
MPICH for SCI-connected Clusters

Joachim Worringen, Thomas Bemmerl
ng

v-
is

I

-

CI

is

for
s
b-

-

on-
a-
ed
ted
e
el-

the
ted.
ice
la-
e-
al
Abstract—MPICH is the most commonly used, freely available
implementation of the MPI-1 standard including parts of the MPI-
2 standard. It is available for nearly every Unix-based system and
can use a variety of communication facilities through its low-level
Abstract Device Interface(ADI-2). However, no adaption to the
Scalable Coherent Interface(SCI) existed so far. This paper pre-
sents the design and implementation of such an adaption consisting
of an ADI-2 device for the current MPICH distribution. The per-
formance of this device is compared to other ADI-2 devices of
MPICH usable on Intel x86 based clusters and also with a commer-
cial MPI implementation for SCI-connected clusters.

Keywords—message passing, cluster, SCI, MPI, MPICH, ADI-2

I. INTRODUCTION

Since the presentation of the first standard [1] in 1994, t
Message Passing Interface(MPI) has become one of the mos
commonly used API for parallel computing due to its availab
ity on nearly every parallel computer. Contrariwise, this leads
the necessity to offer MPI for a parallel computer to make it
useful tool for researchers outside the field of computational s
ence.

A. MPICH Implementation

The freely available Open-Source implementation MPIC
[2] was very important for this development. MPICH is th
most commonly used, freely distributed implementation of t
MPI-1 standard (including parts of the MPI-2 standard [3
which is also used as a base for commercially distributed M
implementations (PateNT MPI by Genias [4] using a port of th
p4 library and others, see below). It is publicly available fo
nearly every Unix-based system and can utilize a variety
communication facilities. The interface through which th
actual communication facility is accessed is defined as
Abstract Device Interface(ADI-2 [5], [6]). The ADI-2 interface
defines a set of point-to-point send and receive operations wh
are required by the upper layers of MPICH. This precise
defined interface lead to the availability of MPI on a wide rang
of platforms, from TCP/IP connected workstations up to sup
computers like the Cray T3D/T3E series.

B. Message-passing on Clusters

In the last few years, a new class of parallel platforms, co
monly referred to asclusters, has arised. Following the classifi-
cation given in [7], we refer to homogenous, high-performan
her

Joachim Worringen and Thomas Bemmerl are with the Lehrstuhl
Betriebssysteme, RWTH Aachen, Kopernikusstr. 16, D-52056 Aachen,
many.
E-mail: contact@lfbs.rwth-aachen.de, WWW: http://www.lfbs.rwth-aachen
he
t
il-
to
a
ci-

H
e
he
])
PI
e
r
of
e
the

ich
ly
e

er-

m-

ce

group clusters built from PCs, Workstations or SMPs runni
any operating system and communicating via asystem area net-
work (SAN) like MEMORY CHANNEL[8], Myrinet [9] or the
Scalable Coherent Interface (SCI [10]). Due to the importance
of the availability of standard APIs on a parallel computer, se
eral efforts have been made to offer MPI or PVM [11] on th
platform:
• Digital has adopted MPICH to utilize the MEMORY

CHANNEL SAN to create the commercially distributed
Digital MPI [12].

• CSAG at the UCSD have implemented PVM and MP
(based on MPICH) [13] on top of their transport layerFast
Messages[14] which uses Myrinet for inter-node communi
cation.

• Scali AS has created an MPI implementation on top of S
namedScaMPI[15] which they distribute commercially. It is
used for comparison in the performance chapter of th
paper.

• SCIPVM[16] implements PVM on top of SCI offering the
flexibility of PVM. It does, however, not exploit the full per-
formance potential of the SCI interconnect.

• In the scope of the SISCI project [17], acommon messaging
layer (CML [18]) has been developed to serve as a basis
PVM and MPI implementations [19]. However, no result
for an MPI implementation based on CML have been pu
lished so far.

C. Motivation

In spite of all these efforts, the publicly available MPICH dis
tribution can still only be utilized with TCP/IP for inter-node
communication. To use a more sophisticated cluster interc
nect like SCI, only a commercially developed MPI implement
tion can be used (ScaMPI by Scali) which must be purchas
and does not come with source code. Support of SCI-connec
clusters by MPICH would help to make this platform mor
affordable and thus more commonly used. Therefore, we dev
oped an ADI-2 device for SCI-adapters.

D. Organization of the Paper

The next chapter informs about the key characteristics of
SCI-connected cluster on which this research was conduc
Chapter III. presents details of the implementation of the dev
itself, while chapter IV. gives a theoretical performance calcu
tion, an overview over the performance of the current impl
mentation and a comparison to other solutions. The fin
chapter summarizes the results and gives options for furt
development.

für
Ger-

.de .

ard-

e

nts

he
ge-

s
y-
ct
uired.
of

he

lti-

n
ply
y,
II. SCI CLUSTERPLATFORM

A. Hardware

The development of the presented work took place on a clus-
ter of SMPs. The SMP nodes are dual Intel PentiumII
(450MHz) boards with 256 MB memory and the Intel BX-
chipset. The SCI interconnect is realized with PCI-SCI (32 bit,
33 MHz PCI bus) adapters from Dolphin Interconnect Solutions
equipped with the LC2 version of the SCI link chip and revision
D of the PSB. The Dolphin drivers were configured to enable
speculative reads for a higher remote read performance. Addi-
tionally, they are slightly modified to map SCI memory seg-
ments to predefined addresses. The nodes are also connected via
a switched 100 MBit full-duplex Ethernet using 3COM NICs.
The key performance values latency and bandwidth for remote
memory access via SCI on this platform are shown in figure 7.

