
Efficient distributed Synchronization within an all-software DSM system for

clustered PCs1

Sven M. Paas, Karsten Scholtyssik
Lehrstuhl für Betriebssysteme, RWTH Aachen
Kopernikusstr. 16, D-52056 Aachen, Germany

Tel.: +49-241-80-7634, Fax: +49-241-8888-339
e-mail: contact@lfbs.rwth-aachen.de

Abstract. We propose a new extension to Chang, Singhal and Liu's scalable algo-
rithm for distributed mutual exclusion in order to allow more than one process at a
given time to enter a distributed critical section. This is done by integrating distrib-
uted single writer / multiple reader semantics into the original algorithm without
affecting the performance for exclusive lock requests. We show that software sub-
systems providing the shared virtual memory abstraction as well as parallel appli-
cations built on it benefit from the new extension significantly. First implementation
results employing a newly developed all-software, page based distributed shared
memory (DSM) system for clustered Windows NT systems are presented.

Keywords: distributed synchronization, shared virtual memory, cluster computing

1 Introduction

Distributed mutual exclusion algorithms [DI89, MA92, SR92, SI93] solve the problem of
mutual exclusion for distributed environments. Whenever a process has to read or update a cer-
tain shared resource like data structures, files, shared virtual memory pages, it first enters a dis-
tributed critical section to achieve distributed mutual exclusion to ensure that no other process
will access the shared resource at the same time.
On uni-processor or symmetrical multiprocessing (SMP) systems, the operating system usu-
ally provides a whole family of process or thread synchronization primitives [SI94]. Besides
pure mutual exclusion functionality, there are primitives providing „weaker” synchronization
semantics in order to let more than one process at a given time enter its critical section. A spe-
cial case is given by so called single writer / multiple reader locks [KR93]: they allow a single
writer, but multiple concurrent readers in the critical section at a given time. Depending on the
access pattern on the shared resource, this synchronization primitive can drastically improve
the performance of the application by allowing a higher potential degree of parallelism
[CH94].
In distributed memory systems, on the other hand, message passing based algorithms are used
to achieve distributed mutual exclusion. This idea was introduced by Lamport [LA78] and con-
stantly improved over the last decade [MA85, MJ85, SU85, NA87, RA89, CH90]. While there
exist fast and efficient algorithms for distributed synchronization [CH96, RA94, JO94], these
approaches are unnecessary restrictive with respect to lock utilization when a large fraction of
all requests are read-only.

1 This work was partly funded by Intel Corporation.

1.1 Assumptions
We define the following system requirements for the algorithms presented in the following sec-
tions:

• We have a distributed system with no shared memory (neither physical nor virtual).

• Communication is solely done by passing messages between processors (also called
nodes).

• The network of processors is fully connected and reliable. Thus, each processor can
communicate directly and securely with each other processor.

It is important to understand that message exchanging itself always represents a synchroniza-
tion point [DI89] - implementing a distributed synchronization algorithm on top of message
passing basically means to provide an efficient and correct message passing protocol that guar-
antees distributed mutual exclusion or some other sort of synchronization semantics. Thus, the
main duty of a distributed synchronization operating system service is to preserve the applica-
tion programmer from using explicit message passing for distributed synchronization.

1.2 Overview of this paper
In the next section, we will informally specify reader / writer lock semantics for distributed
environments and recall related work in this area. Motivated by a fast available distributed
mutual exclusion algorithm presented originally by Chang, Singhal and Liu [CH90], we pro-
pose an extension to their efficient path compression technique to support concurrently execut-
ing distributed readers in section 3. We evaluate the extension of the algorithm by a newly
developed page based DSM system for Windows NT systems. The paper closes with a sum-
mary in section 5.

2 Distributed Reader / Writer Lock Semantics

Basically, a distributed reader / writer synchronization primitive (also called lock) can be
derived from the usual uni-processor (or SMP) case, where the underlying operating system
handles all synchronization requests in a centralized manner. If we use a token based distrib-
uted mutual exclusion algorithm [SI93], we define the following functionality for a protocol
extension providing single writer / multiple reader semantics on a distributed system:

• Write request functionality is inherited by the usual protocol. Acquiring a token for writ-
ing basically means acquiring the token exclusively. A token can be granted for writing if
and only if no other process possesses the token (whether for writing or for reading).

