
en
n
o-
to-
a-

a

f a
pied
nly
C1
is
m-
ing
ol-

to

om-
d

ps

re

e

Abstract. Passing messages between processes, as it is done wh
creating parallel applications based on MPI, does always involve
copying data from the address space of the sending process to the
address space in the receiving process. The fastest, and commonl
most efficient way for this is a direct copy operation between these
two locations without any intermediate copies. In this paper, we
present different techniques, implemented in SCI-MPICH, to
achieve such a behavior for MPI on SCI-connected clusters. These
techniques use both, CPU and DMA driven data transfers, and
require support through MPI API functions or are transparent for
the MPI application by making use of new advanced techniques in
the SCI driver software. We describe the implementation details in
SCI-MPICH and the underlying SMI (Shared Memory Interface)
library and evaluate the performance achieved in different commu-
nication setups.

Keywords:MPI, MPICH, SCI, zero-copy, overlapping of computa-
tion and communication

I INTRODUCTION

The development of fast interconnects for the PCI I/O b
helped to diminish the bottleneck in communication perfo
mance which the standard 100Mbit network in commodity clu
ters presents for many applications when scaling beyond a sm
number of nodes. This was essential to establish compute c
ters built of commodity components as a serious alternative
custom-designed solutions by the established HPC indus
However, next to supplying an interconnect with giga-bit link
level bandwidth, additional efforts are required to efficiently us
this increased communication bandwidth from a user-lev
application. The most commonly used programming model f
technical and scientific parallel applications is message-pass
with MPI [1][2] as the de-facto API. Therefore, a high-perfor
mance cluster computing platform for technical or scientifi
applications needs to deliver the performance of the interconn
through MPI to achieve high application performance.

A. The Need for Zero-Copy Protocols

The most commonly used communication network in com
modity clusters isFast Ethernetwith a link-level bandwidth of
100 MBit/s, equivalent to a peak bandwidth of 11.92 MiByte/s1.
Using the TCP/IP protocol, typical current-generation clust
r-
er
to
en

y

us
r-
s-
all

lus-
to

try.
-
e
el
or
ing,
-
c
ect

-

er

nodes come close to this value for inter-node transfer. But wh
looking at TCP/IP transfers via Gbit-Ethernet (1 GBit/s) or eve
the local loop-back device, the bandwidth of the TCP/IP prot
col suffers from numerous copy-operations performed on the
be-transmitted data on it’s way from the source to the destin
tion buffer in user-space [3]. The impact ofn additional copy-
stages in the data-path (resulting in an-way copy protocol),
each with a distinct bandwidth Bi, on the resulting effective
peak bandwidth Beff achieved for a data transmission via
channel with a peak bandwidth of Bpeakcan be expressed in a
simple formula:

(1)

The efficiency can be defined as

(2)

The graph in figure 1 illustrates this efficiency for the case o
communication setup where each inter-node message is co
twice (once on the sender- and once on the receiver-node), o
once or without any intermediate copies. For the two cases
and C2, a copy bandwidth of 200 MiByte/s is assumed, which
a good average value for the memory bandwidth of current co
modity nodes. The case C3 illustrates the scenario of lock
memory at a rate of 4 GB/s for zero-copy data transfer (see f
lowing chapters and [4]). The interconnect bandwidth Bpeakfor
the inter-node data movement is given on the x-axis from 0
300 MiB/s.

This graph demonstrates why zero-copy transfers are bec
ing more and more crucial for efficient utilization of high-spee
interconnects: for Bpeak= 10 MiB/s, even a two-copy protocol
achieves an efficiency of more than 90%. This efficiency dro
to less than 40% for Bpeak= 250 MiB/s, which is a typical band-
width for high-performance interconnects like SCI (see figu
5).

B. Related Work

Different thin communication protocols and interfaces hav
been specified and implemented [5][6] which move the perfo
mance-critical path of the communication completely into us
space, avoiding costly context-switches and copy operations

1. To avoid confusion, we are using the standard base-ten (M)
and base-two (Mi) abbreviations for the respectiveMega
(Kilo, Giga) prefixes.

Beff
1

1
Bpeak
-------------- 1

Bi

i 1=

n

∑+
---=

ε

ε
Beff

Bpeak
--------------=
Efficient Asynchronous Message Passing via SCI
with Zero-Copying

Joachim Worringen1, Friedrich Seifert2 and Thomas Bemmerl1
1 Lehrstuhl für Betriebssysteme, RWTH Aachen
Kopernikusstr. 16, D-52056 Aachen, Germany.
e-mail: contact@lfbs.rwth-aachen.de,
WWW: http://www.lfbs.rwth-aachen.de .

2 Lehrstuhl für Rechnerarchitektur, TU Chemnitz
Straße der Nationen 162, D-09107 Chemnitz, Germany
e-mail: friedrich.seifert@informatik.tu-chemnitz.de
WWW: http://www.tu-chemnitz.de/informatik/RA .

ing
e-
e

. It
ith
e
a-
r-

ers
-
rk
ng

bers
1].
an

or-
on,

nce
-
-
I
ic),
n-
a

he
to-

ro-
ks.
tes
for-
he

s
of
i-
nd

e-
er-

pe-
a
I

f
PI

alled
move data from the user-buffer to kernel-buffers. The Virtual
Interface Architecture(VIA) [7] describes a common interface
to such thin communication architectures. Naturally, such com-
munication protocols serve as a basis for MPI implementations.
This can be done by adding a new communication device to the
MPICH distribution [8] as it was done in [9][10]. Others have
designed new MPI implementations which make use of the VI
architecture [11][12]. Although many of these MPI implementa-
tions claim to support zero-copy transfers, only very few do sup-
ply detailed information on the implementation and effects on
performance [13][14], but do not compare the zero-copy proto-
col performance to other possible protocols. [15] does make
detailed performance comparisons between different protocols
and interconnects which show the good suitability of SCI for
zero-copying. However, these are measurements for VIA, not
for MPI.

The other known implementation of MPI for SCI-connected
clusters, ScaMPI [16], does not use DMA or zero-copy tech-
niques. [17][18] describe the implementation of MPI on the pro-
prietary Memory Channel. However, current performance
numbers [19] indicate that little improvement has been made in
the last years.

C. Zero-Copy with SCI

Naturally, SCI [20] with its transparent remote memory access
is the leanest inter-node communication protocol that can be
thought of, representing pure zero-copy. However, the imple-
mentation of SCI via the I/O bus implies several restrictions
which so far disallowed for a general zero-copy communication
between arbitrary user-allocated memory buffers. It is only
recently that work has been done to be able to expose arbitrary
regions of a process’ address space for direct remote access via
the SCI interconnect [4] byregisteringa user-allocated memory
buffer with the SCI driver. In this paper, we will show how this
new technique has been integrated in SCI-MPICH and demon-
strate the impact on MPI communication performance.