B. Software

To ease the development of efficient parallel programs using
the shared-memory model provided by SCI, a complex library
has been developed on top of the vendor supplied driver and
programming API titled theShared Memory Interface[20]
(SMI). It currently supports Unix (Solaris and Linux) on Intel
and Sparc platforms as well as Windows NT on Intel platforms
and offers a C and Fortran 77 binding. From the many services
offered by the SMI library, the implementation of the MPICH
device relies just on a small selection:
• Initial configuration of the processes on the cluster, delivery

of topology information and finalization of the environment
• Allocation of globally shared memory regions with different

physical distributions to account for the NUMA (non-uni-
form memory access) performance characteristic.

• Dynamic memory allocation within globally shared memory
regions.

• Synchronization services (barriers).
Because of the availability of the SMI library on Windows

NT, Solaris and Linux, all these three platforms have been used
for development, and in fact SCI-MPICH is available on all of
these platforms. With the SMI library, SCI-MPICH has been
ported to Windows NT in a very short time [21]. The primary
development platform, however, is Solaris x86 which also was
used for the benchmarks presented in this paper.

III. I MPLEMENTATION OF SCI-MPICH

The basic layered design of MPICH is shown in figure 1.
Located on top is the MPI API, with the profiling interface
below. The MPIR layer is responsible for the transformation of
the complex MPI functions into point-to-point communications.
These communications are performed by the MPID layer (the
ADI-2 device) situated below. An adaption of MPICH to a spe-
cific platform is limited to the MPID layer, all the layers above
remain untouched.

A. ADI-2 Device ch_smi

The implementation of the SCI-specific ADI-2 device
ch_smi1 (figure 2) is based on the SMI library which in turn uses
the SISCI API [22] and the IRM driver of the Dolphin PCI-SCI

adapter. However, three phases have to be distinguished reg
ing these software layers:
• Initialization: Only during the initialization (and the finaliza-

tion) of the processes which form the MPI application, th
SMI library and the SISCI API and the IRM driver are
required to establish globally shared SCI memory segme
mapped into the process’s address space.

• Services: During the execution of the MPI application, the
ch_smi device uses services offered by the SMI library. T
most commonly used services are dynamic memory mana
ment of shared memory and barrier synchronization.

• Communication: Most of the time, the ch_smi device handle
point-to-point communication. For this purpose, no underl
ing software layers have to be utilized, but only dire
accesses to the user address space of the process are req
This mode of operation (which is a typical characteristic
SCI) allows for exceptional low communication latencies.
The development of the ch_smi device is based on t

ch_shmem(shared memory) device which is part of the MPICH
distribution. The ch_shmem device is designed for use on mu
processor SMP systems featuring an UMA architecture2. In a
first attempt of running MPICH on our SCI-Cluster, the functio
calls of ch_shmem to allocate shared memory were sim
translated to the corresponding functions of the SMI librar

1. All ADI-2 devices are named beginning withch_ (for
channel) followed by the name of the underlying commu-
nication facility.

M P I A P I

M P I P
P r o f i l i n g I n t e r f a c e

M P I R
R u n t i m e L i b r a r y

M P I D
A D I - 2 D e v i c e

S y s t e m s p e c i f i c

C o m m u n i c a t i o n F a c i l i t i e s
(S y s t e m L i b r a r i e s , N e t w o r k , M e m o r y)

Fig. 1. Layered design of generic MPICH

M P I A P I

M P I P
P r o f i l i n g I n t e r f a c e

M P I R
R u n t i m e L i b r a r y

c h _ s m i

S M I L i b r a r y

S I S C I

I R M

A d d r e s s S p a c e

S C I m a p p e d l o c a l l y m a p p e d

I n i t i a l i z a t i o n S e r v i c e s

C o m m u n i c a t i o n

u s e r s p a c e

k e r n e l s p a c e

Fig. 2. Layered design of the SCI-MPICH implemenation

the
a

yte
he
ti-
via
ng
cu-

out
ps a
n
al
ffers
e
al
sists
nd

um
f a
le.
lgo-
while all protocols and data structures remained the same. This
adaption was done in one hour and provided a correctly working
ADI-2 device. However, with the strong NUMA characteristic
of the SCI-cluster, the performance was very low due to the
UMA (uniform memory access)-oriented design of ch_shmem.

Obviously, a complete redesign of the protocols and the
according data-structures was necessary to achieve performance
values in the proximity of the raw memory transfers over the
SCI network. A couple of key characteristics of the SCI network
had to be considered:
• Remote write accesses achieve a bandwidth which is ten

times higher than the maximum bandwidth of remote read
accesses

• The reason for the better write performance is the more effi-
cient use of the stream buffers on the SCI boards by the PCI-
bridge. The PCI-bridge supports write gathering to write as
much data in one PCI transaction as possible. However, it
triggers a PCI transaction for each read operation of the CPU.
To take full advantage of the stream buffers for write opera-
tions, remote memory accesses must be scheduled in a cer-
tain consecutive way to cause as few SCI transactions as
possible.

• The use of the stream buffers has the dangerous side effect of
creating inconsistent memory states between different nodes.
This must be taken into account and, if necessary, has to be
avoided.

B. Message transfer protocols

Depending on the length of the message, MPICH chooses
between three different protocols (namedshort, eagerandren-
dez-vous) to transfer a message from one process to another.
This allows to find an optimized trade-off between performance
and resource usage.

B.1 Short

The short protocol is suitable for messages which are small
enough to fit into a control packet. The gross size of control
packets in SCI-MPICH is 64 byte. This size was chosen because
this amount of data makes optimal use of the stream buffers,
requires no explicit flushing of the stream buffers and can be
transferred in one single SCI transaction. This results in a very
low latency (see figure 5) of about 4 for a remote write of 64
byte. Furthermore, this single transaction won’t be split during
transmission via the SCI interconnect. This means that the data
contained in the packet arrives completely in the order that it
was sent. These 64 byte contain a header of 12 byte, a maximum
payload of 47 byte followed by an alignment buffer of 4 byte
and a 1 byte packet identifier.

