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Abstract Passing messages between processes, as it is done whaodes come close to this value for inter-node transfer. But when
creating parallel applications based on MPI, does always involve |ooking at TCP/IP transfers via Gbit-Ethernet (1 GBit/s) or even

copying data from the address space of the sending process to thghe |ocal loop-back device, the bandwidth of the TCP/IP proto-

address space in the receiving process. The fastest, and commonlyq suffers from numerous copy-operations performed on the to-
most efficient way for this is a direct copy operation between these be-transmitted data on it's way from the source to the destina-
two locations without any intermediate copies. In this paper, we tion buffer in user-space [3]. The impact ofadditional copy-

present different techniques, implemented in SCI-MPICH, to in the d h Iting | I
achieve such a behavior for MPI on SCI-connected clusters. TheseStages in the data-path (resulting innaway copy protocol),

techniques use both, CPU and DMA driven data transfers, and ©aCh with a distinct bandwidth;Bon the resulting effective
require support through MPI API functions or are transparent for ~ P€ak bandwidth B achieved for a data transmission via a
the MPI application by making use of new advanced techniques in channel with a peak bandwidth of,B,,can be expressed in a
the SCI driver software. We describe the implementation details in simple formula:
SCI-MPICH and the underlying SMI (Shared Memory Interface)
library and evaluate the performance achieved in different commu- By = 1

i 1 e n
nication setups. 1) 1, Z 1

. Bpeak i=1"i
Keywords:MPI, MPICH, SCI, zero-copy, overlapping of computa-
tion and communication The efficiencye can be defined as
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The development of fast interconnects for the PCI 1/O bus) Bpeak

helped to diminish the bottleneck in communication perfor-
mance which the standard 100Mbit network in commodity clusThe graph in figure 1 illustrates this efficiency for the case of a
ters presents for many applications when scaling beyond a sragfhmunication setup where each inter-node message is copied
number of nodes. This was essential to establish Compute C{Mﬁce (once on the sender- and once on the receiver-node)’ On|y
ters built of commodity components as a serious alternativegigce or without any intermediate copies. For the two cases C1
custom-designed solutions by the established HPC indusfiyd C2, a copy bandwidth of 200 MiByte/s is assumed, which is
However, next to supplying an interconnect with giga-bit linkg good average value for the memory bandwidth of current com-
level bandwidth, additional efforts are required to efficiently UsBodity nodes. The case C3 illustrates the scenario of locking
this increased communication bandwidth from a User'le\fﬂbmory at a rate of 4 GB/s for zero-copy data transfer (See fol-
application. The most commonly used programming model i@ving chapters and [4]). The interconnect bandwidgja gfor
technical and scientific parallel applications is message-passtf@,inter-node data movement is given on the x-axis from 0 to
with MPI [1][2] as the de-facto API. Therefore, a high-perforggg miB/s.
mance C|USter Computing platform fOI’ technical or SCientifiCrhiS graph demonstrates Why Zero_copy transfers are becom_
applications needs to deliver the performance of the interconngigt more and more crucial for efficient utilization of high-speed
through MPI to achieve high application performance. interconnects: for Bua= 10 MiB/s, even a two-copy protocol
achieves an efficiency of more than 90%. This efficiency drops
A. The Need for Zero-Copy Protocols to less than 40% for B, = 250 MiB/s, which is a typical band-
The most commonly used communication network in comgidth for high-performance interconnects like SCI (see figure
modity clusters idrast Ethernewith a link-level bandwidth of 5),
100 MBit/s, equivalent to a peak bandwidth of 11.92 MiByte/s
Using the TCP/IP protocol, typical current-generation clust8r Related Work

Different thin communication protocols and interfaces have

) , been specified and implemented [5][6] which move the perfor-
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a comparison of characteristics is only possible by comparing
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o_gj\\ i the effective performance of a given application solving a spe-
0al “ B cific problem. However, this approach i§ na_turally limited by the
ol o B uncountable number of possible application and problems. It
t S~ 1 leads to a situation where each MPI platform is presented with
g% T~ i its optimal application-problem combination; a projection to the
%0'5’ \\\ i effective performance of other application-problem combina-
o4 7 tions is not possible without analyzing the communication char-
O3 3 fodking @ 4G5S 7 acteristics of both application-problem combinations.
Sl A vl ] The other extreme are micro-benchmarks which give numbers
01 - for the performance characteristics for a synthetic, highly lim-
T R T ] ited workload. The most frequently presented micro-benchmark
Bpeak [Byte/s] performance numbers are bandwidth and latency for ping-pong
Fig. 1. Efficiency of n-way copy communication for variable inter-communication between two processes although these numbers
connect bandwidth are not necessarily related to high application performance [21].