• Read request functionality is added to the usual protocol. Acquiring a token for reading
means creating a virtual copy of the token and granting it to the requesting process. A
copy of the token can be granted for reading, if no other process possesses the token
exclusively for writing. Multiple processes may acquire the copies of the token for read-
ing concurrently.

While there exist efficient algorithms providing the above synchronization semantics for
shared memory environments [KR93], the only known approach for distributed environments

was presented by Johnson [JO96]. In contrast to [JO96], we do not require a restriction in the
order of the distributed processes‘ requests to leave a critical section. That is, any process
should be able to acquire or to immediately release a distributed reader / writer lock at any
given time like in the uni-processor case.
In order to prevent processes which want to acquire the token for writing from starving, it is
very important that the requests to the token are scheduled in a “fair” manner. Starving may
occur by other processes constantly requesting and releasing the lock for reading. The most
often implemented fair scheduling strategy for lock request is strict FCFS (first come first
served) order. In principle, it is then possible to implement distributed single writer / multiple
reader lock semantics on top of a distributed mutual exclusion algorithm. There are at least two
straightforward possibilities to do that:

• First, each reader could be associated with a dedicated distributed exclusive lock. That is,
each processor i (where i = 1 ... N, and N is the number of processors) which acquires the
lock for reading has to acquire an associated lock Li before it can enter its distributed
critical section. Each process j which acquires the lock for writing has to acquire all
locks Lk (k = 1 ... N). The disadvantage of this scheme is that acquiring a token for writ-
ing is a very expensive operation.

• Second, a virtually shared integer cnt variable containing the current number of readers
protected by one distributed exclusive lock could be implemented. Each reader incre-
ments this variable, while each writer has to wait for cnt to become zero. The disadvan-
tage of the scheme is that the shared cnt variable is constantly polled by the requesters,
causing unnecessary network overhead.

Instead of trying to implement distributed single writer / multiple reader semantics on top of an
existing algorithm for distributed synchronization, we propose to modify and extend these pro-
tocols to support concurrent readers to achieve better performance. For the very efficient CSL
algorithm [CH90], this is done in the following section.

3 Extending the CSL Algorithm

Before we will specify our extension, we shortly recall the original distributed mutual exclu-
sion algorithm of Chang, Singhal and Liu (CSL) [CH90]. This algorithm is a dynamic, logical
structure based and token based algorithm. For an extensive discussion of other classification
issues, see [SI93]. It uses an efficient path compression technique [BE89] to reduce the height
of the communication tree maintained at run-time. Its proven message complexity per critical
section entry is O(log N), where N is the number of participating processors. This algorithm
performs excellently under various load conditions [CH96].

This short description of the CSL algorithm is mainly taken from [JO94]. The key idea of this
algorithm is that each node maintains a guess about which node actually holds the token in a
local variable called root. If a node neither holding nor requesting the token receives a write
request, it forwards this write request to the node indicated by root, and then sets root to the
number of the requesting node (since it will be the one which probably owns the token at the
time of the next request).

When a node requests the token, it sends a request message to the processor indicated by
root. It then sets an additional pointer, next to NIL. If a node that holds or is waiting for the
token receives a request, and its next pointer is NIL, it sets next to the number of the node
that sent the request. Otherwise, it forwards the request to the node indicated by root, and
sets root to the requesting node. Among the nodes that hold the token or are requesting or
idling, the next variable form a distributed queue of the blocked processes. If a process is
waiting and its next pointer is NIL, the process is effectively at the end of the waiting queue.
If next is not NIL, the end of the waiting queue is at the node pointed to by root, or even
beyond. Since the requesting process will become the one at the end of the list, it is appropriate
to set the root variable to the number of the requesting process. When the token holder
releases the token, it sends the token to the node pointed to by next, if next is not NIL. Oth-
erwise, the token holder keeps the token without using it.

The original algorithm supports pure mutual exclusion functionality only. Our extension adds
distributed single writer / multiple reader semantics as introduced above to the original algo-
rithm.