The protocol which is used for the transfer of control packets
aka short messages is based on a separate ring buffer for each
directed sender-receiver pair. The data structures and pseudo
code for the basic send and receive operations are given in figure
2 for the case of sending short messages from process 0 to pro-

cess 1. The critical point, the synchronization, is done using
last byte of the packet. As the control packet is transferred in
single SCI transaction, this byte is guaranteed to be the last b
of the packet to be written in the remote memory. It contains t
message identifier, on which the receiver is polling. This iden
fier is calculated the same way by both, sender and receiver,
a modulo operation. It is ensured that one single slot of a ri
buffer never uses the same message identifier for two conse
tive messages.

B.2 Eager

The eager protocol lets the sender transmit a message with
the receiver requesting it. For this purpose, each process kee
number of buffers in local shared memory (memory within a
SCI shared segment which is physically located on the loc
node) towards each other process. To manage the eager bu
of another process, a ring buffer of pointers pointing to th
according buffers on the receiving process is stored in loc
shared memory. The transmission of an eager message con
of copying the message data to an available remote buffer a
indicating the new message by a control packet. The maxim
message size for the eager protocol is typical in the range o
few kB, but can be adjusted to the amount of memory availab
Again, the data structures and the basic send and receive a

2. The ch_shmem device can optionally be compiled for use
on a Convex cache-coherent-NUMA-machine using ven-
dor specific functions. The data-structures and protocols
remain nearly identical.

µs

SendShortMessage:

// calculate next message id

msgid := (msgid + 1) modulo ID_WRAP

// get a free message slot

while (M avail = 0) {

// update counter via remote read

Mavail := M sent - *rP cnt }

copy message from local_memory to wP msg

*(wP msg + 63) := msgid

// local accounting

increment wP msg and M sent

decrement M avail

ReceiveShortMessage:

// poll id field of next message to arrive

// until it matches the expected id

while (*wP id != msgid) {}

// new message has arrived

copy message from rP msg to local_memory

increment *wP cnt

// calculate id of next message

Fig. 3. Data structures and pseudo code for the short protocol

p r o c e s s 0 p r o c e s s 1

h e a d e r
(1 2 b y t e)

d a t a
(4 7 b y t e)

i d
(1 b y t e)

6 4 b y t e c o n t r o l p a c k e t /
s h o r t m e s s a g e p a c k e t

i n c o m i n g r i n g b u f f e r 0

r e a d c o u n t e r 0

i n c o m i n g r i n g b u f f e r 2

r e a d c o u n t e r 2

p r o c e s s 2

a l i g n m e n t
(4 b y t e)

s h a r e d S C I m e m o r y s e g m e n t

p r i v a t e l o c a l m e m o r y p r i v a t e l o c a l m e m o r y p r i v a t e l o c a l m e m

p t r t o m e s s a g e i d

p t r t o m e s s a g e

p t r t o m s g c o u n t e r

p t r t o m e s s a g e

p t r t o m s g c o u n t e r

m e s s a g e s s e n t

m e s s a g e s a v a i l a b l e

M s e n t

M a v a i l

M r e a d

r P i d

r P m s g

w P c n t

w P m s g

r P c n t

w r i t e a c c e s s p t r

r e a d a c c e s s p t r

-
er-

CI-

te
ble
nce
ters
.

rithm are given in a pseudo code notation in figure 3.

B.3 Rendez-vous

The eager protocol relies on statically allocated resources and
thus is not suited to transfer messages which are longer than the
size of the incoming buffers on the receiving process. The ren-
dez-vous protocol can transfer arbitrary sized messages by using
dynamically managed resources. However, this ability requires a
more complex protocol. It is based on handshakes to transmit
the address of the transfer buffer and for synchronization in case
that the transfer buffer is smaller than the message size.

To increase the effective bandwidth, a write-read-interleave
enables the receiver to start reading from the transfer buffer
before the sender has filled it completely. The data integrity is
ensured by unacknowledged BLOCK_READY control packets
sent by the sender after a certain amount of the transfer buffer
has been filled. The diagram in figure 5 gives an example for a
case where the transfer buffer can not hold the complete mes-
sage (multi-part transfer) and each part is transferred with a cer-
tain interleave.

IV. PERFORMANCE

The raw transfer performance via the SCI network is depicted
in figure 7. Based on these numbers, we can calculate the upper
bound of the message passing performance for the different pro-
tocols. These numbers are compared with measurements of our

SCI-MPICH implementation. Application performance, how
ever, depends on a lot more and complex performance prop
ties. We give a perspective of what can be expected from S
MPICH.

A. Upper Bound of Message-Passing Performance

Based on the raw performance data for local and remo
memory transfers and the protocol specifications, it is possi
to calculate an upper bound of the message passing performa
that can be obtained on such a system. The relevant parame
for message-passing via shared memory are given in table 1

Tab. 1. Parameters for message-passing performance

SendEagerMessage:

// get a free eager buffer

while (*wP avail = NULL) {

// wait for update from remote process

process_other_messages }

copy message from local_memory to *wP avail

// indicate the receipt of a new eager message

// containing the value of *wP avail

send control_packet

// local accounting

increment wP avail

ReceiveEagerMessage:

// control packet for eager message has

// arrived, containing a rP msg

copy message from rP msg to local_memory

Fig. 4. Data structures and pseudo code for the eager protocol

p r o c e s s 0 p r o c e s s 1 p r o c e s s 2

s h a r e d S C I m e m o r y s e g m e n t

p r i v a t e l o c a l m e m o r y p r i v a t e l o c a l m e m o r y p r i v a t e l o c a l m e m

p t r t o n e x t a v a i l
b u f f e r p t r

r e c e i v e h a n d l e s

w P r e t u r nw P a v a i l

p o i n t e r r i n g b u f f e r 1

p t r t o n e x t b u f f e r
p t r t o r e t u r n

w r i t e a c c e s s p t r

r e a d a c c e s s p t r
i n c o m i n g b u f f e r s 0

p o i n t e r r i n g b u f f e r 2 i n c o m i n g b u f f e r s 2

Parameter Description peak Value

bandwidth of sequential
reads from local memory
for blocks of bytes

142.9

bandwidth for copying a block
of bytesfrom private
local memoryto shared remote
memory