move data from the user-buffer to kernel-buffeféie Virtual However, these numbers help to evaluate the efficiency of an
Interface ArchitecturgVIA) [7] describes a common interfaceMPI implementation when they are compared to the raw perfor-
to such thin communication architectures. Naturally, such commance number of the underlying interconnect. For this reason,
munication protocols serve as a basis for MPI implementationisis paper will also present such numbers.
This can be done by adding a new communication device to th€here are numerous other characteristics for the performance
MPICH distribution [8] as it was done in [9][10]. Others havef MPI implementations, like performance of collective opera-
designed new MPI implementations which make use of the ¥éns or the possibility of overlapping communication and com-
architecture [11][12]. Although many of these MPIl implementgputation. The latter is not supported by many MPI
tions claim to support zero-copy transfers, only very few do supaplementations (because it is not a required characteristic),
ply detailed information on the implementation and effects orhus, many MPI applications are not designed to exploit poten-
performance [13][14], but do not compare the zero-copy prottial performance benefits from this approach although such a
col performance to other possible protocols. [15] does magetential does exist [22]. Therefore, we will emphasize on the
detailed performance comparisons between different protoceigport of asynchronous communication with zero-copy proto-
and interconnects which show the good suitability of SCI fawols that is offered by SCI-MPICH.
zero-copying. However, these are measurements for VIA, ndtinally, application-kernel benchmarks represent a compro-
for MPI. mise of application-problem evaluation and micro-benchmarks.
The other known implementation of MPI for SCI-connecte@he high acceptance of the NPB benchmarks [23] demonstrates
clusters, ScaMPI [16], does not use DMA or zero-copy tecthe relevance of this approach. This paper evaluates the perfor-
niques. [17][18] describe the implementation of MPI on the prenance impact of zero-copying for one application kernel of the
prietary Memory Channel However, current performanceNPB benchmark suite.
numbers [19] indicate that little improvement has been made in o
the last years. E. Organization of the Paper
. The next chapter will explain how the SMI library supports
C. Zero-Copy with SCI memory registration. Chapter Ill illustrates how the designer of
Naturally, SCI [20] with its transparent remote memory acceas MPI application can optimize the application for communi-
is the leanest inter-node communication protocol that can &&tion performance with respect to zero-copy protocols, and
thought of, representing pure zero-copy. However, the impléescribes the implementation of tlree zero-copyprotocols in
mentation of SCI via the 1/0 bus implies several restrictiorSCI-MPICH. In chapter 1V, the performance of the existing one-
which so far disallowed for a general zero-copy communicati@md two-copy protocols will be compared with the expected per-
between arbitrary user-allocated memory buffers. It is onfgrmance of the zero-copy protocol variants.
recently that work has been done to be able to expose arbitrary
regions of a process’ address space for direct remote access via I MANAGING SHARED MEMORY WITH SMI
the SCI interconnect [4] byegisteringa user-allocated memory The Shared Memory Interface (SMBA4] is a user-level library
buffer with the SCI driver. In this paper, we will show how thiso support shared memory programming on SMPs and espe-
new technique has been integrated in SCI-MPICH and dem@sially on SCl-connected clusters of SMPs, representing a
strate the impact on MPI communication performance. NUMA-System. SCI functionality is accessed via the SISCI
. API which is much more low-level. The SMI API consists of
D. MPI Performance Metrics 70+ functions and has some intended similarity with the MPI
The characterization of the performance of an MPI platformAPI.
consisting of node and interconnect hardware and the MPI i ) )
library, and even more the comparison of the performance f Registering and Sharing Memory

different MPI platforms is a very delicate topic. Ultimately, such Establishing shared memory areas between processes (called