D. MPI Performance Metrics

The characterization of the performance of an MPI platform,
consisting of node and interconnect hardware and the MPI
library, and even more the comparison of the performance of
different MPI platforms is a very delicate topic. Ultimately, such

a comparison of characteristics is only possible by compar
the effective performance of a given application solving a sp
cific problem. However, this approach is naturally limited by th
uncountable number of possible application and problems
leads to a situation where each MPI platform is presented w
its optimal application-problem combination; a projection to th
effective performance of other application-problem combin
tions is not possible without analyzing the communication cha
acteristics of both application-problem combinations.

The other extreme are micro-benchmarks which give numb
for the performance characteristics for a synthetic, highly lim
ited workload. The most frequently presented micro-benchma
performance numbers are bandwidth and latency for ping-po
communication between two processes although these num
are not necessarily related to high application performance [2
However, these numbers help to evaluate the efficiency of
MPI implementation when they are compared to the raw perf
mance number of the underlying interconnect. For this reas
this paper will also present such numbers.

There are numerous other characteristics for the performa
of MPI implementations, like performance of collective opera
tions or the possibility of overlapping communication and com
putation. The latter is not supported by many MP
implementations (because it is not a required characterist
Thus, many MPI applications are not designed to exploit pote
tial performance benefits from this approach although such
potential does exist [22]. Therefore, we will emphasize on t
support of asynchronous communication with zero-copy pro
cols that is offered by SCI-MPICH.

Finally, application-kernel benchmarks represent a comp
mise of application-problem evaluation and micro-benchmar
The high acceptance of the NPB benchmarks [23] demonstra
the relevance of this approach. This paper evaluates the per
mance impact of zero-copying for one application kernel of t
NPB benchmark suite.

E. Organization of the Paper

The next chapter will explain how the SMI library support
memory registration. Chapter III illustrates how the designer
an MPI application can optimize the application for commun
cation performance with respect to zero-copy protocols, a
describes the implementation of thetrue zero-copyprotocols in
SCI-MPICH. In chapter IV, the performance of the existing on
and two-copy protocols will be compared with the expected p
formance of the zero-copy protocol variants.

II M ANAGING SHARED MEMORY WITH SMI

TheShared Memory Interface (SMI)[24] is a user-level library
to support shared memory programming on SMPs and es
cially on SCI-connected clusters of SMPs, representing
NUMA-System. SCI functionality is accessed via the SISC
API which is much more low-level. The SMI API consists o
70+ functions and has some intended similarity with the M
API.

A. Registering and Sharing Memory

Establishing shared memory areas between processes (c

0 100 M 200 M 300 M
Bpeak [Byte/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

ffi
ci

en
cy

C3 (locking @ 4GB/s)
C2 (one copy @ 200MB/s)
C1 (two copies @ 200MB/s)

Fig. 1. Efficiency of n-way copy communication for variable inter-
connect bandwidth

ote
ser
-

o
this
.

ry

n

e
red
ed
MI
to
n)

p-
ce.

ad,
ed
a
CI
fset
er-
e
ed

A.

and
ng
el
le-
c-
ed
s-

e
w-

ls,

also
er.
regions in SMI) is done via theSMI_Create_shreg() func-
tion. This function can be called individually or collectively,
depending on thetypeof the region to be established. To register
an already allocated buffer with the SCI driver and export it, a
region of typeLOCALwith the attributeREGISTEREDneeds to
be established, passing the address of the user-allocated buffer.
If this region should not be visible to external nodes, but should
only serve as a source for DMA transfers, the additional
attribute PRIVATE needs to be provided.
SMI_Create_shreg() calls the appropriate SISCI functions.

Another process which wants to access a memory region of
typeLOCALexported by another process needs to create a region
of typeREMOTEor RDMA. A REMOTEregion allows full transpar-
ent PIO and DMA access, while anRDMAregion can only be
accessed by DMA operations because it is not mapped into the
address space of the remote process. This simplifies the connec-
tion to the remote segment as described in [4] and is sufficient
for asynchronous zero-copy data transfers in most cases (see
II.B).

The required information to establish the SCI shared memory
region or DMA target region are the SCI segment id and the
PCI-SCI adapter id of the remote segment. This information is
distributed between all processes in the case of a collective
establishment of a new region. If the region is established in a
non-collective manner as it is done withRDMAand REMOTE

regions, it needs to be transmitted separately from the exporter
of the region to the importer either by SMI-supported communi-
cation (SMI_Send() / SMI_Recv() or shared memory) or by
external communication means like MPI.

B. Alignment

Shared memory regions need to be placed and sized with page-
size granularity. In contrast, user-allocated buffers are usually
not aligned this way, but start at arbitrary addresses. This is not
relevant to the process registering its user-buffer as the address
of the buffer remains the same. It only means that eventually
some of the memory before and after the user memory will be
registered, too. Potential multiple locking of different user-buff-
ers located on the same page is handled by the LMM (locked
memory manager[24], kernel module to lock/pin down arbi-
trary memory regions). If a remote process wants to access the
registered user-buffer and maps the related shared memory
region into its address space, the starting address of this region
is the beginning of the remote user-buffer - the SCI driver
includes the offset when connecting to a remote segment.

For DMA data transfer operations, certain alignment restric-
tions concerning addresses, offsets and sizes need to be met
(which is the case for usual basic data types). In case that a mis-
alignment occurs, the SMI library can try to eliminate this using
PIO operations which transfer the misaligned data using the
CPU (which has no alignment boundaries). This requires that
the remote region is mapped into the local address space.

C. Detection of Memory Type

Because SMI keeps track of all local and remote shared mem-
ory regions established by the user, it can determine if a given
memory address range is made up of non-shared memory, local

SCI shared memory, local non-SCI shared memory or rem
SCI shared memory and if the memory was allocated by the u
or by the SCI driver. This avoids duplicate registration of mem
ory, and allows higher software levels (like SCI-MPICH) t
choose an appropriate way of accessing the memory behind
address range (to choose the right protocol, for SCI-MPICH)

D. Data Transfer

Although the standardmemcpy() function can be applied on
shared memory regions, SMI also provides optimized memo
copy functions: SMI_Memcpy() for synchronous copy opera-
tions, and SMI_Imemcpy() for asynchronous, DMA-based
copy operations on shared memory regions.SMI_Memtest()

andSMI_Memwait() are used to test or wait for the completio
of an asynchronous memory transfer.SMI_Memcpy() /
SMI_Imemcpy() accept additional attributes which describe th
type of the source and destination memory: local non-sha
memory, local SCI-registered memory or remote SCI shar
memory. These attributes can also be determined by the S
library itself as described above. However, it is more efficient
pass the information (which is often known to the applicatio
down to the SMI library using the described attributes.