3.1 Data Structures local to each Node
Like in the CSL algorithm, each node participating in the new algorithm has to maintain local
data structures for each process on the node which is synchronizing. Each process may main-
tain an arbitrary number of tokens, which are represented with appropriate C++ style lock
objects used for the description. In our implementation, these data structures are maintained in
an entity called token server daemon (TSD). In practice, this daemon can efficiently be
mapped, for instance, onto a classical UNIX network daemon or a Windows NT network ser-
vice. The TSD at each processor is structured as a set of C++ objects maintaining the data
structures representing the state of a specific distributed reader / writer lock. The class interface
for these objects look partly like:

class RWCSL : public _Object {
...
protected:

int lockId; // global lock id
int root; // root of the directed tree
int first, next; // first and next requester
int state; // request state of the node
Queue *sharedRequestQueue;// local shared request queue
int numCopies; // counter for token copies
int copyManager; // manager of the current copies

};

The TSD‘s representation of a lock object in user space defines the identity of the lock owner,
the global unique identifier for the lock object and the request state of the lock object.
In more detail, the lockId instance variable introduces a global name scheme to allow an
arbitrary number of lock objects which are represented by a set of RWCSL instances within
each TSD. The root and next instance variables have the same semantics as in the original

CSL algorithm. The first variable, however, is an extension to the CSL algorithm for the
special case where a local exclusive request for the token cannot be granted because the current
number of copies of the token is not zero. In this case, the local node is the first and the last
requesting node in the distributed waiting queue (this case cannot happen in the original algo-
rithm).
The request state of the local processor is stored in the state instance variable, which may
have one of the values Clear (node is idle), RequestingRead (node is requesting for
shared ownership), Requesting (node is requesting for exclusive ownership), Consum-
ingRead (node is in critical section for reading), Consuming (node is in critical section for
writing) and HoldingFreeToken (node owns the token but is not requesting it.).
The basic idea of our extension is to maintain local queues of pending shared requests along
the distributed waiting queue of current exclusive requests to the token. The token may leave a
node only if the local queue of shared requests (sharedRequestQueue) is empty and the
number of copies is zero.

3.2 Initialization Phase and Message Types
Each RWCSL instance initializes such that a node determined by hashing the global lock id
(function hashlockId()) becomes root of the directed tree. This node is holding the free
token initially. The myid() function returns the local node number to the caller:

void RWCSL::initWith(int aLockid) {
_Object::init();
lockId = aLockId;
root = hashLockId(aLockId);
first = next = copyManager = NIL;
state = (myid() != root) ? Clear : HoldingFreeToken;
sharedRequestQueue = (new Queue)->init();
numCopies = 0;

}

As in the original CSL algorithm, messages of type Token to grant a token to a remote TSD
and of type Request to request a token from a remote TSD are dispatched. Additionally, we
parametrize these two types of messages with the mode of the request (either exclu-
siveRequest or sharedRequest).

3.3 Handling exclusive Requests of a remote TSD
If the local number of copies is greater than zero and first points to NIL, nobody is request-
ing the token. Hence first is set to the sender sender of the message. If the local node is
not equal to root, the request is forwarded. Otherwise, next must currently be NIL and can
be used to store the request. If there are no shared copies of the token but the local node is
already requesting or consuming the token, the request is handled like in the standard CSL
algorithm. That is, it is stored in the next variable if the local node is the last requesting node
in the distributed queue or it is forwarded if it is not. If the local node is holding the free token,
it can be granted to the requesting node immediately. If it is not, the request is also forwarded,
respectively. Finally, root is set to the number of the requester, namely sender.

void RWCSL::exclusiveRequest_Handler(Message *msg, int sender) {
if (numCopies > 0) {

if (first == NIL) {
first = sender;

} else if (root != myid()) {
sendMessageTo(root, msg);

} else {
next = sender;

}
} if ((state == Requesting) || state == Consuming)) {

if (next == NIL)
next = sender;

else
sendMessageTo(root, msg);

} else if (state == HoldingFreeToken) {
next = NIL; root = sender;
sendMessageTo(sender, prepareMessage(“exclusiveToken“));
state = Clear;