76.3

bandwidth for copying a block
of bytesfrom shared local
memoryto private local mem-
ory

334.0

minimal latency of aremote
write operation

2.7

minimal latency of aremote
readoperation

4.4

minimal latency of alocal
readoperation

31

S e n d e r R e c e i v e r

R E Q U E S T _ S E N D

B L O C K _ R E A D Y

O K _ T O _ S E N D

C O N T

B L O C K _ R E A D Y

O K _ T O _ S E N D

B L O C K _ R E A D Y

C O N T

A l l o c a t e s h a r e d m e m o r y
R e t u r n " o k _ t o _ s e n d " c t r l m s g
c o n t a i n i n g a d d r e s s a n d s i z e

S e n d s i z e o f m e s s a g e
t o b e t r a n s m i t t e d

C o p y b l o c k s f r o m p r i v a t e
t o s h a r e d m e m o r y

S e n d " b l o c k r e a d y " c t r l m s g s

C o p y b l o c k s f r o m s h a r e d
t o p r i v a t e m e m o r y

C o p y l a s t b l o c k o f t h i s p a r t
S e n d a c k n o w l e d g e c t r l m s g

C o p y b l o c k s f r o m s h a r e d
t o p r i v a t e m e m o r y

C o p y l a s t b l o c k o f t h i s p a r t
S e n d " p a r t r e a d y " c t r l m s g

W a i t f o r a c k n o w l e d g e c t r l m s g

C o p y l a s t b l o c k s o f t h e m e s s a g e
S e n d " b l o c k r e a d y " c t r l m s g s
S e n d " p a r t r e a d y " c t r l m s g s

M e s s a g e t r a n s f e r c o m p l e t e d

M e s s a g e t r a n s f e r c o m p l e t e d

m a n d a t o r y
m e s s a g e

o p t i o n a l
m e s s a g e

C P U b u s y

C P U a v a i l a b l e

Fig. 5. Definition of the rendez-vous protocol

Blr N()

N

MB s⁄

Bcr N()
N

MB s⁄

Bcl N()
N

MB s⁄

Lrw N() µs

Lrr N() µs

Llr N() ns

to
ns-
me-

ed

-
of

.
s

h
5

of
age
ol
to

al
are
is-

to
r
n

ot

ns-
are
ing

e
ne

e a
see
ck-
age

to
h.
el
The fact thatreadinga block (in the form of an assignment
like a = b[i]) results in a lower bandwidth thancopyinga
block using some memcpy() function is due to the different
assembler code used for these operations. For the three proto-
cols short, eager and rendez-vous, this results in the following
calculations:

A.1 Short

The amount of data that has to be transferred to send a short
message is constant and equals the size of a control packet with

. This includes the header with
a size of . The resulting latency for a short
message with a payload ofN bytes follows as

(1)

In this formula, the first addend describes the remote write of
the complete packet by the sending process, the second addend
the minimal time for the receiving process to detect the arrival
of the new message, the third addend gives the time required to
analyze the header and read the data while the last addend
describes the store of the message data in the local receive
buffer provided by the application. The latency for a control
packet can be determined using the same formula, but the value
of N that has to be used depends on the exact type of the control
packet. The effective bandwidth for short messages can easily
be calculated as

(2)

Due to some system-bus-to-PCI-bus host-bridge peculiarities
which might result in a SCI packet loss, a verification has to be
done by the sending process by reading an error counter on the
PCI-SCI adapter board. If an error occurred, the complete
packet is retransmitted because in this case, the complete packet
did not arrive. Fortunately, this error checking has only a small
impact on the latency since it is done by the sending process
while the receiving process already reads the new message.

A.2 Eager

The transmission of an eager message includes copying the
message data and sending a SEND_ADDRESS control packet
of length to indicate the new message. The receiv-
ing process has to copy the message data into the receive buffer
and return the pointer to the sending process. This gives a
latency of

(3)

Again, the bandwidth is calculated as

(4)

A.3 Rendez-vous

The rendez-vous protocol is the most complex protocol
describe as the number of control packets that have to be tra
mitted for one rendez-vous message depends on three para
ters:
• the size of the rendezvous-message
• the size of the dynamically allocated transfer buffer in shar

memory
• the chosen block-size for the write-read interleaving

This results in parts in which the mes
sage has to be transferred, with a total number

blocks that can be transferred
interleaved, leaving a rest of bytes
All together, it gives us a minimal latency for a rendez-vou
message as described in formula 5 if we can assume that
< (so that determines the effective bandwidt
for interleaved copying). The numerous addends of formula
have the following meaning related to the protocol definition:
• The mandatory control packets at the beginning and end

each message and between multiple parts (if the mess
does not entirely fit into the allocated buffer). These contr
packets have to transfer 16 bytes of infomation in addition
the standard header of each control packet.

• Remote writing of the interleaved blocks and the option
control packets between the blocks. These packets
optional because if no send packet is available, the transm
sion of such a packet can safely be omitted.

• The local copy of the last block of each part from shared
private memory. The local copy operations for all othe
blocks do not influence the latency under the conditio

 < given above.
• Remote writing of the part of the message which does n

make up a full block.

Once more, the bandwidth is calculated as

(6)

B. SCI-MPICH Performance

The foundation of all performance observations are the tra
fer rates that can be achieved via the SCI interconnect which
shown in figure 7. Optimal performance can be achieved us
64 bit transfers from the processor to the PCI bus which w
implemented using the FPU while the transfers which are do
by the CPU are 32 bit transfers.

