8], the macro interface of
Stanford Parallel Applications for Shared Memory (SPLASH) [22] and the Coherent Virtual
Machine (CVM) [19]. Other interfaces are planned to be supported in the future.

On the operating system side, we use a hybrid approach to support the native Windows NT
environment as primary platform and the UNIX world (i.e. Sun Solaris SPARC/x86) as sec-
ondary platform. As mentioned above, to achieve this goal, we developed a small emulation
layer called nt2unix to support all Win32 API calls we use under NT on the UNIX system.

4.4 Implementation Details
SVMlib is implemented as a static or dynamic library. It is fully implemented in C++ and
makes heavy usage of the polymorphism provided by this language. That results in a good
extensibility. It is obvious that the usage of virtual methods affects the performance. But we
think that the advantages predominate the disadvantages.

4.4.1 Memory management and page fault handling
As described in the previous paragraph, the memory manager is responsible for the memory

Windows NT Kernel Services

Win32 APIWinSock 2.0 API

SVMlib API [SMI, SPLASH,

MemoryManager LockManager

Communicator

Page
Fault

Handling

IntervalManager

Figure 4.1: SVMlib components.

management. It handles a list of memory regions represented by C++ classes. Regions are
identified by unique identifiers chosen by the user. This approach makes it possible to create a
region only in a subset of the processes involved in the computation.

To keep track of the memory accesses to the shared virtual memory, SVMlib uses the memory
protection facilities of Windows NT on a per page basis. Internally, each virtual shared page is
represented by a class derived from a generic class calledCPage. These classes contain code
to handle the consistency protocol. This allows to add new protocols just by deriving a new
class fromCPage. Neither the memory manager nor the regions have to be changed to add a
new protocols.

Page faults are handled using a unique Windows NT mechanism called structured exception
handling (SEH). To catch a page fault, the library implements amain() function that just
calls the user main functionSVMmain. The call ofSVMmain is protected by a __try -
__except() block. The code fragment looks like this:

__try {
ret = SVMmain(argc, argv);

} __except(MemoryExceptionFilter(GetExceptionInformation())){};

So whenever an exception occurs the functionMemoryExceptionFilter() is called.
This routine just checks if it was a memory exception and calls a method of the memory man-
ager that searches the page the exception occurred in and calls its handler. When the call
returns, the page is accessible and the program can continue:

// This function actually handles memory exceptions.
LONG MemoryExceptionFilter(_EXCEPTION_POINTERS *ExceptionInfo) {

// get detailed exception information
EXCEPTION_RECORD *ExRec=ExceptionInfo->ExceptionRecord;
// Is it really a memory access violation ?
if(ExRec->ExceptionCode!=EXCEPTION_ACCESS_VIOLATION) {

// No -> try next handler for this exception.
return EXCEPTION_CONTINUE_SEARCH;

}
// Yes -> it is really a page fault.
DBG((ExRec->ExceptionInformation[0]?“Write“:“Read“)<<

“-violation at“<<(void*)ExRec->ExceptionInformation[1]);
// Is it a page fault in one of our regions ?
if(MManager.HandlePageFault(ExRec->ExceptionInformation[0],

(LPVOID)ExRec->ExceptionInformation[1]))
// Yes -> continue execution with modified access rights.
return EXCEPTION_CONTINUE_EXECUTION;

else {
// No -> a page fault somewhere else.
SVM_ERROR((ExRec->ExceptionInformation[0]?“Write“:“Read“)<<

“-violation at “<<(void*)ExRec->ExceptionInformation[1]);
return EXCEPTION_CONTINUE_SEARCH;

}
}

4.4.2 Synchronization management
The second main part of the library is the synchronization management. Each synchronization
primitive consists of two parts; the user interface and the message handlers. The interface is
used by the user to acquire a lock, the handlers are used by the lock manager to handle incom-
ing messages.

Currently two different mutexes, a new distributed reader/writer lock algorithm (see [18] for
details) and a global barrier are implemented. Because the main goal of our project is the
examination of different synchronization primitives this part of the library will grow heavily in
the future.

4.4.3 Communication
The communication subsystem provides basic message passing facilities. As all other parts of
the library it is implemented in a C++ class. To make it easy to change the communication plat-
form an abstract base class is used. Currently Berkeley TCP/IP sockets from the WinSock32
library of Windows NT are used. In the future we will use the SCI interconnect installed in our
PC cluster to exchange messages. For efficiency reasons the communicator uses multiple
threads to handle incoming messages. Each message has a special header containing the size of
the message and an identifier describing the recipient of the message, e.g. the memory manager
or the lock manager. The communicator dispatches the message to the appropriate part of the
library where the message is handled. The use of multiple threads makes it possible to take full
advantage of SMP systems. If multiple processors are available there is no need to interrupt the
user thread when a message arrives. This can help to hide communication latency.