} else
sendMessageTo(root, msg);

root = sender;
}

3.4 Handling shared Requests of a remote TSD
Requesting the token for shared ownership is implemented as follows. If the local node is not
equal to root, the request is forwarded. Otherwise, a copy of the token can be granted, if the
local node itself owns a copy or if it is even holder of the free token. In the other case, the node
must be requesting or consuming exclusively and hence, the request must be enqueued locally:

void RWCSL::sharedRequest_Handler(Message *msg, int sender) {
if (root != myid())

sendMessageTo(root, msg);
else {

if((state==ConsumingRead)||(state==HoldingFreeToken)) {
numCopies++;
sendMessageTo(sender, prepareMessage(“sharedToken“));

else
sharedRequestQueue->enqueue(sender);

}
}

3.5 Receiving the Token from another TSD
Again, while releasing the token the new shared mode must be dispatched. For exclusive
releases, the code is basically the same as in the original CSL algorithm: If the local node num-
ber is different from the current root of the sender (msg->actRoot), the local root value

is set to the new value. The state must then be set to Consuming. However, we found that
applying the path compression technique in this case is prone to deadlock (even in the unmod-
ified CSL algorithm!). The deadlock danger arises from the fact that message delays are unpre-
dictable. We found that, even in the original algorithm, too early token messages may destroy
the distributed list of nodes connected by the next pointers. A workaround is not to modify the
root value when exclusive tokens are received.

void RWCSL::exclusiveToken_Handler(Message *msg) {
if (msg->actRoot != myid())

root = msg->actRoot; // dangerous!
state = Consuming;

}

If a TSD is receiving a shared token, it acts as follows:

void RWCSL::sharedToken_Handler(Message *msg, int sender) {
copyManager = sender;
if (msg->actRoot != myid()) // should always be true

root = msg->actRoot;
state = ConsumingRead;

}
The sender of the message sender must be the current manager of the copies of the token,
hence its value is stored in the local copyManager variable. Note that the path compression
technique also applies to this case: root can be set to the current root of the sender, which
may reduce the height of the directed tree significantly. At last the state is set to Consum-
ingRead.

3.6 Communication with user processes
We will now present the code actually requesting or a releasing a token by a user process (in
shared or exclusive mode).

3.6.1 Exclusive Request / Release
If a user process wants to enter a critical section exclusively, it calls the following method:

void RWCSL::doExclusiveRequest() {
if ((state == HoldingFreeToken) && (numCopies == 0)) {

state = Consuming;
return;

}
if (root != myid())

sendMessageTo(root, prepareMessage(“exclusiveRequest“));
else

first = myid();
state = Requesting;
root = myid();

}

If a user process wants the token for exclusive ownership and the local TSD is holding a free
token and the number of token copies is zero, the request can immediately be granted. Other-
wise, the message is forwarded to root. If root is set to the own node number, the request
must be stored in first.
The code to release the exclusive ownership of the token at the end of the critical section is:

void RWCSL::doExclusiveRelease() {
if (sharedRequestQueue->isEmpty()) {

if (next == NIL) {
state = HoldingFreeToken;
return;

}
sendMessageTo(next, prepareMessage(“exclusiveToken“));
next = NIL;
state = Clear;

} else {
first = next; next = NIL;
while(!sharedRequestQueue->isEmpty()) {

sendMessageTo(sharedRequestQueue->dequeue(),
prepareMessage(“sharedToken“));

numCopies++;
}
state = HoldingFreeToken;

}
}

If the queue of pending shared requests is empty and next is NIL, there are no pending
requests at the node, hence state is set to HoldingFreeToken. Otherwise, the exclusive
token is granted to the next requesting process. If there is a pending shared request, first is
set to next and copies of the token are granted to all requesters in the sharedRequest-
Queue queue.

3.6.2 Shared Request / Release
If a user process wants to enter a critical section for reading only, it calls the following method:

void RWCSL::doSharedRequest() {

if ((state == HoldingFreeToken) && (root == myid())) {

numCopies++;

copyManager = myid();

state = ConsumingRead;

return;

}

sendMessageTo(root, prepareMessage(“sharedRequest“));

state = RequestingRead;

}

If the node is holding a free token and the local node is currently root, a copy of the token can
be granted to the requesting process immediately. Otherwise, the request is forwarded to
root.