For the measurements of latency and bandwidth, we us
simple Ping-Pong benchmark between two MPI processes (
figure 6 for the basic algorithm). Each process executes blo
ing send and receive operations to wait for an incoming mess
(MPI_Recv()) and immediately responds (MPI_Send()) once
it has arrived. The resulting round-trip times are then halved
give the effective latency, from which we derive the bandwidt
Using a high-resolution, low-latency timer based on the Int

Spacket Sstreambuffer 64byte= =
Sheader 12byte=

Lshort N()
Spacket

Bcr Spacket()
----------------------------- Llr 4()

Sheader

Blr Sheader()
----------------------------- N

Bcl N()
----------------+ + +=

Bshort N() N
Lshort N()
-----------------------=

C 16byte=

LeagerN() N
Bcr N()
---------------- Lshort C Sheader–() N

Bcl N()
---------------- Lrw 4()+ + +=

BeagerN() N
LeagerN()
-----------------------=

N

Sbuf
Sblock

Npart N Sbuf⁄=

Nblock N Sblock⁄ Npart–=
Nrest N Sblock Nblock⋅–=

(5) Lrndv N() 1 2 Npart⋅+() Lshort 16()⋅ Nblock

Sblock

Bcr Sblock()
--------------------------- Lrw Spacket()+

 Npart

Sblock

Bcl Sblock()

Nrest

BcrNrest
--------------------+⋅+⋅+=

Bcr N()
Bcl N() Bcr N()

Bcr N() Bcl N()

Brndv N() N
Lrndv N()
---------------------=

and
ize
es.
ze

nd
s

her

the
ns

etric
is
re

re-

X
ip

z
h-
ed
3]
ger

y

x86 rdtsc instruction, we could not only measure the latency
of a great number of Ping-Pong cycles, but also create histo-
grams to show the distribution of the latencies .

B.1 Benchmarks

From the measurements of the raw SCI transfer rates and of
the local memory transfer rates, we gain the parameters for the
model described above (see table 1). We then compare the theo-
retical values created by the model (which are the upper limit of
performance that can be achieved) to the values measured on
our cluster. The results are shown in figure 8. The short protocol

was used for messages smaller than 48 bytes. For the eager
rendez-vous protocol, we chose overlapping message s
ranges to find the intersection between both bandwidth curv
This intersection represents the optimal upper limit for the si
of messages transferred via the eager protocol.

Another comparison was done between SCI-MPICH a
other communication devices of MPICH for Intel based SMP
(ch_shmemwith locks and ch_lfshmemwithout locks, both
using shared memory on a single node), clusters (ch_wsockfor
TCP/IP communication between nodes) and also for the ot
existing MPI implementation on top of SCI for Intel x86
machines, ScaMPI. Of course, the simple measurement of
latency and bandwidth for blocking send and receive operatio
between two processes is not to be considered a complete m
for the performance of an MPI implementation. It rather
thought to give an impression of the performance of the co
functionality.

The system on which we conducted the ScaMPI measu
ments is a 16-node SiemenshpcLinerunning Linux, which con-
sists of nearly identical hardware (PentiumII CPUs on Intel B
boards, 32 bit Dolphin PCI-SCI adapters with the same ch
revisions) differing only in the CPU clock speed of 400MH
compared to 450MHz of our cluster (on which all other benc
marks were run). Furthermore, it has to be noted that we us
the factory default settings of all ScaMPI tuning parameters [2
for our measurements, only the size and number of the ea

Fig. 6. Ping-Pong benchmark between 2 MPI processes

Process 0:

MPI_Barrier()

MPI_Wtime(start)

for (number_loops)

MPI_Send()

MPI_Recv()

MPI_Wtime(end)

latency = (end - start)/(2 * number_loops)

Processs 1:

MPI_Barrier()

for (number_loops)

MPI_Recv()

MPI_Send()

64 128 192 256 320 384 448 512

blocksize [byte]

0

10

20

30

40

50

60

70

la
te

nc
y

[u
s]

cpu read
cpu write
fpu read
fpu write

Latency of SCI Remote Memory Access
Intel Pentium II 450MHz, BX chipset, Linkcontroller LC2, PSB rev. D

Fig. 7. Bandwidth and latency of remote memory access via SCI
using CPU (32 bit) and FPU (64 bit) transfers

32 64 256 1K 2K 4K 8K 16K 32K 64K16 128 5128

blocksize [byte]

0

10

20

30

40

50

60

70

80

ba
nd

w
id

th
 [M

B
/s

]

cpu read
cpu write
fpu read
fpu write

Bandwidth of SCI Remote Memory Access
Intel Pentium II 450 MHz, BX Chipset, Linkcontroller LC2, PSB rev. D

Fig. 8. Modeled and measured Ping-Pong bandwidth and latenc
(roundtrip/2) between 2 MPI processes

1 4 16 64 256 1K

message size [byte]

0

10

20

30

la
te

nc
y

[u
s]

short (model)
eager (model)
short (SCI−MPICH)
eager (SCI−MPICH)

Latency for Ping−Pong
Comparison of the model and the SCI−MPICH implementation

1 4 16 64 256 1K 4K 16K 64K 256K 1M

message size [byte]

0

10

20

30

40

50

60

70

80

ba
nd

w
id

th
 [M

B
yt

e/
s]

short (model)
eager (model)
rndv (model)
short (SCI−MPICH)
eager (SCI−MPICH)
rndv (SCI−MPICH)

Bandwidth for Ping−Pong
Comparison of the model and the SCI−MPICH implementation

how.
the
ck
do

.
ow
h
g.
ble
yn-
the
nd
s
of

5)
uld
a-

ly
es
PI
ket
I-
PI
I-
buffers was set equal to the settings used by SCI-MPICH.
Thech_wsockdevice for MPICH is a device for our own NT

port of MPICH to Windows NT which uses Windows sockets
for communication. As it performs better than thech_p4device-
under NT, Solaris and Linux, we chose to use it as a basis for
the comparison of MPI via SCI and via the usual fast ethernet.

The results of this comparison are depicted in figure 9. The
latency for small messages via the ch_wsock device is not dis-
played as its minimum latency is about 150 .

B.2 Discussion

The benchmark results show that in terms of latency, SCI-
MPICH is able to compete with the SMP communication
devices shmem and lfshmem. The difference of approximately
2.5 for SCI-MPICH short messages against the latency from
the model mainly represents the internal overhead of the MPIR
layer. This overhead can not be reduced without changing the
general MPICH code which is not desired.