regionsin SMI) is done via theSMI_Create_shreg() func- SCI shared memory, local non-SCI shared memory or remote
tion. This function can be called individually or collectively,SCI shared memory and if the memory was allocated by the user
depending on thgypeof the region to be established. To registeor by the SCI driver. This avoids duplicate registration of mem-
an already allocated buffer with the SCI driver and export it, @&y, and allows higher software levels (like SCI-MPICH) to
region of typeLOCALwith the attributeREGISTEREDneeds to choose an appropriate way of accessing the memory behind this
be established, passing the address of the user-allocated buffddress range (to choose the right protocol, for SCI-MPICH).
If this region should not be visible to external nodes, but should
only serve as a source for DMA transfers, the additionkd- Data Transfer
attribute  PRIVATE needs to be provided. Although the standarchemcpy() function can be applied on
SMI_Create_shreg() calls the appropriate SISCI functions. shared memory regions, SMI also provides optimized memory
Another process which wants to access a memory regiong@py functions: SMI_Memcpy() for synchronous copy opera-
typeLOCALexported by another process needs to create a regi@ns, and SMI_Imemcpy() for asynchronous, DMA-based
of type REMOT®r RDMAA REMOTEegion allows full transpar- copy operations on shared memory regio®sll_Memtest()
ent PIO and DMA access, while @&DMAregion can only be andSMI_Memwait() are used to test or wait for the completion
accessed by DMA operations because it is not mapped into §fe an asynchronous memory transfegMI_Memcpy() /
address space of the remote process. This simplifies the conrgr Imemcpy() accept additional attributes which describe the
tion to the remote segment as described in [4] and is sufficieppe of the source and destination memory: local non-shared
for asynchronous zero-copy data transfers in most cases (segnory, local SCI-registered memory or remote SCI shared
11.B). memory. These attributes can also be determined by the SMI
The required information to establish the SCI shared memdityrary itself as described above. However, it is more efficient to
region or DMA target region are the SCI segment id and tipass the information (which is often known to the application)
PCI-SCI adapter id of the remote segment. This information d®wn to the SMI library using the described attributes.
distributed between all processes in the case of a collectivall memcpy-style functions for data transfer require a map-
establishment of a new region. If the region is established irping of source and target memory into the local address space.
non-collective manner as it is done wikDMAand REMOTE However, mapping remote memory comes with high overhead,
regions, it needs to be transmitted separately from the expoieu is not required if block-transfers of data are to be performed
of the region to the importer either by SMI-supported communia DMA. The specification of a remote memory location as a
cation EMI_Send() / SMI_Recv() or shared memory) or by target or source for a DMA transfer does only consist of the SCI
external communication means like MPI. segment number, the SCI node number and possibly an offset
. relative to the start of the segment. To support such low-over-
B. Alignment head DMA transfers, the SMI library offers the region type
Shared memory regions need to be placed and sized with pageMAvhich does not provide an address, but is only to be used
size granularity. In contrast, user-allocated buffers are usuallyth SMI_Put() andSMI_Get()  functions which write to
not aligned this way, but start at arbitrary addresses. This is mespectively read from a remote memory location using DMA.
relevant to the process registering its user-buffer as the addr&dditionally, SMI_Iput() andSMI_Iget()  functions can be
of the buffer remains the same. It only means that eventuallged for asynchronous transfers.
some of the memory before and after the user memory will be
registered, too. Potential multiple locking of different user-buff- Il ZErRO-CoPY SUPPORT INSCI-MPICH
ers located on the same page is handled by the LNMidkéd Message Passing is the dominant, because most scalable and
memory managef24], kernel module to lock/pin down arbi- portable programming model in high-performance computing
trary memory regions). If a remote process wants to access theay [24]. The MPI standard made this programming model
registered user-buffer and maps the related shared memexyremely portable. This also means that an efficient MPI imple-
region into its address space, the starting address of this regimntation is crucial for any high-performance platform to suc-
is the beginning of the remote user-buffer - the SCI driveleed. At the Lehrstuhl fiir Betriebssysteme, we have developed
includes the offset when connecting to a remote segment.  an open-source implementation of MPI for SCI-connected clus-
For DMA data transfer operations, certain alignment restrigers named SCI-MPICH [27][28] which we will use to evaluate
tions concerning addresses, offsets and sizes need to be tmetenefits of zero-copy protocols on the performance of low-
(which is the case for usual basic data types). In case that a nésel message-passing and on application performance.
alignment occurs, the SMI library can try to eliminate this usingSCI-MPICH uses three different message transfer protocols,
PIO operations which transfer the misaligned data using tbepending on the size of the payload to be transfeskdrt (0
CPU (which has no alignment boundaries). This requires thg to 128 Byte)eager(129 Byte up to 32 kiB) andendez-vous
the remote region is mapped into the local address space. (more than 32 kiB). By default, all protocols perform PIO-
. based data transfer. The eager and rendez-vous protocol do also
C. Detection of Memory Type support DMA-based message transfers on demand of the user.
Because SMI keeps track of all local and remote shared mem-
ory regions established by the user, it can determine if a given

memory address range is made up of non-shared memory, locafl- The limits for short and eager protocols are freely adjust-
able by the user; we give the default settings.




However, the size of messages transferred via the eager préos, it checks if this was a zero-copy transfer and de-registers
col is usually too smalito make registering of the communicathe buffer with the SCI driver.
tion buffers and DMA transfer efficient: copying 32kiB to
remote memory does only take 195 s,while registering the séad DMA-Transfers
buffer and transferring the data via DMA would take at leastZero-copy DMA transfers require the same communication
400 s.Also, zero-copy transfers are generally not possible witotocol as zero-copy PIO transfers plus additional local steps:
the eager protocol due to the principle of this protocol of delithe user-allocated send buffer needs to be registered with the
ering messages unannounced. Therefore, we concentrateS@ndriver in order to be used as a DMA source. This local reg-
implementing a zero-copy variant of the rendez-vous protoctration can overlap with the registration of the receive buffer as
which promises the best performance gain: registering and thiugstrated in figure 3.
eventually locking a memory region in the kernel is at least 5

times faster than copying it once (comparing the rate the LMM Sender R e
achieves for registering [24] and typicaémcpy() rates). § | a0
The existing synchronous and asynchronous implementation. . e =m0 — |
of the rendez-vous protocol is described in [27][28]. Asynchrg="" """ § /‘1 Lok up e ofpostd eceives,
nous message transfers are especially valuable in combinati@nme e | BT e
with DMA for CPU-less message transfers in the backgroun;iserbuervia ma amd seup cailack ‘
supported l.e. bMPI_Isend() / MPI_Wait() . EZ”EL‘.T.J?‘;‘!ﬁ":?.‘?é‘ti&’:l‘I‘Zi\ji:..mp ‘ 77’(41»\”\“7—\,‘ i
remote receive buffer 1 | De-register receive buffer
mark message transfer as completed ] Mark message transfer as completed.
A. Synchronous PIO-Transfers ‘ L s e o .
. . Application thread checks fr = 421 | S e compienon
CPU-driven P1O-transfers are not well suited for asynchronous: comion v v
transfers as a second CPU is required to make it efficient. There- e | covmy
. . Thread
fore, we only consider synchronous PIO transfers for which a Lo D
. . . . | Thread ¢ DMA busy
zero-copy implementation removes the receiver-side copy oper- ‘
. . G\ Signaled Control Message
ation from the rendez-vous memory pool into the user-allocated