To leave the critical section, the following method is called:

void RWCSL::doSharedRelease() {
state = Clear;
if (copyManager == myid()) { // local shared release

state = HoldingFreeToken;
releaseToken_Handler(prepareMessage(“localRelease“))

} else // remote shared release
sendMessageTo(copyManager, prepareMessage(“releaseToken“));

}

... where the releaseToken message handler is called by the node copyManager and dis-
patches only shared releases of the token by:

void RWCSL::releaseToken_Handler(Message *msg) {
numCopies--;
if (numCopies != 0)

return;
if (first == myid()) { // I am the next to get the token

S = Consuming;
first = NIL;

} else if (first == NIL) { // nobody needs the token
state = HoldingFreeToken;

} else { // someone requested the token
sendMessageTo(first, prepareMessage(“exclusiveToken“);
first = NIL;
if (state == HoldingFreeToken)

state = Clear;
}

}

Like denoted in the introduction, a special case occurs when a local requester is blocked due to
the fact that the token is blocked by a non-zero numCopies value. This special case cannot
happen in the original algorithm, but is handled carefully in our extension.

4 Evaluation of the Extension

In this section, we evaluate the extended algorithm by integrating it into our forthcoming all-
software DSM system providing the shared virtual memory (SVM) abstraction [PA97] to par-
allel applications.

4.1 Overview of SVMlib
SVMlib (Shared Virtual Memory Library) has been designed to benefit from several features
provided by Windows NT, like preemptive multithreading and support for SMP machines.
Unlike most software DSM systems, the SVMlib itself is truly multithreaded. SVMlib also
supports multithreaded user-code to take advantage of clustered Windows NT SMP systems.
SVMlib currently runs on a cluster of Intel Pentium Pro 200 Dualprocessors connected by
FastEthernet via TCP/IP. SVMlib will also support efficient message passing using Dolphin‘s
implementation of the Scalable Coherent Interface [IE92]. The library also runs on Solaris
2.5.1, either SPARC or Intel.
The library provides the notion of distributed shared memory by providing virtually shared
memory regions, an approach widely used in other SVM implementations [BE95]. Page faults
within virtually shared memory pages are handled at user-level via structured exception han-
dling provided by the C++ run-time system of Windows NT. At the current stage, SVMlib sup-
ports two important memory consistency models: the widely-used, though fairly inefficient
sequential consistency and an all-software implementation of the lock associated scope consis-
tency [IF96]. The latter was chosen because of the tight integration with distributed synchroni-
zation primitives.

4.2 Integration of the extended Distributed Synchronization Algorithm into SVMlib
SVMlib makes extensive use of the proposed extended distributed synchronization algorithm
at different levels. First of all, it is directly being used at user-level to offer distributed reader/
writer locks to parallel application programs. The second level is the SVM layer itself, where
distributed synchronization is indirectly necessary to maintain consistency of the virtual shared
memory region managed.

• To support sequential consistency, the extended distributed synchronization algorithm
offers direct support for concurrent readers on virtually shared pages. This is fairly easy
achieved by associating the contents of a virtually shared page with a token handled by
the extended distributed synchronization algorithm;

• Protocols providing relaxed consistency associate consistency update information with
distributed synchronization primitives like distributed exclusive locks. This holds for the
classical lazy release consistency [KE92], as well as the fairly new scope consistency
[IF96]. Our extended algorithm allows an improved implementation of these consistency
models where update information is only generated and sent if a lock had been acquired
by the sender in exclusive mode. Thus, message traffic related to the propagation of con-
sistency information can be reduced if a portion of the participating processes acquires
the locks in read-only manner.

In the following subsection, we evaluate the performance of the modified algorithm in a event-
driven simulation. We also present real performance results within the UNIX version of SVM-
lib.