For messages send via the eager protocol, SCI-MPICH’s
bandwidth trend resembles the curve of the model and comes
very close to the theoretical maximum for message sizes above
16kB. The bandwidth as described by the model reaches its
peak value for message sizes of 8kB, then approximates to a
value little below the peak value. This behavior is due to the
peak ofBcl which is located at a block size of 8kB. However, the
effective bandwidth is dominated byBcr and the internal over-
head of the MPIR layer (which is not described by the model).
This results in a less distinct peak at 8kB message size and an
approximation of the effective bandwidth to the model band-
width for larger message sizes.

Tab. 2. Ping-Pong minimal latency (round-trip/2) and maximum band-
width between 2 MPI processes

The maximum bandwidth for messages transferred via the
eager protocol being situated well below the raw SCI transfer
rates is due to the miss of an interleaved copy mechanism: for
the eager protocol, the receiver is not notified on the arrival of
the new message until it is transferred completely. This leads to
the simple addition of the time required for the remote copy
operation from the sender to the receiver the and local copy
operation of the receiver from shared to private memory.

The rendez-vous protocol delivers a performance which is
close to the values predicted by the model for message sizes
beyond 128kB. The important technique is the interleaving of
write and read operations by the sender and the receiver. With-
out this overlapping, the bandwidth for large messages

decreases as the devices shmem and lfshmem for SMPs s
SCI-MPICH’s bandwidth for large messages comes close to
raw peak bandwidth of the SCI interconnect. The only drawba
in performance are the partial transfers for messages which
not fit entirely in the memory pool for rendez-vous messages

The effective bandwidth for rendez-vous messages bel
128kB could be improved by using a modified protocol whic
uses implicit synchronization for the write-read interleavin
Instead of sending control packets for each block, it is possi
to only send such a packet for the first block and use special s
chronization marks inside the message buffer for the rest of
transfer. This would reduce the synchronization overhead a
lead to higher point-to-point bandwidth for small rendez-vou
messages. However, it would also lead to a polling behavior
the receiving process for the usual case ofBcr < Bcl resulting in a
waste of CPU cycles: the CPU-available phases (see figure
between each transferred block would disappear. This wo
lead to a lower accumulated bandwidth for other communic
tion types than unidirectional point-to-point sends.

The minimal latency that ScaMPI achieves is significant
higher than SCI-MPICH’s, and also the bandwidth for messag
transferred via either protocol is lower. It seems that ScaM
uses at least two SCI transactions to transfer a control pac
[24]. We tried to use an equal buffer layout of ScaMPI and SC
MPICH using some of the startup-parameters that ScaM
offers. It is possible that ScaMPI delivers results similar to SC

min. latency max. bandwidth

SCI-MPICH 6.6 73.8

MPICH lfshmem 1.6 141.9

MPICH shmem 4.6 110.4

ScaMPI 16.2 65.7

MPICH wsock 146.7 10.2

µs

µs

µs MB s⁄

µs MB s⁄

µs MB s⁄

µs MB s⁄

µs MB s⁄

1 4 16 64 256 1K 4K 16K 64K 256K 1M

message size [byte]

0

20

40

60

80

100

120

140

ba
nd

w
id

th
 [M

B
yt

e/
s]

SCI−MPICH
MPICH shmem
MPICH lfshmem
ScaMPI
MPICH wsock

Bandwidth for Ping−Pong
Comparison of different SMP/Cluster MPI Implementations

Fig. 9. Ping-Pong bandwidth and latency (roundtrip/2) between
2 MPI processes

1 4 16 64 256 1K

message size [byte]

0

10

20

30

40

50

60

la
te

nc
y

[u
s]

SCI−MPICH
MPICH shmem
MPICH lfshmem
ScaMPI

Latency for Ping−Pong
Comparison of different SMP/Cluster MPI Implementations

ry-
is
a

ry
se
es-
is

p-
s-
rs.
it

d-

ta
To
rted
-
e
ol)
n
to

w
f
f

l-
of
e
m-

-
s
is

e
rs
tly
an-
ues
MPICH’s with an optimized memory configuration, but surpass-
ing SCI-MPICH will be difficult regarding the overhead of only
2.5 for control packets and the efficiency (effective band-
width related to raw SCI transfer rate) of 96% for large eager
and rendez-vous messages which SCI-MPICH achieves.

The shared-memory SMP devices shmem and lfshmem do, of
course, deliver lower latencies and a considerably higher band-
width for messages which fit well into the memory caches.
However, the performance gap is less significant than might be
expected. First tests with the application benchmark Spark 98
[25] even show that it may result in higher performance to run
SCI-MPICH processes on distinct nodes than using an equiva-
lent SMP setup. This effect is due to the simple design of the
memory interface in low-cost Intel based SMP machines which
gives only half of the bandwidth to each CPU if they are com-
peting for memory access. With SCI-MPICH, the communica-
tion between processes imposes less stress to the memory bus.
This effect is also responsible for the bandwidth of large rendez-
vous messages being higher for SCI-MPICH than for the SMP
devices, even if these do also use an interleave technique.

The results of the wsock device for MPICH are very close to
the raw TCP/IP performance on the 100Mbit ethernet. However,
the resulting performance is well below the performance of SCI-
MPICH in terms of bandwidth and even more in terms of
latency. The introduction of Gigabit ethernet networks will
improve the bandwidth, but the inclusion of the operating sys-
tem into the message transmission will avoid latencies as low as
SCI based solutions achieve today.

V. SUMMARY & FUTURE WORK

The presented MPI implementation offers full MPI-1 func-
tionality based on the widespread and reliable MPICH distribu-
tion which is extendable with a variety of important tools for
tracing or parallel debugging. What makes this implementation
special for cost-effective cluster-solutions are the extremely low
latencies of small messages and the high maximum bandwidth.
The free availability of the source code may help to establish
SCI connected clusters as a high-performance, solid yet afford-
able platform for technical and scientific computing next to the
popular ethernet connected clusters. These perform nearly an
order of magnitude worse when it comes to inter-node commu-
nication.