4.5 First performance measurements
As the implementation of SVMlib still is under development (especially for the weaker consis-
tency models), we can only give some early metrics used to characterize the performance of
SVMlib:

• Page Fault Detection Time. This value includes the mean time from the occurrence of a
processor page fault on a protected page to the entrance of the handling routine. That is,
this time includes all operating system overhead to deliver a page fault exception to user
code. Note that there seems to be no difference between the NT Server and NT Workstation

version with respect to exception handling. We compared these values with user level page
fault detection under Solaris 2.5.1 for Intel and SPARC, respectively. Under UNIX, the
memory exception handling mechanism of Windows NT is emulated by catching theSIG-

SuperSPARC,
50 MHz

Pentium,
133 MHz

Pentium Pro,
200 MHz

Windows NT 4.0
Server / Workstation

- 28 µs 19 µs

Solaris 2.5.1 135µs 92 µs 48 µs

SEGV signal.

• Page Fault Time. This value includes the mean time to handle one page fault. This time
excludes the page fault detection time mentioned above. It includes the overhead due to the
coherence protocol and communication subsystem. In the current implementation, the
times measured are mainly influenced by the high TCP/IP latency. The measurements were
made using the FFT application of the set of CVM examples [19]. This application imple-
ments a Fast Fourier Transformation on a 64 x 64 x 16 array. The coherence protocol used

is a multiple reader / single writer protocol implementing sequential consistency. We com-
pared three configurations running FFT: (1)CVM on Solaris: the CVM [19] system run-
ning on Solaris 2.5.1, Sun SS-20, Ethernet; (2)SVMlib on Solaris: the Solaris version of
SVMlib, running on the same platform as (1); (3)SVMlib on Win32: the Win32 version of
SVMlib, running on Windows NT 4.0, Intel Pentium-133, FastEthernet. Naturally, the
Win32 time values mainly reflect the improved network performance of FastEthernet.

5 Summary and Conclusion
Exploiting the capabilities of an SCI-interconnected PC cluster for shared data parallelization
turned out to be difficult on the one hand as well as promising on the other hand. It is difficult,
because several peculiarities of the hardware and device drivers became obvious: read and
write buffers on the SCI adapter as well as those of the processors make it difficult to provide a
manageable memory model to the user and to correctly implement synchronization mecha-
nisms. Allocation of large shared regions is not allowed due to limitations of the address trans-
lation of the SCI adapters. Such regions have to be constructed out of several small one.
Furthermore, mapping of shared regions to the same address in each process made modifica-
tions in the Windows NT SCI device driver necessary. But this is essential to be able to
exchange pointers. The SMI programming interface evolved in a way that all those problems
are hidden from the user but provides him with a comfortable basis for application paralleliza-
tion. The pleasant experience is that first applications have successfully been parallelized.
Although there has to be gained a lot more of experience with application parallelization, the
off-the-shelf cluster platform, although not being an entire cache coherent DSM system,
together with a suitable programming interface turned out to be a well suited platform also for
shared data parallelization.

In a second project overview, we introduced SVMlib, a library introducing the distributed
shared memory programming abstraction to clustered Windows NT workstations by a soft-
ware-only approach. It is one of the first published SVM systems running on Windows NT.

#Nodes
Read / Write / Average

Fault Time [ms]
(CVM on Solaris)

Read / Write / Average
Fault Time [ms]

(SVMlib on Solaris)

Read / Write / Average
Fault Time [ms]

(SVMlib on Win32)

2 11.3 / 0.8 / 4.4 4.5 / 1.3 / 2.2 3.4 / 1.1 / 1.8
3 12.0 / 0.8 / 5.8 4.6 / 1.8 / 2.7 3.4 / 1.4 / 2.3
4 16.7 / 0.9 / 7.1 4.9 / 1.8 / 3.1 4.0 / 1.5 / 2.4

First performance results running one of the SPLASH applications with sequential consistency
were presented.

The project is still in its start-up phase. As SVMlib is currently being implemented, several
extensions to the system are being developed:

• Parallel Shared Virtual Memory Allocation. While SVMlib supports creating and destroy-
ing regions of consecutive shared virtual memory pages, an extension for allocation of
shared memorywithin the regions is developed. This feature is especially useful to emulate
virtually shared data heaps;

• Performance Evaluation and Visualization. To help the programmer to detect false sharing
and synchronization bottlenecks, a tool instrumenting the synchronization behaviour of
SVMlib applications is developed;

• SCI/SVMlib Integration. The obvious step to avoid the high communication latency of
TCP/IP is to employ the SCI network of our cluster as low latency network. Another direc-
tion we are following is to use SCI and SVMlib to build a hybrid DSM system, where
coherence protocols are implemented by cache line invalidations, not by explicit messag-
ing.

• Cross-platform SVMlib. In the current stage, SVMlib runs on Windows NT as primary and
Solaris as secondary platform. We are trying to use both versions concurrently, e.g. to use
SVMlib to network NT and UNIX workstations to a virtually shared machine.