4.2.1 Performance Measurements of the Algorithm
Simulation
We compared the efficiency of the original CSL algorithm with our extension in terms of mes-
sage and time complexity for different mixes (shared / exclusive) of 100.000 token requests.
For our simulations, we assumed fixed cost for message sending, while both, token request
arrival times from user processes and the lengths of the critical sections are exponentially dis-
tributed. To compare with the original algorithm, we measured four different cases, ranging
from 0% read request percentage (e.g., every request is for exclusive ownership, like in the
original CSL algorithm) up to 80% read request percentage. Fig. 2 shows the message com-
plexity on a simulated system with up to 64 nodes for 0%, 30%, 50% and 80% read requests:

In the second benchmark, the mean virtual simulation time to acquire a token is measured
(either in shared or in exclusive mode, depending on the shared request percentage, ranging
from 0% to 80% of all requests):

Finally, we measured more different read request percentages (ranging from 0% to 100%) on a
fixed moderately sized simulated system with 16 nodes. The figure shows the message com-
plexities for shared requests („Req-Read“), shared release messages („Rel-Read“) compared
with an CSL-like exclusive access („Write Access“):

Fig. 2: Acquire Message Complexity

Fig. 3: Acquire Response Times

These benchmarks show that, up to 64 nodes, the message complexity to acquire a token in
“increasingly“ shared mode percentage is significantly more efficient than using the unmodi-
fied CSL algorithm for exclusive requests. For example, for 8 nodes and 80% read request per-
centage, the modified protocol needs to send about 2.3 messages on the average, compared to
slightly more than 3 messages for unmodified CSL. The message complexity for 0% read
request percentage is identical to CSL. There is, however, a scaling problem with our exten-
sion, when the number of nodes is really big (e. g., more than hundred processors). This is due
to the fact that, at high read request percentages, the queues of pending read requests grow lin-
early, with an increasing impact on the response times. In this case, on the other hand, the
drawback is complemented by the fact that our protocol extension allows a significantly higher
lock utilization by allowing parallel processes to enter their critical sections concurrently,
while original CSL does not.

Performance within SVMlib
Besides the above event driven simulation, we now present the „real-world“ performance of
the implementation of the modified algorithm within our SVMlib library. We compare our
algorithm (RWCSL) with the distributed reader / writer algorithm of Johnson et al. [JO96].
The results in Figure 4 where made using the Solaris 2.5.1 version of SVMlib, since our PC
cluster is not big enough at the moment. For the experiment, 8 SPARC SS-20 connected by 10
MBit/s EtherNet via TCP/IP were taken. The graphics shows two things:

• The mean total protocol overhead times (RWCSL Total) when acquiring and releasing a
token in increasingly shared mode compared to the algorithm of [JO96] (JO96 Total). To
measure the pure overhead, the critical sections were empty.

• The mean token acquire times (RWCSL Acq) when acquiring a token in increasingly
shared mode compared to the algorithm of [JO96] (JO96 Acq).

Fig. 4: Acquire/Release Message Complexity (16 Nodes)

.

5 Summary

We have presented an extension to an existing efficient algorithm for distributed mutual exclu-
sion. We showed how to extend the notion of single reader / multiple writer locks to distributed
environments and how to integrate this semantics in a practical and easy to implement way into
the path compression technique of Chang, Singhal and Liu [CH90]. We evaluated our new
extension by simulation and by experiments with a newly developed all-software, page-based
DSM system for clustered Windows NT systems. We found that our extension increases the
lock throughput and lock utilization significantly while preserving fairness between mixed
requests and no additional message complexity for exclusive requests. Future work includes
benchmarking the performance of our extension by non-synthetic (e.g. real world application)
synchronization loads.

References

 [BE89] J. M. Bernabeu, M. Ahamad: Applying a path-compression technique to obtain an effective distrib-
uted mutual exclusion algorithm, Proc. of the 3rd International Workshop on Distributed Algo-
rithms, Nice, France, 1989

 [BE95] Berrendorf, R.; Gerndt, M.; Mairandres, M.; Zeisset, S.: A Programming Environment for Shared
Virtual Memory on the Intel Paragon Supercomputer, ISUG Conference, Albuquerque, 1995

 [CH90] Y.-I. Chang, M. Singhal, M. T. Liu: An improved O(log n) mutual exclusion algorithm for distrib-
uted systems, International Conference on Parallel Processing, pp. III 295-302, 1990

Fig. 4: Performance within SVMlib (Solaris 2.5, SPARC SS-20, EtherNet, 8 Nodes)

0

1

2

3

4

5

6

0 20 40 60 80 100

Read Request Percentage

[ms]

RWCSL Total

JO96 Total

RWCSL Acq.