All memcpy-style functions for data transfer require a ma
ping of source and target memory into the local address spa
However, mapping remote memory comes with high overhe
and is not required if block-transfers of data are to be perform
via DMA. The specification of a remote memory location as
target or source for a DMA transfer does only consist of the S
segment number, the SCI node number and possibly an of
relative to the start of the segment. To support such low-ov
head DMA transfers, the SMI library offers the region typ
RDMAwhich does not provide an address, but is only to be us
with SMI_Put() and SMI_Get() functions which write to
respectively read from a remote memory location using DM
Additionally, SMI_Iput() andSMI_Iget() functions can be
used for asynchronous transfers.

III Z ERO-COPY SUPPORT INSCI-MPICH

Message Passing is the dominant, because most scalable
portable programming model in high-performance computi
today [24]. The MPI standard made this programming mod
extremely portable. This also means that an efficient MPI imp
mentation is crucial for any high-performance platform to su
ceed. At the Lehrstuhl für Betriebssysteme, we have develop
an open-source implementation of MPI for SCI-connected clu
ters named SCI-MPICH [27][28] which we will use to evaluat
the benefits of zero-copy protocols on the performance of lo
level message-passing and on application performance.

SCI-MPICH uses three different message transfer protoco
depending on the size of the payload to be transferred:short (0
up to 128 Byte),eager(129 Byte up to 32 kiB) andrendez-vous
(more than 32 kiB)1. By default, all protocols perform PIO-
based data transfer. The eager and rendez-vous protocol do
support DMA-based message transfers on demand of the us

1. The limits for short and eager protocols are freely adjust-
able by the user; we give the default settings.

ers

on
ps:
the
g-
as

ry
an
m-
cal

m-
e
PI

or

th

us
se-
by

no

ng
for
he
ent
de-
are

s a
However, the size of messages transferred via the eager proto-
col is usually too small1 to make registering of the communica-
tion buffers and DMA transfer efficient: copying 32kiB to
remote memory does only take 195 s,while registering the send
buffer and transferring the data via DMA would take at least
400 s.Also, zero-copy transfers are generally not possible with
the eager protocol due to the principle of this protocol of deliv-
ering messages unannounced. Therefore, we concentrate on
implementing a zero-copy variant of the rendez-vous protocol,
which promises the best performance gain: registering and thus
eventually locking a memory region in the kernel is at least 5
times faster than copying it once (comparing the rate the LMM
achieves for registering [24] and typicalmemcpy() rates).

The existing synchronous and asynchronous implementation
of the rendez-vous protocol is described in [27][28]. Asynchro-
nous message transfers are especially valuable in combination
with DMA for CPU-less message transfers in the background,
supported i.e. byMPI_Isend() / MPI_Wait() .

A. Synchronous PIO-Transfers

CPU-driven PIO-transfers are not well suited for asynchronous
transfers as a second CPU is required to make it efficient. There-
fore, we only consider synchronous PIO transfers for which a
zero-copy implementation removes the receiver-side copy oper-
ation from the rendez-vous memory pool into the user-allocated
receive buffer by registering and exporting this buffer as a SCI
shared memory segment. This segment will be imported by the
sender and filled up with the data from the sender buffer. The
related synchronous zero-copy PIO rendez-vous protocol is
illustrated in figure 2.

Compared to the original protocol, this variant uses a new type
of control message: OK_TO_SEND_ZC. While the
OK_TO_SEND message contained an offset and size of a buffer
in the rendez-vous memory pool of the receiver, the
OK_TO_SEND_ZC message informs the sender on the SCI
segment id, SCI adapter id and offset by which the sender can
access the exported receive buffer. When the receiver reads a
CONTINUE control message for a completed message trans-

fers, it checks if this was a zero-copy transfer and de-regist
the buffer with the SCI driver.

B. DMA-Transfers

Zero-copy DMA transfers require the same communicati
protocol as zero-copy PIO transfers plus additional local ste
the user-allocated send buffer needs to be registered with
SCI driver in order to be used as a DMA source. This local re
istration can overlap with the registration of the receive buffer
illustrated in figure 3.

When both, local memory registration and remote memo
registration and export are complete, the DMA transfer c
start. On completion, the CONT message indicates the co
pleteness of the transfer to the receive process, while the lo
process de-registers the send buffer.

C. MPI Support for Memory Allocation

The overhead that occurs with registering user-allocated me
ory for SCI zero copying reduces the effective bandwidth. W
have introduced techniques into SCI-MPICH based on the M
interface which the user can use to reduce this overhead.

C.1 Persistent Communication

MPI supports a mode of communication with fixed send
receive buffers which is calledpersistent communication.A
request for persistent communication is initialized once wi
MPI_Send_init() or MPI_Recv_init() respectively and
bind the list of communication arguments for an asynchrono
(non-blocking) send or receive operation to the request. Sub
quently, this request may be activated as often as required
passing its handle toMPI_Start() . This will cause the associ-
ated communication operation to start. If the request is
longer needed, it can be deleted withMPI_Request_free() .

Persistent communication supports efficient zero-copyi
because the user specifies buffers that will frequently used
communication. Registering these buffers with SCI once t
request is created allows zero-copy operation for all subsequ
operations without the overhead of repeated registering and
registering. Because persistent communication operations
always asynchronous, they will be performed via DMA.

However, the setup of a persistent operation is defined a

1. On the described test platform, eager messages deliver less
bandwidth than rendez-vous messages for message sizes of
above 38kiB due to the memcpy()-pipelining in the rendez-
vous protocol.

Fig. 2. PIO-based zero-copy rendez-vous protocol

S e n d e r R e c e i v e r

R E Q U E S T _ S E N D

O K _ T O _ S E N D _ Z C

C O N T I N U E

R e q u e s t a r e c e i v e b u f f e r .
M P I _ S e n d ()

M P I _ R e c v ()

I m p o r t r e c e i v e b u f f e r a n d
c o p y s e n d b u f f e r t o r e c e i v e b u f f e r

D e - r e g i s t e r l o c a l s e n d b u f f e r a n d
u n m a p r e m o t e r e c e i v e b u f f e r .
M e s s a g e t r a n s f e r i s c o m p l e t e d

S t a r t r e c e i v i n g m e s s a g e .

R e g i s t e r a n d e x p o r t r e c e i v e b u f f e r a n d
r e t u r n i m p o r t i n f o r m a t i o n t o t h e s e n d e r .