However, while the software is running stable in our configura-
tion of 6 nodes, it is still in an early stage of development. It has
not yet been tested on larger configurations, and the performance
that it delivers to real applications has to be evaluated in depth.
It offers a lot of room for improvement next to the two key pa-
rameters bandwidth and latency which are now near to the theo-
retical maximum. The most important issues that we have in
mind are briefly discussed below.
• Driver Issues (SMP and Caching)

The driver for the Dolphin SCI-PCI adapter which were
available for the development on Linux and Solaris x86 do
neither support multiple processes on one node nor remote
interrupts. The resulting limitations are automatically solved
with fully functional drivers, as internal tests with the Win-
dows NT version of SCI-MPICH and with new beta-release

drivers for Linux and Solaris x86 show.
• Multithreading

Tests with the Spark98 benchmark indicate that memo
intensive MPI applications perform better if each process
run on a dedicated node than using multiple process on
SMP node. This is due to the simple design of the memo
interface on the dual CPU main boards. To make efficient u
of the second CPU, a second thread could be used for m
sage transfers. In conjunction with remote interrupts, th
would provide fully asynchronous sending and receiving.

• DMA
Although, on the hardware which is used for this develo
ment, DMA transfers via SCI are generally slower than tran
fers by the CPU, they allow for true asynchronous transfe
If computation and communication can be overlapped,
might give more performance even with lower transfer ban
width.

• Dynamic configuration
The configuration of the protocols and the according da
structures is currently set up on the application startup.
change these settings, the application needs to be resta
with a different configuration description. Dynamic configu
ration on runtime would allow to adjust settings (i.e. the siz
and the number of the transfer buffers for the eager protoc
during the execution of the application, potentially in a
adaptive manner by analyzing the communication pattern
optimize the setup for this specific application.

• I/O
Parallel applications often suffer from the bottleneck of slo
file I/O. MPICH offers parallel I/O by the implementation o
MPI-IO, ROMIO. We are currently developing support o
ROMIO for parallel file access via SCI.

• Collective Operations
Especially for larger configurations, the performance of co
lective operations is important for the overall performance
an application. The standard MPICH routines for collectiv
operations should be replaced with special SCI shared me
ory functions. This is already done forMPI_Barrier() .

• Cluster Manager
The startup of a SCI-MPICH application under Unix is cur
rently performed via a script and remote shell invocation
without any queuing, scheduling and protection (the same
true for the startup under NT which is performed with th
tool NTRexec[21]). If one process should crash, the othe
continue running. These and other problems are curren
addressed with the development of a Java-based cluster m
agement software and new startup and shutdown techniq
for SCI-MPICH.

µs

REFERENCES

[1] Message Passing Interface Forum:MPI: A message-passing interface
standard.International Journal of Supercomputing Applications, 8(3/4),
1994

[2] W. Gropp, E. Lusk, N. Doss and A. Skjellum:A high-performance, porta-
ble implementation of the MPI message passing interface standard.Paral-
lel Computing, 22:789-828, September 1996

[3] Message Passing Interface Forum:MPI-2: Extensions to the Message-
Passing Interface.
http://www.mpi-forum.org/docs/docs.html, July 1997

[4] Genias Software GmbH:Parallel Tools Environment on NT.http://
www.genias.de/products/patent

[5] E. Lusk and W. Gropp:The implementation of the second generation
MPICH ADI. MPICH working note (draft) from http://www.mcs.anl.gov/
mpi/mpich/workingnote/adi2impl/note.html, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, Ill., 1997

[6] E. Lusk and W. Gropp: Creating a new MPICH device using the channel
interface.Technical Report ANL/MCS-TM-213, Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, Ill., 1995

[7] R. Buyya:High Performance Cluster Computing: Architectures and Sys-
tems, Volume 1.Prentice-Hall, 1999.

[8] R. Gillet, MEMORY CHANNEL Network for PCI: An Optimized Cluster
Interconnect.IEEE Micro (February 1996):12-18

[9] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, W.
Su: Myrinet - a gigabit-per-second local-area network.IEEE Micro,
15(1):29-26, February 1995

[10] IEEE: ANSI/IEEE Std. 1596-1992,Scalable Coherent Interface (SCI).
1992

[11] V. S. Sunderam:PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice and Experience, Vol. 2 No. 4, pp.315--339, Decem-
ber 1990. available from http://www.netlib.org/ncwn/pvmsystem.ps

[12] J. Lawton, J. Brosnan, M. Doyle, S. Ó Riordáin, T. Reddin:Building a
High-performance Message-passing System for MEMORY CHANNEL
Clusters.Digital Technical Journal, Vol. 8 No. 2, 1996

[13] M. Lauria, A. Chien:MPI-FM: High Performance MPI on Workstation
Clusters.Journal of Parallel and Distributed Computing, Vol. 40, No. 1,
pp. 4-18, January 1997

[14] M. Lauria, S. Pakin, A. Chien:Efficient Layering for High Speed Commu-
nication: the MPI over Fast Messages (FM) Experience.Dept. of Com-
puter Science and Engineering, University of California, San Diego,
accepted for publication on Cluster Computing, 1999

[15] Scali AS:Scali MPI - ScaMPI. http://www.scali.com/html/scali.html
[16] I. Zoraja, H. Hellwagner, V. Sunderam:SCIPVM: Parallel Distributed

Computing on SCI Workstation Clusters. To appear in: Concurrency:
Practice and Experience.

[17] ESPRIT HPCN Project EP23174:Standard Software Infrastructure for
SCI based parallel systems - SISCI.