JO96 Acq.

 [CH96] Y.-I. Chang: A Simulation Study of Distributed Mutual Exclusion, in: Journal of Parallel and Dis-
tributed Computing, Vol. 33, No. 2, March 15, 1996

 [CH94] D.-K. Chen, H.-M. Su, P.-C. Yew: The Impact of Synchronization and Granularity on Parallel Sys-
tems, Center for Supercomputing Research and Development (CSRD), University of Illinois at
Urbana-Champaign (UIUC), Technical Report TR #942, 1994

 [DI89] A. Dinning: A Survey of Synchronization Methods for Parallel Computers, IEEE Computer, pp. 66-
77, July 1989

 [IE92] IEEE: ANSI/IEEE Std. 1596-1992, Scalable Coherent Interface (SCI). 1992.

 [IF96] L. Iftode, J. P. Singh, K. Li: Scope Consistency: A Bridge between Release Consistency
and Entry Consistency. 8th ACM Annual Symp. on Parallel Algorithms and Architectures
(SPAA‘96), June 1996

 [JO94] T. Johnson: A Performance Comparison of Fast Distributed Synchronization Algorithms, Univ. of
Florida, Dept. of CISE, Technical Report TR #94-032, 1994

 [JO96] T. Johnson: A Fair Fast Distributed Concurrent-Reader Exclusive Writer-Synchronization, Univ. of
Florida, Dept. of CISE, Technical Report TR #96, 1996

 [KE92] Keleher, P.; Cox, A. L.; Zwaenepoel, W.: Lazy Release Consistency for Software Distributed Shared
Memory. Proc. of the 19th Int. Symp. on Computer Architecture (ISCA‘92), pp 13-21, 1992

 [KR93] O. Krieger, M. Stumm, R. Unrau, J. Hanna: A Fair Fast Scalable Reader-Writer Lock, Proc. Inter-
national Conference on Parallel Processing, 1993

 [LA78] L. Lamport: Time, clocks and the ordering of events in a distributed system, Communications of the
ACM, Vol. 21, No. 7, pp. 558-565, July 1978

 [MA85] M. Maekawa: A sqrt(n) Algorithm for Mutual Exclusion in Decentralized Systems, ACM Transac-
tions on Computer Systems, Vol. 3, No. 2, pp. 145-159, May 1985

 [MA92] K. Makki, K. Been, P. Banta, N. Pissinou: On algorithms for mutual exclusion in distributed sys-
tems, International Conference on Parallel Processing, pp. II 149-152, 1992

 [MJ85] A. J. Martin, Distributed Mutual Exclusion on a Ring of Processors, Scientific Computer Program-
ming 5, 1985

 [NA87] M. Naimi, M. Trehel: An improvement of the log(n) distributed algorithm for mutual exclusion, 7th
International Conference on Distributed Computing, pp. 371-375, 1987

 [PA97] S. M. Paas, M. Dormanns, K. Scholtyssik, S. Lankes: Computing on a Cluster of PCs: Project Over-
view and Early Experiences, 1st Workshop on Cluster-Computing, TU Chemnitz-Zwickau, 1997

 [RA94] M. Ramachandran, M. Singhal: On the Synchronization Mechanisms in Distributed Shared Memory
Systems, Technical Report OSU-CISRC-10/94-TR54, 1994

 [RA89] K. Raymond: A Tree-Based Algorithm for Distributed Mutual Exclusion, ACM Transactions on
Computer Systems, Vol. 7, No. 1, pp. 61-77, 1989

 [SI94] A. Silberschatz, P. Galvin: Synchronization in Solaris 2, in: Operating System Concepts, 4th edi-
tion, Addison-Wesley, 1994, pp. 198-199

 [SI93] M. Singhal: A Taxonomy of Distributed Mutual Exclusion, Journal of Parallel and Distributed Com-
puting 18, pp. 94-101, 1993

 [SR92] P. K. Srimani, S.R. Das: Distributed Mutual Exclusion Algorithms, IEEE Comp Society Press, 1992

 [SU85] I. Suzuki, T. Kasami: A distributed mutal exclusion algorithm, ACM Transaction on Computer Sys-
tems, Vol. 3, No. 4, pp. 344-349, 1985