receive buffer by registering and exporting this buffer as a S€p. 3. DMA-based zero-copy rendez-vous protocol

shared memory segment. This segment will be imported by the

sender and filled up with the data from the sender buffer. Th¥hen both, local memory registration and remote memory
related synchronous zero-copy PIO rendez-vous protocolrggistration and export are complete, the DMA transfer can

illustrated in figure 2. start. On completion, the CONT message indicates the com-
pleteness of the transfer to the receive process, while the local
Sender Receiver process de-registers the send buffer.
N ﬁi‘{ﬂ_‘?i!v‘"ﬁ"‘m“ .
Requestarecevebufier, MPISOAO— C. MPI Support for Memory Allocation
,7)7)? e o o o ¢ e The overhead that occurs with registering user-allocated mem-
oy scnd buffer o recive buffx - ory for SCI zero copying reduces the effective bandwidth. We
have introduced techniques into SCI-MPICH based on the MPI
v remote e bl i - interface which the user can use to reduce this overhead.
Message transfer is completed ] \*\quacssngc transfer is completed. . . .
C.1 Persistent Communication
o saon | sy MPI supports a mode of communication with fixed send or
e ;mﬁgmgm receive buffers which is callegersistent communicatiorA
_ § request for persistent communication is initialized once with
Fig. 2. PIO-based zero-copy rendez-vous protocol MPI_Send_init() or MPI_Recv_init() respectively and

o ) ] bind the list of communication arguments for an asynchronous
Compared to the original protocol, this variant uses a new tygg,n-plocking) send or receive operation to the request. Subse-

of —control message: OK_TO_SEND_ZC. While theyenty, this request may be activated as often as required by
OK_TO_SEND message contained an offset and size of a bug‘ﬁssing its handle toIPI_Start() . This will cause the associ-

in the rendez-vous memory pool of the receiver, thged communication operation to start. If the request is no
OK_TO_SEND_ZC message informs the sender on the SGhger needed, it can be deleted viithi_Request_free()

segment id, SCI adapter id and offset by which the sender cafgsistent communication supports efficient zero-copying
access the exported receive buffer. When the receiver readssgayse the user specifies buffers that will frequently used for
CONTINUE control message for a completed message tragg§mmunication. Registering these buffers with SCI once the

request is created allows zero-copy operation for all subsequent
operations without the overhead of repeated registering and de-
registering. Because persistent communication operations are
always asynchronous, they will be performed via DMA.
However, the setup of a persistent operation is defined as a

1. Onthe described test platform, eager messages deliver less
bandwidth than rendez-vous messages for message sizes of
above 38kiB due to the memcpy()-pipelining in the rendez-
vous protocol.



strictly local operation. This means that the matching remoBe Caching and Lazy-release of SCI Segments
buffer can not be determined by SCI-MPICH. Thus, this bUﬁerAs illustrated above, the performance of zero-copy protocols

can not b? imported d.urlr!g the setup of the operation, but Orﬂ}énefits from leaving out intermediate copies, but suffers from
after the first communication has actually taken place. the overhead of the registration of local memory and the import
C.2 Memory Allocation via MPI and mapping of remote memory. The techniques described in
In the context of single-sided operations, the MPI-2 Standagtapter 11I.C may help, but do not have effect for the general
definesvPI_Alloc_mem() andMPI_Alloc_free() functions case and are not transparent to the application.
to allocate and free memory of an implementation and platforntsenerally, for each zero-copy send operation, two additional
dependent type which allows the MPI library together with thi@tencies itynort Will tyn_import 0CCUr at the sender process as it
communication subsystem to perform better in case these bugeds to import and un-import the receive buffer. The duration
ers are used for communication. SCI-MPICH has implementetithese latencies depends on the type of the remote SCI seg-
these functions to work with local SCI segments. These bufferagnt (regular or user-allocated) and whether the buffer is
if used for communication operations, do not need to be regisapped into the address space. If the receive buffer is mapped
tered, but can be used immediately as a source or a targetifiép the local address space, the import latency scales with the
PIO or DMA zero-copy style operations. size of this buffer (see figure 4). This effect does also occur if
For allocation memory via MPI, two thresholds are definethe remote SCI segment is a registered user-buffer [4]. The over-
the minimum size of a memory request to be served from S go00— ‘ : : : :
segments, and the minimum size of a request for which a se - [ o segment
rate SCI segment will be created. Transfers below the fii  .yl..|z2 unimportsegment f
threshold would not benefit from zero-copying because th
would be transferred using the eager protocol. Allocatior -
below the second threshold will be served from a single S
segment, serving as a ,buffer pool“. Allocations above th
threshold will be served by creating a distinct local SCI se 3000 f
ment. If the available SCI resources are insufficient, a stand;
memory allocation of non-shared memory will be performed. 2% i

total latency [ps]