[18] M. Eberl, H. Hellwagner, Bjarne G. Herland:A Common Messaging
Layer for MPI and PVM over SCI. Proc. HPCN Europe 1998, Amster-
dam, The Netherlands, April 21-23, 1998, LNCS 1401, Springer Verlag
1998

[19] M. Eberl, W. Karl, M. Leberecht, M. Schulz:Eine Software-Infrastruktur
für Nachrichtenaustausch und gemeinsamen Speicher auf SCI-basierten
PC-Clustern.2nd Workshop Cluster Computing, Karlsruhe, March 1999

[20] M. Dormanns, W. Sprangers, H. Ertl, T. Bemmerl:A Programming Inter-
face for NUMA Shared-Memory Clusters.Proc. High Performance Com-
puting and Networking (HPCN), pp. 608-707, LNCS 1225, Springer,
1997

[21] J. Worringen, K. Scholtyssik:MP-MPICH: Multi-Platform MPICH.
http://www.lfbs.rwth-aachen.de/~joachim/MP-MPICH.html

[22] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser, B.D. Johnsen,
H.Kohmann, R. Nordström, P. Werner:Low-level SCI software functional
specification, Esprit Project 23174, CERN, Geneva and Dolphin Intercon-
nect Solutions AS, Oslo, Version 2.1.1. March 1999

[23] Scali AS:ScaMPI User’s Guide, Scali AS, Oslo, Version 1.7.0, 1999
[24] Scali AS:ScaMPI - Design and Implementation.Scali AS, Oslo, Version

1.7.0, 1999
[25] O’Hallaron, D.R.:Sparse Matrix Kernels for Shared Memory and Mes-

sage Passing Systems.Technical Report CMU-CS-97-178, School of

Computer Science, Carnegie Mellon University, October 1997

	MPICH for SCI-connected Clusters
	Joachim Worringen, Thomas Bemmerl
	I. Introduction
	A. MPICH Implementation
	B. Message-passing on Clusters
	C. Motivation
	D. Organization of the Paper
	II. SCI Cluster Platform

	A. Hardware
	B. Software
	III. Implementation of SCI-MPICH

	A. ADI-2 Device ch_smi
	Fig. 1. Layered design of generic MPICH
	Fig. 2. Layered design of the SCI-MPICH implemenation
	Fig. 3. Data structures and pseudo code for the short protocol

	B. Message transfer protocols
	B.1 Short
	Fig. 4. Data structures and pseudo code for the eager protocol

	B.2 Eager
	B.3 Rendez-vous
	Fig. 5. Definition of the rendez-vous protocol

	IV. Performance

	A. Upper Bound of Message-Passing Performance
	Tab. 1. Parameters for message-passing performance
	A.1 Short
	(1)
	(2)

	A.2 Eager
	(3)
	(4)

	A.3 Rendez-vous
	(5)
	(6)

	B. SCI-MPICH Performance
	Fig. 6. Ping-Pong benchmark between 2 MPI processes
	Fig. 7. Bandwidth and latency of remote memory access via SCI using CPU (32 bit) and FPU (64 bit)...
	B.1 Benchmarks
	Fig. 8. Modeled and measured Ping-Pong bandwidth and latency (roundtrip/2) between 2 MPI processes

	B.2 Discussion
	Tab. 2. Ping-Pong minimal latency (round-trip/2) and maximum bandwidth between 2 MPI processes
	Fig. 9. Ping-Pong bandwidth and latency (roundtrip/2) between 2 MPI processes

	V. Summary & Future Work
	References
	[1] Message Passing Interface Forum: MPI: A message-passing interface standard. International Jou...
	[2] W. Gropp, E. Lusk, N. Doss and A. Skjellum: A high-performance, portable implementation of th...
	[3] Message Passing Interface Forum: MPI-2: Extensions to the Message- Passing Interface. http://...
	[4] Genias Software GmbH: Parallel Tools Environment on NT. http:// www.genias.de/products/patent
	[5] E. Lusk and W. Gropp: The implementation of the second generation MPICH ADI. MPICH working no...
	[6] E. Lusk and W. Gropp: Creating a new MPICH device using the channel interface. Technical Repo...
	[7] R. Buyya: High Performance Cluster Computing: Architectures and Systems, Volume 1. Prentice-H...
	[8] R. Gillet, MEMORY CHANNEL Network for PCI: An Optimized Cluster Interconnect. IEEE Micro (Feb...
	[9] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, W. Su: Myrinet - a gigab...
	[10] IEEE: ANSI/IEEE Std. 1596-1992, Scalable Coherent Interface (SCI). 1992
	[11] V. S. Sunderam: PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice a...
	[12] J. Lawton, J. Brosnan, M. Doyle, S. Ó Riordáin, T. Reddin: Building a High-performance Messa...
	[13] M. Lauria, A. Chien: MPI-FM: High Performance MPI on Workstation Clusters. Journal of Parall...
	[14] M. Lauria, S. Pakin, A. Chien: Efficient Layering for High Speed Communication: the MPI over...
	[15] Scali AS: Scali MPI - ScaMPI. http://www.scali.com/html/scali.html
	[16] I. Zoraja, H. Hellwagner, V. Sunderam: SCIPVM: Parallel Distributed Computing on SCI Worksta...
	[17] ESPRIT HPCN Project EP23174: Standard Software Infrastructure for SCI based parallel systems...
	[18] M. Eberl, H. Hellwagner, Bjarne G. Herland: A Common Messaging Layer for MPI and PVM over SC...
	[19] M. Eberl, W. Karl, M. Leberecht, M. Schulz: Eine Software-Infrastruktur für Nachrichtenausta...
	[20] M. Dormanns, W. Sprangers, H. Ertl, T. Bemmerl: A Programming Interface for NUMA Shared-Memo...
	[21] J. Worringen, K. Scholtyssik: MP-MPICH: Multi-Platform MPICH. http://www.lfbs.rwth-aachen.de...
	[22] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser, B.D. Johnsen, H.Kohmann, R. Nordström, P....
	[23] Scali AS: ScaMPI User’s Guide, Scali AS, Oslo, Version 1.7.0, 1999
	[24] Scali AS: ScaMPI - Design and Implementation. Scali AS, Oslo, Version 1.7.0, 1999
	[25] O’Hallaron, D.R.: Sparse Matrix Kernels for Shared Memory and Message Passing Systems. Techn...