D e - r e g i s t e r r e c e i v e b u f f e r ;
M e s s a g e t r a n s f e r i s c o m p l e t e d .

C P U b u s y
M P I A p p l i c a t i o n
T h r e a d

C o n t r o l M e s s a g e
C P U p o l l i n g o r
b l o c k i n g

Fig. 3. DMA-based zero-copy rendez-vous protocol

S e n d e r R e c e i v e r

R E Q U E S T _ S E N D

O K _ T O _ S E N D _ Z C

C O N T I N U E

R e q u e s t a r e c e i v e b u f f e r
R e g i s t e r l o c a l s e n d b u f f e r

M P I _ I s e n d ()

M P I _ I r e c v ()

M P I _ W a i t ()M P I _ W a i t ()

I m p o r t r e m o t e r e c e i v e b u f f e r .
S t a r t D M A t o f i l l r e m o t e u s e r b u f f e r f r o m
l o c a l u s e r b u f f e r v i a D M A a n d s e t u p c a l l b a c k

C a l l b a c k : s e n d c o m p l e t i o n m e s s a g e
D e - r e g i s t e r l o c a l s e n d b u f f e r a n d u n m a p
r e m o t e r e c e i v e b u f f e r ;
m a r k m e s s a g e t r a n s f e r a s c o m p l e t e d

A p p l i c a t i o n t h r e a d c h e c k s f o r
t r a n s f e r c o m p l e t i o n .

P o s t t h e r e c e i v e r e q u e s t

L o o k u p q u e u e o f p o s t e d r e c e i v e s ,
r e g i s t e r a n d e x p o t r e c e i v e b u f f e r
a n d s i g n a l t h e s e n d e r .

D e - r e g i s t e r r e c e i v e b u f f e r
M a r k m e s s a g e t r a n s f e r a s c o m p l e t e d .

A p p l i c a t i o n t h r e a d c h e c k s f o r
t r a n s f e r c o m p l e t i o n .

C P U b u s y
M P I A p p l i c a t i o n
T h r e a d

D M A b u s y
c h _ s m i S i g n a l
T h r e a d

S i g n a l e d C o n t r o l M e s s a g e

ls
m

ort
in

ral

al
it
on
eg-
is

ped
the
if
er-

ote
he
flu-

me
ent
an
ch
be
m-
er,
e,
r,
to

can
or
a

er

I-
nd

al
strictly local operation. This means that the matching remote
buffer can not be determined by SCI-MPICH. Thus, this buffer
can not be imported during the setup of the operation, but only
after the first communication has actually taken place.

C.2 Memory Allocation via MPI

In the context of single-sided operations, the MPI-2 Standard
definesMPI_Alloc_mem() andMPI_Alloc_free() functions
to allocate and free memory of an implementation and platform
dependent type which allows the MPI library together with the
communication subsystem to perform better in case these buff-
ers are used for communication. SCI-MPICH has implemented
these functions to work with local SCI segments. These buffers,
if used for communication operations, do not need to be regis-
tered, but can be used immediately as a source or a target for
PIO or DMA zero-copy style operations.

For allocation memory via MPI, two thresholds are defined:
the minimum size of a memory request to be served from SCI
segments, and the minimum size of a request for which a sepa-
rate SCI segment will be created. Transfers below the first
threshold would not benefit from zero-copying because they
would be transferred using the eager protocol. Allocations
below the second threshold will be served from a single SCI
segment, serving as a „buffer pool“. Allocations above this
threshold will be served by creating a distinct local SCI seg-
ment. If the available SCI resources are insufficient, a standard
memory allocation of non-shared memory will be performed.

By the means of an MPI Info handle, a memory request to
MPI_Alloc_mem() can be further specified by the attached
attributes (and their possible key values). Two attributes are rec-
ognized:
• must_be_shared (no key value): The request shall fail if it

can not be served from a regular SCI segment.
• must_be_aligned (with key value): The starting address

returned for this request must be aligned according to the sup-
plied key value. A key value of zero indicates that the MPI
library should align the memory according to its own require-
ments (SCI-MPICH will return page-aligned memory in this
case).

C.3 Replacement ofmalloc() andfree()

Using the functions described above may require modifica-
tions of the source code. A transparent support can be achieved
by replacing themalloc() and free() functions of the C-
library with functions that try to allocate physically contiguous
memory. For MPI applications, this can easily be achieved with
definitions in thempi.h include file which redirect calls to
malloc() and free() to MPI_Alloc_mem() and
MPI_Free_mem() , respectively. This has the advantage that
applications only need to be recompiled, not edited. On the
other hand, this approach may be sub-optimal because the lim-
ited resource of physically contiguous memory may be wasted
for user memory that will never serve as a MPI send or receive
buffer. A more flexible approach, in combination with the tech-
nique described in the next chapter, will be to use normal mem-
ory allocation and let these buffers be registered for SCI access
afterwards (if necessary). But also for this case, a redirection
through the MPI allocation functions makes sense to allocate
page-aligned memory.

D. Caching and Lazy-release of SCI Segments

As illustrated above, the performance of zero-copy protoco
benefits from leaving out intermediate copies, but suffers fro
the overhead of the registration of local memory and the imp
and mapping of remote memory. The techniques described
chapter III.C may help, but do not have effect for the gene
case and are not transparent to the application.

Generally, for each zero-copy send operation, two addition
latencies timport will t un-import occur at the sender process as
needs to import and un-import the receive buffer. The durati
of these latencies depends on the type of the remote SCI s
ment (regular or user-allocated) and whether the buffer
mapped into the address space. If the receive buffer is map
into the local address space, the import latency scales with
size of this buffer (see figure 4). This effect does also occur
the remote SCI segment is a registered user-buffer [4]. The ov

head for registering a local segment or connecting to a rem
regular SCI segment is significantly lower. Nevertheless, t
non-negligible duration of these operations has a negative in
ence on the effective bandwidth.

Because communication is often performed using the sa
memory buffers (but not necessarily by means of persist
communication) more than once throughout the execution of
application, it is desirable that a registration or an import of su
buffers needs to be performed only once. This behavior could
achieved by simply not de-registering or disconnecting a me
ory buffer after the communication has completed. Howev
since the SCI resources are limited (local SCI memory siz
shared memory limits, ATT entries on the PCI-SCI-Adapte
SISCI descriptors and others), this technique may well lead
the situation where a requested registration or connection
not be performed, possibly leading to performance reduction
even communication deadlock (if the request is related to
communication operation which can not be performed by oth
means).