By the means of an MPI Info handle, a memory request r 1
MPI_Alloc_mem() can be further specified by the attache 1000 T 7
attributes (and their possible key values). Two attributes are H 7 ﬁ 1
OgniZEd: 0 13‘:?5 2(:“»2 k 5‘24 k l‘M 2‘M 4‘M
» must_be_shared (no key value) The request shall fail if it remote segment size [byte]

can not be served from a regular SCI segment. Fig. 4. Latency for importing and un-importing remote memory
* must_be_aligned  (with key value): The starting address when it is mapped into the local address space

returned for this request must be aligned according to the sup-
plied key value. A key value of zero indicates that the MFiead for registering a local segment or connecting to a remote
library should align the memory according to its own requirgegular SCI segment is significantly lower. Nevertheless, the
ments (SCI-MPICH will return page-aligned memory in thigion-negligible duration of these operations has a negative influ-
case). ence on the effective bandwidth.
C.3 Replacement ofalloc()  andfree() Because communication is often performed using the same
memory buffers (but not necessarily by means of persistent

t_Usmgf :Ee functlonsddes:r;bed abov? may rttequwebmod;]ﬁc&—) munication) more than once throughout the execution of an
tl)ons OI © sciﬁrce |(|:o N radnfsparen ?upripr car} tﬁ acC |e¥S lication, it is desirable that a registration or an import of such
Y replacing thema oc() ~ andfree() unctions ot In€ L=, ffers needs to be performed only once. This behavior could be
library with functions that try to allocate physically Cont'guou%%hieved by simply not de-registering or disconnecting a mem-

y buffer after the communication has completed. However,

memory. For MPI applications, this can easily be achieved wi

def|||n|t|ons n tr:jemfpi.h mclutde file Whl'ICh redirect callsdto since the SCI resources are limited (local SCI memory size,
malloc( and  free() 0 _MPI_Alloc_mem() and  shared memory limits, ATT entries on the PCI-SCI-Adapter,

MPI_.Freg_mem() , respectively. This h_as the advgntage th@ISCI descriptors and others), this technique may well lead to
applications only need to be recompiled, not edited. On tﬂs?

ther hand. thi h b b-optimal b the | e situation where a requested registration or connection can
other hand, this approach may be sub-oplimal because the 4psz ,q performed, possibly leading to performance reduction or
ited resource of physm:_;llly contiguous memory may be WaSt.g en communication deadlock (if the request is related to a
for user memory that will never serveasa M.Pl Seﬂd OF FeCeNE mmunication operation which can not be performed by other
buffer. A more flexible approach, in combination with the tecr}heans)
nigue described in the next chapter, will be to use normal me :

X . MEor this reason, we introduced a software layer into SCI-
ory allocation and let these buffers be registered for SCI acc BICH which caches the requests for operations on local and
afterwards (if necessary). But also for this case, a redirecti

¥ote SCI segments (abstractedSi| shared regiongrom

through. the MPI allocation functions makes sense to aIIOCa§%I-MPICH). This layer provides the required services for local
page-aligned memory.



and remote SCI segment operations via reladequire()

and release() functions. Internally, acache entryis
assigned to each SCI segment which contains all relevant inf
mation, including access counters for a displacement strat¢ 1000
and anin-use counter. Thus, a release request is not direct
translated into a SISCI operation, but does only decrement-
in-use counter of the related cache entry which has be:
increased by a precedisgquire()request. Aracquire()request
related to a SCI segment which has been used before and is
in the cache (or even is currently in use) can be efficiently sat

fied by returning a reference to the related SCI segment. 10} :
The cache displacement strategy comes into operation wher / L Plowite sar
acquire() request can not be served from the cache, and i : i ooy
related SISCI operations fail due to resource shortage. T o T
cache scheduler than tries to free resources by deallocating s 64 12 e :[Eyte] 33k
segments with an in-use counter of 0 until the request can be « _ _ ,
isfied (or no more SCI segments can be deallocated). To ens Fig. 5. Memory transfer bandwidth values on evaluation platform
consistency between the processes concerning the withdrawal of
exported segments, the segment event callback mechanism
offered by SISCI is used. This way a remote process is informed
if a segment to which he is connected is withdrawn, and can local-local 3624 16kiB 199
synchronize its local segment resources accordingly.
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Different scheduling strategies for the cache displacement can local-SCI 1343 64kiB 207
be employed, likdeast-recently-usedLRU), least-frequently- SCI-PIO 171.2 64kiB 144.3
used(LFU), best-fit(based on the SCI segment sizeyamdom SCI-DMA 2476 inf 247 6