References

[1] Ahamad, M., Bazzi, R. A., John, R., Kohli, P., and Neiger, G. The Power of Processor Consist-
ency (Extended Abstract). In Proc. of the 5th ACM Annual Symp. on Parallel Algorithms and
Architectures (SPAA‘93), pages 251-260, June 1993.

[2] Bemmerl, T.; Ries, B.:Programming Tools for Distributed Multiprocessor Environments. Int. J.
of High Speed Comp., Vol. 5, No. 7, pp. 595-615, 1993.

[3] Berrendorf, R.; Gerndt, M.; Mairandres, M.; Zeisset, S.:A Programming Environment for Shared
Virtual Memory on the Intel Paragon Supercomputer, ISUG Conference, Albuquerque, 1995

[4] Bershad, B. N.; Zekauskas, M. J.:Midway: Shared Memory Parallel Programming with Entry
Consistency for Distributed Memory Multiprocessors. Technical Report CMU-CS-91-170,
School of Computer Science, Carnegie-Mellon University, Sept. 1991.

[5] Boden, N. J.; Cohen, D.; Felderman, R. E.; Kulawik, A. E.; Seitz, C. L.; Seizovic, J. N.; Su, W.-
K.: Myrinet - A Gigabit-per-Second Local-Area Network. IEEE Micro, Febr. 1995.

[6] Carter, J. B.:Efficient Distributed Shared Memory Based on Multi-Protocol Release Consistency.
PhD thesis, Department of Computer Science, Rice University, September 1993.

[7] Dolphin Interconnect Solutions:PCI-SCI Cluster Adapter Specification. Jan. 1996.

[8] Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T.: A Programming Interface for NUMA
Shared-Memory Clusters. Proc. High Perf. Comp. and Networking (HPCN), pp. 698-707, LNCS
1225, Springer, 1997.

[9] Dormanns, M.; Sprangers, W.; Ertl, H.; Bemmerl, T.: Performance Potential of an SCI Worksta-
tion Cluster for Grid-Based Scientific Codes. Proc. High Perf. Computing (HPC), pp. 226-231,

1997.

[10] Fu, S. S. and Tzeng, N.-F.: Aggressive Release Consistency for Software Distributed Shared
Memory. In Proc. of the 17th Int. Conf. on Distributed Computing Systems (ICDCS‘97), May
1997.

[11] George, A.; Todd, R.; Phillips, W.; Miars, M.; Rosen, W.: Parallel Processing Experiments on an
SCI-based Workstation Cluster. Proc. 5th Int. Workshop on SCI-based High-Perf. Low-Cost
Computing, pp. 29-39, March 1996.

[12] Hellwagner, H.; Karl, W.; Leberecht, M.:Enabling a PC Cluster for High Performance Comput-
ing. Speedup Journal, Vol. 11, No. 1, 1997.

[13] IEEE:ANSI/IEEE Std. 1596-1992, Scalable Coherent Interface (SCI). 1992.

[14] Iftode, L.; Singh, J. P.; Li, K.: Scope Consistency: A Bridge between Release Consistency and
Entry Consistency. In Proc. of the 8th ACM Annual Symp. on Parallel Algorithms and Architec-
tures (SPAA‘96), June 1996

[15] Keleher, P.; Cox, A. L.; Zwaenepoel, W.: Lazy Release Consistency for Software Distributed
Shared Memory. In Proc. of the 19th Annual, Int. Symp. on Computer Architecture (ISCA‘92),
pp 13-21, May 1992

[16] Lamport, L.:How to make a multiprocessor computer that correctly executes multiprocess pro-
grams, IEEE Transactions on Computers, C-28(9), pp. 690-691, September 1979

[17] McCalpin, J. D.:A Survey of Memory Bandwidth in Current High Performance Computers. IEEE
TCCA Newsletter, Dec. 1995.

[18] Paas, S. M.; Scholtyssik, K.:Efficient Distributed Synchronization within an all-software DSM
system for clustered PCs. 1st Workshop Cluster-Computing, TU Chemnitz-Zwickau, November
6-7, 1997

[19] Thitikamol, K.; Keleher, P.: Multi-Threading and Remote Latency in Software DSMs. In: 17th
International Conference on Distributed Computing Systems, May 1997

[20] van Gunsteren, W. F. et. al.:Biomolecular Simulation: The GROMOS 96 Manual and User
Guide. vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v., Zürich, Groningen, 1996.

[21] Warren, M. S.; Becker, D. J.; Goda, M. P.; Salmon, J. K.; Sterling, T.: Parallel Supercomputing
with Commodity Components. Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA), pp. 1372-81, 1997.

[22] Woo, S. C.; Moriyoshi Ohara, M.; Torrie, E.; Singh, J. P., and Gupta, A.:The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In Proc. of the 22nd International
Symposium on Computer Architecture, pp. 24-36, Santa Margherita Ligure, Italy, June 1995