For this reason, we introduced a software layer into SC
MPICH which caches the requests for operations on local a
remote SCI segments (abstracted asSMI shared regionsfrom
SCI-MPICH). This layer provides the required services for loc

131 k 262 k 524 k 1 M 2 M 4 M
remote segment size [byte]

0

1000

2000

3000

4000

5000

6000

to
ta

l l
at

en
cy

 [µ
s]

import segment
un-import segment

Fig. 4. Latency for importing and un-importing remote memory
when it is mapped into the local address space

of

ds
e-
hed
h-
the
nd
as
of
al

),
ible

ect
ar
um-
is

or
I-
s)

e

ol
al-
and remote SCI segment operations via relatedacquire()

and release() functions. Internally, acache entry is
assigned to each SCI segment which contains all relevant infor-
mation, including access counters for a displacement strategy
and anin-use counter. Thus, a release request is not directly
translated into a SISCI operation, but does only decrement the
in-use counter of the related cache entry which has been
increased by a precedingacquire()request. Anacquire()request
related to a SCI segment which has been used before and is still
in the cache (or even is currently in use) can be efficiently satis-
fied by returning a reference to the related SCI segment.

The cache displacement strategy comes into operation when an
acquire() request can not be served from the cache, and the
related SISCI operations fail due to resource shortage. The
cache scheduler than tries to free resources by deallocating SCI
segments with an in-use counter of 0 until the request can be sat-
isfied (or no more SCI segments can be deallocated). To ensure
consistency between the processes concerning the withdrawal of
exported segments, the segment event callback mechanism
offered by SISCI is used. This way a remote process is informed
if a segment to which he is connected is withdrawn, and can
synchronize its local segment resources accordingly.

Different scheduling strategies for the cache displacement can
be employed, likeleast-recently-used(LRU), least-frequently-
used(LFU), best-fit(based on the SCI segment size) orrandom.
Also, a multi-level strategy may be used. Currently, we have
implemented the LRU strategy. Another strategy, namedimme-
diate, which does not cache at all, but immediately deallocates
each SCI segment if itsin-usecounter becomes 0, is used to
evaluate the performance impact of the lazy-release technique.

IV PERFORMANCEEVALUATION

Before evaluating the results of the benchmarks for different
protocol implementations, it is necessary to determine the key
performance characteristics of the evaluation platform. This
platform is a cluster of 8 dual-SMP-nodes running Linux 2.4.41.
Each node hosts 2 Pentium-III CPUs (800MHz, 8kiB 1st-level
cache, 256kiB 2nd-level cache) and 512MB RAM (in 2 256MB
PC133-DIMMs) on a Supermicro 370DLE mainboard which is
equipped with a Serverworks ServerSetIII LE chipset. The inter-
connect is made of one Dolphin ICS PCI-SCI adapter running in
a 64-bit 66MHz PCI slot per node. All 8 PCI-SCI adapters are
connect in a single ringlet. Figure 5 shows the relevant band-
width values for the different kinds of memory-to-memory
transfers which are possible on this platform:
• memcpy() local-local:copying between two local non-shared

memory regions using memcpy()
• memcpy() SCI-local:copying between a local SCI-shared and

a local non-shared memory region using memcpy()
• PIO write SCI:copying from a local non-shared to a remote

shared memory region using an optimized copy function
• DMA write SCI:copying from a local non-shared to a remote

regular SCI region using the DMA engine of the PCI-SCI
adapter.

Measuring memory bandwidth can be done in a variety
ways. For this evaluation, we performed a big number ofmem-

cpy() -style operations on a pair of allocated buffers. This lea
to hot caches, but is similar to typical MPI communication sc
narios where the message buffers have recently been touc
and may thus reside in the cache. All non-DMA transfer tec
niques show a distinctive dependency on the sizes of
installed 1st- and 2nd-level-caches, as indicated in table 1 a
degrade drastically for buffers sized more than twice as big
the 2nd level cache. This leads to DMA being the fastest way
copying more than 512kiB of data between two remote or loc
memory locations.

A. Rendez-Vous Protocol Variants

Regarding the different data transfer modes (PIO and DMA
the synchronous and asynchronous variants and the poss
types of source (local) and target (remote) buffers with resp
to their accessibility via SCI (not accessible via SCI, regul
SCI segment, or user-allocated registered SCI segment), a n
ber of variants for the rendez-vous protocol in SCI-MPICH
available and might implicitly (determined by the SCI-MPICH
library based on resource characteristics and availability)
explicitly (determined by the user via the configuration of SC
MPICH and the use of non-blocking MPI communication call
be used during the execution of an MPI application. Below, w
describe these variants that we will evaluate later on.

A.1 Synchronous PIO-based 1-way Copying (s-PIO-1)

This protocol requires two copy operations:
• Lns-Rs:from the local send buffer to the remote memory po

for incoming messages (performed by the sender via loc

1. The benchmarks have been run with non-SMP-Kernels due
to a SCI driver or kernel problem with DMA transfers
between registered user-allocated buffers.

8 64 512 4 k 33 k 262 k 2 M
blocksize [byte]

1

10

100

1000

ba
nd

w
id

th
 [M

iB
/s

]

DMA write SCI
PIO write SCI
memcpy() SCI-local
memcpy() local-local

Fig. 5. Memory transfer bandwidth values on evaluation platform

transfer type peak at sustained

local-local 3624 16kiB 199

local-SCI 1343 64kiB 207

SCI-PIO 171.2 64kiB 144.3

SCI-DMA 247.6 inf 247.6

Tab. 1. Key memory transfer performance values

we
The

n
th
-

h-
A

or
or
ake

i-
nonshared to remote-shared memcpy operation)
• Ls-Lns: from the local memory pool for incoming messages

to the local receive buffer posted by the application (per-
formed by the receiver via local-shared to local-nonshared
memcpy operation)

However, these two operations are pipelined very efficiently,
and thus the effective bandwidth is nearly as high as the lower
bandwidth ofLns-Rs andLs-Lns (which is usuallyLns-Rs).

A.2 Asynchronous DMA-based 2-way Copying (a-DMA-2)

Without the possibility of registering user-allocated buffers,
the DMA protocol requires three memory transfer operations:
• Lns-Ls: from the local send buffer to the local SCI shared

memory buffer which will be used as DMA source (per-
formed by the sender via memcpy operation)

• Ls-Rs: from the local DMA source to the remote DMA target
buffer (via DMA-write by the sender)

• Ls-Lns: from the local memory pool to the local receive
buffer.

A.3 Asynchronous DMA-base 1-way Copying (a-DMA-1)

By registering the send buffer with the SCI driver (or using a
send buffer allocated from an SCI memory area, as in this case),
the memory transfer operationLns-Ls (A.2) can be omitted.
Instead, DMA directly uses the send buffer as it’s source. The
destination buffer, however, is not imported, which means that
the bandwidth consists of the consecutive bandwidthsLs-Rs
(DMA) andLs-Lns(PIO).