Also, a multi-level strategy may be used. Currently, we have
implemented the LRU strategy. Another strategy, namade- Tab. 1. Key memory transfer performance values

diate which does not cache at all, but immediately dea”ocateﬁ/leasuring memory bandwidth can be done in a variety of

each SCI segment if itg1-use counter becomes 0, is used tQ/vays. For this evaluation, we performed a big numbemefn-
evaluate the performance impact of the lazy-release techniql{%y() _style operations on a pair of allocated buffers. This leads
IV PEREORMANCE EVALUATION to hpt caches, but is similar to typical MPI communication sce-
narios where the message buffers have recently been touched
Before evaluating the results of the benchmarks for differeggg may thus reside in the cache. All non-DMA transfer tech-
protocol implementations, it is necessary to determine the kﬁﬁques show a distinctive dependency on the sizes of the
performance characteristics of the evaluation platform. Thjsstalled 1st- and 2nd-level-caches, as indicated in table 1 and
platform is a cluster of 8 dual-SMP-nodes running Linux 2:4.4degrade drastically for buffers sized more than twice as big as
Each node hosts 2 Pentium-lil CPUs (800MHz, 8kiB 1st-levgde 2nd level cache. This leads to DMA being the fastest way of

cache, 256kiB 2nd-level cache) and 512MB RAM (in 2 256MBgpying more than 512kiB of data between two remote or local
PC133-DIMMs) on a Supermicro 370DLE mainboard which igyemory locations.

equipped with a Serverworks ServerSetlll LE chipset. The inter- _
connect is made of one Dolphin ICS PCI-SCl adapter runningfa Rendez-Vous Protocol Variants

a 64-bit 66MHz PCl slot per node. All 8 PCI-SCI adapters aréRegarding the different data transfer modes (PIO and DMA),
connect in a single ringlet. Figure 5 shows the relevant bangle synchronous and asynchronous variants and the possible
width values for the different kinds of memory-to-memoryyheq of source (local) and target (remote) buffers with respect
transfers which are possmlg on this platform: to their accessibility via SCI (not accessible via SCI, regular
* memcpy() local-localcopying between two local non-sharedsc) segment, or user-allocated registered SCI segment), a num-
memory regions using memcpy() ber of variants for the rendez-vous protocol in SCI-MPICH is
* memcpy() SCl-locakopying between a local SCI-shared and5ilable and might implicitly (determined by the SCI-MPICH
a local non-shared memory region using memcpy() library based on resource characteristics and availability) or
* PIO write SCI:copying from a local non-shared to a remotgyjicitly (determined by the user via the configuration of SCI-
shared memory region using an optimized copy function  \p|CH and the use of non-blocking MPI communication calls)
* DMA write SCI:copying from a local non-shared to a remotge \;sed during the execution of an MPI application. Below, we
regular SCI region using the DMA engine of the PCI-SClegcribe these variants that we will evaluate later on.

adapter. A.1 Synchronous PlO-based 1-way CopyiagP(O-1)

1. The benchmarks have been run with non-SMP-Kernels due ~ This protocol requires two copy operations:
to a SCI driver or kernel problem with DMA transfers « Lns-Rs:from the local send buffer to the remote memory pool

between registered user-allocated buffers. for incoming messages (performed by the sender via local-




nonshared to remote-shared memcpy operation)

a-DMA-O-regular

* Ls-Lns:from the local memory pool for incoming message (3£ a-DMA-O-regular-nocache
. . . v a-DMA-0-
to the local receive buffer posted by the application (pe S-& 3 DMA 0 user-nocache

&—< a-DMA-2-user
A—A 5-PIO-1-user

formed by the receiver via local-shared to local-nonshar

memcpy operation)

However, these two operations are pipelined very efficient
and thus the effective bandwidth is nearly as high as the low
bandwidth ofLns-RsandLs-Lns(which is usuallyLns-R3.

A.2 Asynchronous DMA-based 2-way CopyiragDMA-2)

Without the possibility of registering user-allocated buffer:
the DMA protocol requires three memory transfer operations: ]
« Lns-Ls: from the local send buffer to the local SCI share  *° 1

memory buffer which will be used as DMA source (per r ]

formed by the sender via memcpy operation) %w BTk 262K Saak LM 2w am

* Ls-Rs from the local DMA source o the remote DMA targe_ b andwid h":gsjf[fbyte] d vari
buffer (via DMA-write by the sender) ig. 6. Ping-pong bandwidth for different rendez-vous protocol vari-

200

150

250 +—+ a-DMA-1-user
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* Ls-Lns: from the local memory pool to the local receive ants
buffer. performed another series of ping-pong benchmarks in which we
A.3 Asynchronous DMA-base 1-way CopyirarDMA-1) varied the number of messages exchanged in one run. The

By registering the send buffer with the SCI driver (or using %esults are given in table 2 for different message sizes.

send buffer allocated from an SCI memory area, as in this ca1e),

segment| segment

. 128kiB 512kiB 2MiB
caching type

the memory transfer operatioms-Ls (A.2) can be omitted. | "€PS
Instead, DMA directly uses the send buffer as it's source. T
destination buffer, however, is not imported, which means th| 1 no regular | 78.44 | 154.80 | 203.48
the bandwidth consists of the consecutive bandwidibsRs user 39.77 57.59 64.32
(DMA) andLs-Lns(PI1O).