A.4 Asynchronous DMA-based 0-Copying (a-DMA-0)

The DMA-based zero-copy protocol safes even two copy oper-
ations when compared with the protocol as described in A.2.
The two required locking operations for user-buffer registering
can fully overlap as illustrated in figure 3 when the small latency
of the initial control message is neglected. However, the import
and un-import latency of the remote segment can not be hidden
(in case they do actually occur).

B. Ping-pong Bandwidth

To validate the protocol implementations, we measured ping-
pong bandwidth values between two processes on different
nodes using thempptest [29] benchmark. We compare the
existing rendez-vous message transfer protocols in SCI-MPICH
which make no use of zero-copying techniques with the new
zero-copy protocols.

We modified the benchmark to be able specify the desired type
of memory allocation. We tested with communication buffers
allocated viaMPI_Alloc_mem() , which means that the com-
munication buffers are persistently mapped into the SCI address
space, or viamalloc() , in which case the buffers need to be
registered to serve as DMA source or target regions.

If the communication buffers were allocated via
MPI_Alloc_mem() , SCI-MPICH can always use the a-DMA-0
protocol without registering the buffers because they are allo-
cated fromregular SCI segments (a-DMA-0-regular). The vari-
ant withmalloc() -allocated buffers is labeleda-DMA-0-user.

The resulting performance of all the evaluated protocol vari-
ants is depicted in figure 6.

To evaluate the effect of the SCI segment caching, we have

performed another series of ping-pong benchmarks in which
varied the number of messages exchanged in one run.
results are given in table 2 for different message sizes.

Tab. 2. Effect of SCI segment caching ona-DMA-0 transfers on ping-
pong bandwidth (MiB/s)

C. Overlapping Communication and Computation

The effect of overlapping communication with computatio
when using non-blocking MPI communication operations wi
SCI-MPICH has already been described in [28]. We will com
pare the results of this implementation with our current tec
nique to illustrate the performance that zero-copy via DM
delivers for asynchronous communication.

Figure 7 shows the pseudo code for a basic benchmarkoverlap
to simulate overlapping of communication and computation. F
all synchronous protocols, the effective MPI communication f
rendez-vous messages (messages bigger than 32kiB) will t
place in MPI_Wait() , sequentializing communication and

reps
segment
caching

segment
type

128kiB 512kiB 2MiB

1 no regular 78.44 154.80 203.48

user 39.77 57.59 64.32

yes regular 81.83 158.27 205.65

user 43.13 59.87 64.89

10 no regular 97.21 172.43 210.28

user 55.81 85.92 98.38

yes regular 145.66 204.05 222.79

user 118.50 149.10 158.22

100 no regular 100.45 175.01 211.08

user 57.58 89.66 103.73

yes regular 159.41 210.37 224.94

user 144.20 177.07 185.17

66 k 131 k 262 k 524 k 1 M 2 M 4 M
msgsize [byte]

0

50

100

150

200

250

ba
nd

w
id

th
 [M

iB
/s

]

a-DMA-0-regular
a-DMA-0-regular-nocache
a-DMA-0-user
a-DMA-0-user-nocache
a-DMA-1-user
a-DMA-2-user
s-PIO-1-user

Fig. 6. Ping-pong bandwidth for different rendez-vous protocol var
ants

ase

arily
iB

e

computation. The asynchronous protocols do transfer the data
without any MPI library activities of the application thread,
allowing for overlapping of computation and communication.
The spinning can be performed by a selectable number of
threads, and in two different ways:
• FIXED: spinning on a single variable for a fixed period of

time. This keeps the CPU busy, but incurs no memory
accesses.

• DAXPY: performing a specified number of DAXPY-type oper-
ations () on vectors of doubles with
the length of the message which is transferred. This will also
stress the memory subsystem.

We have performed this benchmark for the s-PIO-1, a-DMA-
0-user and a-DMA-0-regular variants of the rendez-vous proto-
col on two single-CPU nodes with one spinning thread, transfer-
ring messages of different sizes withFIXED and DAXPY
spinning. We also ran the benchmarks without transferring any
messages, which shows the pure busy period which the CPU is
spinning (labeledperfect hiding in the plots).

The results are depicted in figure 8 and indicate that the over-
lapping does become nearly perfect if the duration of the com-
putation period passes the break-even point. The break-even
point, which is the required length of the computation period to
make a zero-copy DMA protocol more efficient than synchro-
nous PIO, is the difference in the latency of these two protocols.
For messages from 64kiB length up, the transfer with a-DMA-
0-regular is always more efficient than s-PIO-1. For a-DMA-0-
user, the break-even point is reached with about 30k DAXPY
operations, which is equivalent to about 200 on this platform.

The overlapping efficiency of the overlapping is derived from
the duration of the computation period only (lbusy), the shortest
latency of a message transmission only (lmsg) and the duration
of the combined communication and computation operation
(loverlap). Thus, the efficiency of a givenlbusy can be
expressed as

(3)

The efficiency for the three test setups of figure 8 for thesatu-
ratedcase (this means where for all protocol vari-
ants) is given in table 3. The efficiency for the synchronous
protocol is always close to 0, indicating that no overlapping
takes place. For the asynchronous, DMA based protocols, the
efficiency is considerably higher, and getting closer to 1 the
longer the message to be transferred is. It is also visible that the

stress on the memory bus using DAXPY spinning does incre
the startup latency for DMA, too, if the efficiency for the 64kiB
cases are compared. The bandwidth does not necess
decrease, as is visible by the increasing efficiency for 256k
message transfers with DAXPY spinning.

latency = MPI_Wtime()

if (sender)

MPI_Isend(msg, msgsize)

while (elapsed_time < spinning_duration)

spin (with multiple threads)
MPI_Wait()

else

MPI_Recv()

latency = MPI_Wtime() - latency

Fig. 7. Pseudo Code foroverlap benchmark

y j[] A x⋅ j[] y j[]+=

µs

εoverlap

εoverlap lbusy() 1
loverlap lbusy–

lmsg
------------------------------------–=

lmsg lbusy<

0 250 500 750 1000
busy delay [µs]

0

0,5

1

1,5

2

la
te

n
cy

 [
m

s]

a-DMA-0-regular
a-DMA-0-user
s-PIO-1
perfect hiding

0 33 k 66 k 98 k 131 k 164 k 197 k 229 k 262 k
number of DAXPY operations

0

0,5

1

1,5

2

2,5

3

3,5

4

la
te

n
cy

 [
m

s]

a-DMA-0-regular
a-DMA-0-user
s-PIO-1
perfect hiding

Fig. 8. Overlapping of communication and computation (singl
thread on a single-CPU system) with different protocols:
top: DAXPY spinning with 64kiB message
middle: DAXPY spinning with 256kiB message
bottom: FIXED spinning with 64kiB message

0 33 k 66 k 98 k 131 k
number of DAXPY operations

0

0,5

1

1,5

2

la
te

nc
y

[m
s]

a-DMA-0-regular
a-DMA-0-user
s-PIO-1
perfect hiding

h
d
es:
i-
s
y

th,
r-
fer
e IS
gies

a-
t-
d
-
on-

the
cal
of
be
e
se

-

D. Application Performance

The IS benchmark of the NAS Parallel Benchmark Suite [23]
is an implementation of a parallel bucket-sort with integer num-
bers as keys. Its communication is dominated by exchange of
large messages usingMPI_Alltoallv() , which in turn uses
asynchronous communication viaMPI_Isend() and
MPI_Irecv() . The IS benchmark can be run with different data
set sizes (classes)of which we took the classes W and A. The
vector size given in table 4 is the size of the data blocks which
are exchanged in theMPI_Alltoallv() operation, of which
different message sizes result in dependency of the number of
processes used. The duration of a single operation and percent-
age of the accumulated times on the total execution time (for s-
PIO-1 protocol variant) is also given. All numbers are based on
the two cases of running the benchmark with 4 processes.

Tab. 4. Communication characteristics of IS benchmark classes

Problems with the alignment of the messages which could not
be resolved in time hindered us to perform the complete bench-
mark. We therefore can only give the duration of equivalent
MPI_Alltoallv() operations performed with the a-DMA-0
protocol (on both, regular and user SCI segments for communi-
cation) and deduce the impact on the benchmark performance
related to these values. These results are show in table 5 and
indicate a potential performance improvement of 20%.

V SUMMARY & OUTLOOK

Our results show that zero-copy DMA can improve perfor-
mance of MPI on SCI-connected clusters, delivering a high peak
bandwidth with very little CPU load. Also, the CPU caches are
not touched by DMA as opposed to PIO, but the effects of this

are subject to further studies.
The most obvious problem of zero-copying with SCI, the hig

latency for registering, importing and un-importing SCI share
memory regions could be solved with two presented techniqu
• remote DMAinto non-mapped remote SCI segments elim

nates the need for costly mapping operations in most case
• caching SCI segmentsthat were established for a zero-cop

operation
Both techniques generally increase the effective bandwid

sometimes more than doubling it. This will improve the perfo
mance of communication-bound applications which trans
messages of 256kiB and more, as it has been deduced for th
benchmark. The effects of other cache replacement strate
than the implementedleast recently usedwill be studied in the
near future.

Next to the improved bandwidth, the overlapping of comput
tion and communication is more efficient than ever on this pla
form: fast data transfer do only cost very little CPU cycles an
come practically for free if the overlapping is perfect. Applica
tion programmers need to become aware of this feature to c
sider it in the design of parallel algorithms.

A number of other possible performance parameters, like
use of persistent communication operations, better aligned lo
memory for registering could not be evaluated in the scope
this paper. Also, the robustness of the techniques need to
increased to run any application without modifications. Th
good performance of the DMA transfers make it desirable to u
them for synchronous transfers, too.

message
size

busy
type

lbusy protocol
variant

lmsg

[ms]

loverlap

[ms]

64 kiB DAXPY 128ki a-DMA-0-regular 0.490 1.170 0.581

equiv. a-DMA-0-user 0.735 1.227 0.643

0.965 ms s-PIO-1 0.572 1.512 0.043

256 kiB DAXPY 256ki a-DMA-0-regular 1.300 2.132 0.845

equiv. a-DMA-0-user 1.506 2.289 0.762

1.931 ms s-PIO-1 1.895 3.856 - 0.015

64 kiB FIXED 1 ms a-DMA-0-regular 0.493 1.047 0.904

a-DMA-0-user 0.738 1.047 0.936

s-PIO-1 0.567 1.551 0.028

εoverlap

Tab. 3. Overlap efficiency for different protocol variants, message sizes and spinning types.

Class vector size
[MiB]

procs msg size
[kiB]

Alltoallv
duration [ms]

% of
total time

W 1 4 256 16.363 34.6

A 8 4 2048 123.921 36.2

equivalent
IS class

procs regular
[ms]

speedup user
[ms]

speedup

W 4 7.578 1.22 9.617 1.16

A 4 52.415 1.26 63.957 1.21

Tab. 5. MPI_Alltoallv() performance with a-DMA-0-regular pro
tocol and predicted effect on IS performance

ni:
r-

-
l

.

ec

l

dis-

,

r),

ich,

-

REFERENCES

[1] Message Passing Interface Forum:MPI: A message-passing interface
standard.International Journal of Supercomputing Applications, 8(3/4),
1994.
URL: http://www.mpi-forum.org/docs/docs.html

[2] Message Passing Interface Forum:MPI-2: Extensions to the Message-
Passing Interface. July 1997.
URL: http://www.mpi-forum.org/docs/docs.html

[3] Hong Ong and Paul A. Farrell:Performance Comparison of LAM/MPI,
MPICH, and MVICH on a Linux Cluster connected by a Gigabit Ethernet
Network. In Proc. of 4th Annual Linux Showcase & Conference, USENIX
2000, Atlanta, USA, October 2000.

[4] Friedrich Seifert, Joachim Worringen and Wolfgang Rehm:Using Arbi-
trary Memory Regions for SCI Communication.In Proc. of SCI-Europe
2001 conference. Trinity College, Dublin, October 2001.

[5] Th. v. Eicken, A. Basu V. Buch, W. Vogels:U-Net: A User-Level Network
Interface for Parallel and Distributed Computing.In Proc. 15th ACM
Symposium on Operating System Principles. Copper Mountain, Colo-
rado, December 3-6, 1995.

[6] Cezary Dubnicki, Angelos Bilas, Yuqun Chen, Stefanos N. Damianakis,
Kai Li: Shrimp Project Update: Myrinet Communication.IEEE Micro
vol. 28 (1), pp. 50-52, January/February 1998

[7] Compaq, Intel and Microsoft Corporations.The Virtual Interface Specifi-
cation. Version 1.0. Dec 16, 1997.

[8] E. Lusk and W. Gropp: Creating a new MPICH device using the channel
interface.Technical Report ANL/MCS-TM-213, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, Ill., 1995

[9] Giuseppe Ciaccio and Gio anni Chiola:GAMMA and MPI/GAMMA on
Gigabit Ethernet. J. Dongarra et al. (Eds.): EuroPVM/MPI 2000, LNCS
1908, pp. 129 136, 2000. c Springer-Verlag Berlin Heidelberg 2000

[10] Patrick Geoffray, Loic Prylli, Bernard Tourancheau:BIP-SMP: High Per-
ormance Message Passing over a Cluster of Commodity SMPs.In Pro-
ceedings of Supercomputing ‘99.