A.4 Asynchronous DMA-based 0-Copying-DMA-0
The DMA-based zero-copy protocol safes even two copy op4 user 43.13 59.87 64.89
ations when compared with the protocol as described in A2. 19 no regular | 97.21 172.43 210.28

The two required locking operations for user-buffer registering
can fully overlap as illustrated in figure 3 when the small latendy user 55.81 85.92 98.38

yes regular 81.83 158.27 205.65

of the initial control message is neglected. However, the impart yes regular | 145.66 204.05 22279
and un-import latency of the remote segment can not be hidden
(in case they do actually occur). user | 11850 | 149.10 | = 158.22

B. Ping-pong Bandwidth 100 no regular 100.45 175.01 211.08

To validate the protocol implementations, we measured pin user S celes Lo
pong bandwidth values between two processes on differg yes regular 159.41 210.37 224.94
nodes using thenpptest [29] benchmark. We compare the
existing rendez-vous message transfer protocols in SCI-MPI(

which make no use of zero-copying techniques with the N, 2. Effect of SCI segment caching @aDMA-Otransfers on ping-

zero-copy protocols. _ _ pong bandwidth (MiB/s)
We modified the benchmark to be able specify the desired type

of memory allocation. We tested with communication bufferg,  Overlapping Communication and Computation
allocated viaMPI_Alloc_mem() , which means that the com-

munication buffers are persistently mapped into the SCI addresg1e effect of overlapping communication with computation

space, or vianalloc() , in which case the buffers need to bd'"e" using non-blocking MP! communicgtion operatio'ns with
registered to serve as DMA source or target regions. SCI-MPICH has already been described in [28]. We will com-

If the communication buffers were allocated vidare the results of this implementation with our current tech-
MPI_Alloc_mem() , SCI-MPICH can always use the a-DMA-Oniq“e to illustrate the performance that zero-copy via DMA

protocol without registering the buffers because they are alggllvers for asynchronous communication.

cated fromregular SCI segmentsa-DMA-0-regula). The vari- Flgurel ! showsl, the' psel;do code fpr a baS|cdbenchU\£afﬂap =
ant withmalioc() -allocated buffers is labeledDMA-O-user to simulate overlapping of communication and computation. For

The resulting performance of all the evaluated protocol Vaﬁl_” synchronous protocols, the effective MPI communication for
ants is depicted in figure 6 rendez-vous messages (messages bigger than 32kiB) will take

To evaluate the effect of the SCI segment caching, we hagce in MPI_Wait() , sequentializing communication and

user 144.20 177.07 185.17




latency = MPI_Wtime()
if (sender)
MPI_lsend(msg, msgsize)
while (elapsed_time < spinning_duration)
spin (with multiple threads)
MPI_Wait()
else
MPI_Recv()
latency = MPI_Wtime() - latency

Fig. 7. Pseudo Code faverlapbenchmark

computation. The asynchronous protocols do transfer the d

without any MPI library activities of the application thread

allowing for overlapping of computation and communicatior

The spinning can be performed by a selectable number 1

threads, and in two different ways:

» FIXED: spinning on a single variable for a fixed period o
time. This keeps the CPU busy, but incurs no memo
accesses.

» DAXPY performing a specified number of DAXPY-type oper
ations /[j] = AX[j] +y[j] ) on vectors of doubles with
the length of the message which is transferred. This will al:
stress the memory subsystem.

We have performed this benchmark for the s-PIO-1, a-DM/
0-user and a-DMA-0-regular variants of the rendez-vous prof
col on two single-CPU nodes with one spinning thread, transft
ring messages of different sizes witIXED and DAXPY
spinning. We also ran the benchmarks without transferring a
messages, which shows the pure busy period which the CPLl
spinning (labelegherfect hidingn the plots).

The results are depicted in figure 8 and indicate that the ov
lapping does become nearly perfect if the duration of the col
putation period passes the break-even point. The break-e
point, which is the required length of the computation period "
make a zero-copy DMA protocol more efficient than synchr
nous PIO, is the difference in the latency of these two protoca
For messages from 64kiB length up, the transfer with a-DM/
O-regular is always more efficient than s-PIO-1. For a-DMA-(
user, the break-even point is reached with about 30k DAXF
operations, which is equivalent to about 260  on this platforn

The overlapping efficiency of the overlapping is derived fror
the duration of the computation period only ), the shortest
latency of a message transmission onjys and the duration
of the combined communication and computation operati
(loveriap- Thus, the efficiencye e 4, Of @ gively,sycan be
expressed as

latency [ms]

latency [ms]

latency [ms]

15

15

— a-DMA-0O-regular
a-DMA-0-user
r --- s-PIO-1

perfect hiding

0 33k

66 k

number of DAXPY operations

98 k

T T T T T T

a-DMA-0-regular|
a-DMA-0-user

-- s-PlO-1

perfect hiding

L l L 1 L 1

L 1 1

PN IR AR AR

98 k
number of DAXPY operations

L L
131k 164 k
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262 k
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busy delay [us]

750
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Fig. 8. Overlapping of communication and computation (single

—|
_ overlap  'busy
Soverlap(lbusy) =1- [

msg

3) thread on a single-CPU system) with different protocols:
top: DAXPY spinning with 64kiB message
middle DAXPY spinning with 256kiB message

The efficiency for the three test setups of figure 8 forghtu- bottom FIXED spinning with 64kiB message

rated case (this means whetﬁlsg< I,Ousy for all protocol vari- ] o )
ants) is given in table 3. The efficiency for the synchronor€ss on the memory bus using DAXPY spinning does increase

protocol is always close to 0, indicating that no overlappir@e startup latency for DMA, too, if thg efficiency for the 64kiB .
takes place. For the asynchronous, DMA based protocols, fases are compared. The bandwidth does not necessarily
efficiency is considerably higher, and getting closer to 1 tfi€crease, as is visible by the increasing efficiency for 256kiB
longer the message to be transferred is. It is also visible that fA§SSage transfers with DAXPY spinning.



message| busy lhusy protocol Imsg | loverlap €overlap
size type variant [ms] [ms]

64 kiB | DAXPY 128ki a-DMA-O-regular | 0.490 | 1.170 0.581

equiv. a-DMA-0-user 0.735| 1.227 0.643

0.965 ms s-PIO-1 0.572 1.517 0.043

256 kiB | DAXPY 256ki a-DMA-O-regular | 1.300 | 2.132 0.845

equiv. a-DMA-0-user 1.506 | 2.289 0.762

1.931 ms s-PIO-1 1.895 | 3.856 - 0.015

64 kiB FIXED 1ms a-DMA-O-regular | 0.493| 1.047 0.904

a-DMA-0-user 0.738| 1.047 0.936

s-PI1O-1 0.567| 1.551 0.028

Tab. 3. Overlap efficiency for different protocol variants, message sizes and spinning types.

D. Application Performance

The IS benchmark of the NAS Parallel Benchmark Suite [23 eﬁg”“’la'em procs | regular | speedup| user ) speedup
is an implementation of a parallel bucket-sort with integer numg cass [ms] [ms]
bers as keys. Its communication is dominated by exchange pf W 4 7.578 1.22 9.617 1.16
large messages usmgPl_Allto_allv() B which in turn uses A 2 52415 1.26 63.957 121
asynchronous communication viaMPI_lsend() and
MPI_Irecv() . The IS benchmark can be run with different data )
set sizesdlasses)f which we took the classes W and A. The'a? 5 rﬂp'l—Alrlltdoalr"’gi d ?ferffrr:egce \;\;ltrn?-E])MA-o-regular pro-
vector size given in table 4 is the size of the data blocks which ocoland predicted etiect o performance
are exchanged in th&IPI_Alltoallv() operation, of which .. subject to further studies.

different message sizes re_sult in dependency o_f the number &f,o most obvious problem of zero-copying with SCI, the high
processes used. The duration of a single operation and perciifsncy for registering, importing and un-importing SCI shared
age of the accumulated times on the total execution time (forfzmqry regions could be solved with two presented techniques:
P10-1 protocol varlanF) is also given. All nu_mbers are based QNramote DMAINto non-mapped remote SCI segments elimi-
the two cases of running the benchmark with 4 processes. nates the need for costly mapping operations in most cases

Class| vector sizeprocs| msg sizg _ Alltoallv % of » caching SCI segmentbat were established for a zero-copy
[MiB] [kiB] duration [ms] | total time operation
W 1 2 256 16.363 34.6 Both_techmques generally. increase the effectlve bandwidth,
sometimes more than doubling it. This will improve the perfor-
A 8 4 2048 123.921 36.2 mance of communication-bound applications which transfer

messages of 256kiB and more, as it has been deduced for the IS
benchmark. The effects of other cache replacement strategies

. . . than the implementebtast recently usedill be studied in the
Problems with the alignment of the messages which could ar future P y

be resolved in time hindered us to perform the complete benc Jext to the improved bandwidth, the overlapping of computa-

mark. We therefore can only give the duration of equwale%n and communication is more efficient than ever on this plat-

MPIt_AIItloallv()b h opelratlonj perfosr(rgled with tthef a'D'\/IA'Oform: fast data transfer do only cost very little CPU cycles and
protocol (on both, regular and user Segments for commupy,,q practically for free if the overlapping is perfect. Applica-

cation) and deduce the impact on the benchmark performa% programmers need to become aware of this feature to con-
related to these values. These results are show in table 5 r itin the design of parallel algorithms

o . . 0
indicate a potential performance improvement of 20%. A number of other possible performance parameters, like the

V SUMMARY & OUTLOOK use of persisten.t communication operations, bet_ter aligned local

) memory for registering could not be evaluated in the scope of

Our results show that zero-copy DMA can improve perfokpis naner. Also, the robustness of the techniques need to be
mance of MPI on SCI-connected clusters, delivering a high pegkeased to run any application without modifications. The

bandwidth with very little CPU load. Also, the CPU caches arg, o nerformance of the DMA transfers make it desirable to use
not touched by DMA as opposed to PIO, but the effects of thisem, for synchronous transfers, too.

Tab. 4. Communication characteristics of IS benchmark classes
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