[11] Rossen Dimitrov and Anthony Skelljum:Efficient MPI for Virtual Inter-
face (VI) Architecture.In Proc. of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applications. Las
Vegas, Nevada, USA, June 1999, Vol.6, pp: 3094-3100.

[12] Sven Schindler, Wolfgang Rehm, Carsten Dinkelmann:An optimized MPI
library for VIA/SCI cardsIn Proc. of the Asia-Pacific International Sym-
posium on Cluster Computing (APSCC'2000), held in conjunction with
the Fourth International Conference/Exhibition on High Performance
Computing in Asia-Pacific Region (HPCAsia2000), May 14-17, 2000,
Beijing, China. Volume II, pp. 895-903.

[13] Francis O’Carroll, Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa,
The Design and Implementation of Zero Copy MPI Using Commodity
Hardware with a High Performance Network, ACM SIGARCH ICS’98,
pp. 243--250, July 1998.

[14] Toshiyuki Takahashi, Francis O’Carroll, Hiroshi Tezuka, Atsushi Hori,
Shinji Sumimoto, Hiroshi Harada, Yutaka Ishikawa, and Peter H. Beck-
man.Implementation and Evaluation of MPI on an SMP Cluster. In Proc.
Parallel and Distributed Processing IPPS ‘99 / SPDP Workshops, LNCS
1586, Springer-Verlag, April 1999.
URL: http://pdswww.rwcp.or.jp/db/paper-E/1999/1999.html

[15] Karim Ghouas, Knut Omang, Hakon Bugge:VIA over SCI - Conse-
quences of a Zero Copy Implementation, and Comparison with VIA over
Myrinet.In Proc. Workshop on Communication Architecture for Clusters
2001, in conjunction with Int’l Parallel and Distributed Processing Sym-
posium (IPDPS ’01), San Francisco, April 2001.
URL: http://www.ifi.uio.no/~knuto/Publications/

[16] Scali AS:Scali MPI - ScaMPI. URL: http://www.scali.com
[17] Richard Gillett, Richard Kaufmann:Using the Memory Channel Network.

IEEE Micro vol. 17 (1), January/February 1997.
[18] James V. Lawron, John J. Brosnan, Morgan P. Doyle, Seosamh D.Ó

Riordáin, Timothy G. Reddin:Building a High-performance Message-
passing System for MEMORY CHANNEL Clusters.Digital Technical
Journal, vol. 8(2), October 1996

[19] Compaq HPTC Info Center: Compaq MPI. Last update from June 2001
URL: http://www.compaq.com/hpc/software/dmpi.html

[20] IEEE: ANSI/IEEE Std. 1596-1992,Scalable Coherent Interface (SCI).
1992

[21] Jenwei Hsieh, Tau Leng, Victor Mashayekhi and Reza Rooholami
Architectural and Performance Evaluation of GigaNet and Myrinet Inte
connects on Clusters of Small-Scale SMP Servers.In Proceedings of
Supercomputing 2000.

[22] Rossen Petkov Dimitrov:Overlapping of Communication and Computa
tion and Early Binding: Fundamental Mechanisms for Improving Paralle
Performance on Clusters of Workstations.Ph.D. thesis, Mississippi State
University, U.S.A., May 2001

[23] D.H. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo and M
Yarrow: The NAS Parallel Benchmarks 2.0, NASA Technical Report
NAS-95-020, NASA Ames Research Center, December 1995
http://www.nas.nasa.gov/Software/NPB

[24] Friedrich Seifert, Wolfgang Rehm:Proposing a Mechanism for Reliably
Locking VIA Communication Memory in Linux. In Proc. 1st IEEE Interna-
tional Conference on Cluster Computing CLUSTER2000, Nov 28 - D
1, 2000, Chemnitz, Germany.
URL: http://www.tu-chemnitz.de/informatik/RA/papers/p97/papers.htm

[25] M.Dormans, K.Scholtyssik, Th.Bemmerl:A Shared Memory Program-
ming Interface for SCI Clusters, In SCI: Scalable Coherent Interface,
Edited by H.Hellwagner and A.Reinefeld, LNCS 1734, Springer, 1999

[26] TOP500 Supercomputer Sites - Architecture of the fastest machines is
tributed memory. URL: http://www.top500.org

[27] Joachim Worringen, Th. Bemmerl:MPICH for SCI-connected clusters.In
Proc. SCI Europe ’99, helt in conjunction with EuroPar ’99, pp. 3-11
Toulouse, France, September 1999
URL: http://www.lfbs.rwth-aachen.de/users/joachim/publications (pape
http://www.lfbs.rwth-aachen.de/users/joachim/SCI-MPICH (software)

[28] Joachim Worringen:SCI-MPICH - The Second Generation.Proc. SCI
Europe 2000 (conference stream of EuroPar 2000), pp. 10-20, Mun
Germany, August 2000
URL: http://www.lfbs.rwth-aachen.de/users/joachim/publications

[29] William Gropp and Ewing Lusk:Reproducible Measurements of MPI Per
formance Characteristics., Proc. PVMMPI’99.
URL: http://www-unix.mcs.anl.gov/~gropp/papers.html (paper),
http://www-unix.mcs.anl.gov/mpi/mpptest (software)

	I Introduction
	A. The Need for Zero-Copy Protocols
	B. Related Work
	C. Zero-Copy with SCI
	D. MPI Performance Metrics
	E. Organization of the Paper

	II Managing Shared Memory with SMI
	A. Registering and Sharing Memory
	B. Alignment
	C. Detection of Memory Type
	D. Data Transfer

	III Zero-Copy Support in SCI-MPICH
	A. Synchronous PIO-Transfers
	B. DMA-Transfers
	C. MPI Support for Memory Allocation
	C.1 Persistent Communication
	C.2 Memory Allocation via MPI
	C.3 Replacement of malloc() and free()

	D. Caching and Lazy-release of SCI Segments

	IV Performance Evaluation
	A. Rendez-Vous Protocol Variants
	A.1 Synchronous PIO-based 1-way Copying (s-PIO-1)
	A.2 Asynchronous DMA-based 2-way Copying (a-DMA-2)
	A.3 Asynchronous DMA-base 1-way Copying (a-DMA-1)
	A.4 Asynchronous DMA-based 0-Copying (a-DMA-0)

	B. Ping-pong Bandwidth
	C. Overlapping Communication and Computation
	D. Application Performance

	V Summary & Outlook

