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Abstract

The SCI Collectives Library is a new software package
which implements optimized collective communication op-
erations on SCI networks. It is designed to be coupled to
different higher-level communication libraries (especially
MPI implementations) by adapter modules, thereby giving
them access to these optimized collectives. In this work,
we present the design of the SCI Collectives Library and of
adapter modules for Open MPI and NMPI. We also describe
various barrier algorithms which we have implemented for
this library and compare their performance to one another
and to the barrier performance of MPI implementations
which include support for SCI.

1. Introduction

The performance characteristics and the design of low-
level interfaces vary greatly between different local area
networks, such as SCI [?], Myrinet, and Ethernet. There-
fore, for an MPI implementation to achieve good applica-
tion performance on a cluster equipped with such a network,
proper support for a specific network architecture must be
developed. This has led to MPI implementations which are
tailored to a specific high-speed network, e.g. SCI-MPICH
[?] for SCI and MPICH-MX for Myrinet. Unfortunately,
this limits the users of a cluster to a certain MPI imple-
mentation, even if other characteristics of it (like thread-
safety or tool support) may be unsatisfactory. These spe-
cific MPI implementations usually contain collective oper-
ations which are highly optimized for the network architec-
ture which the implementation supports.

The SCI Collectives Library provides optimized collec-
tive communication routines for SCI networks and is de-
signed to be adaptable to different MPI libraries. This gives

users of SCI clusters more freedom in their choice of an
appropriate MPI implementation. We aim to show with
the implementation of this library, that it can be coupled
to different MPI libraries without a significant performance
penalty. The library is also meant to serve as a tool for do-
ing research in the area of collective algorithm design and
implementation on SCI networks. So far, we have imple-
mented various barrier algorithms in the SCI Collectives Li-
brary and evaluated their performance.

The structure of this paper is as follows: Sec. 2 refers to
prior work about barrier algorithms for SCI networks and
describes the MPI implementations mentioned in the later
sections. Sec. 3 details the architecture of the SCI Collec-
tives Library and the way it can be adapted to different MPI
libraries. The barrier algorithms and related benchmark re-
sults are are described in Sec. 4, Sec. 5 concludes the paper.

2. Related Work

[?] compares various barrier implementations on an SCI
cluster. Unfortunately, this comparison is biased by the
best-performing barrier using direct writing to remote SCI
memory (see Sec. 4) while the other ones are based on
MPI_Send andMPI_Recv and therefore suffer from ad-
ditional overhead. In [?], SCI clusters of SMPs are con-
sidered. For the implementation of a barrier on such a
system, the author argues in favour of a dedicated process
per node doing the network-wide synchronization with the
node-internal parts of the barrier performed before and af-
ter that, an approach we followed in the SCI Collectives
Library. The algorithms and data layout for barrier syn-
chronization presented in [?] served as the starting point for
our implementation.



2.1. SCI-MPICH

SCI-MPICH, part of the MP-MPICH software package,
primarily is a channel device for MPICH, called chsmi [?].
It is based on the SMI library [?] which in turn makes use of
the low-level SISCI [?] interface for SCI. SCI-MPICH im-
plements optimized point-to-point and collective operations
for SCI networks [?, ?]. Because of its MPICH heritage, it
provides neither thread safety nor full support for the MPI-2
standard.

2.2. NMPI

NMPI [?] is based on MPICH2 and implements a chan-
nel device with optimized point-to-point operations for SCI.
Compared to SCI-MPICH, it has the advantages which
MPICH2 has over MPICH, but it does not contain opti-
mized collective algorithms. Instead, the standard MPICH2
collective algorithms [?], which are designed for switched
networks and not for the ring or torus topologies of SCI
clusters, are used for SCI, albeit on the basis of the fast
point-to-point operations.

2.3. Open MPI

Open MPI [?] is an MPI implementation which aims to
integrate the features of several older software distributions
like FT-MPI, LA-MPI, and LAM/MPI into a single pack-
age. It also differs from MPICH and MPICH2 in its com-
ponent based architecture, calledModule Component Ar-
chitecture(MCA) [?]. The MCA allows for the inclusion of
new functionality and the replacement of software compo-
nents without the need to make source code changes to the
Open MPI distribution, because it can detect and activate
components implemented as shared libraries at runtime.

Point-to-Point communication with Open MPI on an SCI
cluster can be done via sockets [?] and an implementa-
tion on top of SISCI has been considered [?], but to our
knowledge no collective communication operations tailored
to SCI networks are available for Open MPI yet.

3. Architecture of the SCI Collectives Library

3.1. Overview

Fig. 1 shows the design of the SCI Collectives library
from a high-level point of view. The collective algorithms
are implemented inside of thescicoll library, which is
coupled to the MPI libraries via the respective adapters. For
its algorithms, thescicoll library calls point-to-point op-
erations from the higher-level libraries or directly uses the
SISCI interface, when this is preferable (see Sec. 4).

Figure 1. Architecture of the SCI Collectives
Library

3.2. Interface Design

To provide multiple MPI implementations with opti-
mized point-to-point operations on a specific architecture,
the uDAPL interface [?] can be implemented for this archi-
tecture, since there are several MPI implementations which
can make use of this API, e.g. Intel MPI [?] and Open
MPI. For collective communication, there is currently no
such interface available, which made the development of
adapter modules for different MPI implementations neces-
sary. This situation also motivates the design of an interface
for the scicoll library which is suitable to be used by
such adapter modules. The interface for the SCI Collectives
Library has the following main properties:

• Support for all MPI collective operations (which are
not all implemented yet)

• Functions to register point-to-point operations used as
a basis for the collective algorithms

• We plan to provide all collectives also in asynchronous
versions compatible to LibNBC [?] (and to support
non-MPI collectives which may need this)

• The possibility for the user to choose between different
algorithms for a collective operation (if available)

The SCI Collectives API provides functions to initialize
and finalize the library and to create and destroy groups of
processes. For the creation of such a group, an adapter must
provide the pointers to some communication functions (de-
rived from MPI blocking and nonblocking send and receive)
and can provide settings to override the default algorithm
choice and parameters. The results of precalculations influ-
encing the collective algorithms are stored in internal data
structures. A pointer to that data is returned to the adapter
and must be provided to the collective calls.

3.3. Adapter Modules

So far, we provide adapters for Open MPI and NMPI.
We plan to develop additional adapter modules and provide
documentation and sample source code to enable the devel-
opment of third-party modules.

The adapters control the initialization of process groups
during the creation of each MPI communicator. They im-
plement send and receive functions using the same inter-
nal functions of the MPI library that are also used inside
of MPI_Send, MPI_Recv etc. Furthermore, they contain



functions for the collective operations that are called by the
MPI library and which in turn call the optimized algorithms
of scicoll. This way, the collective functions are called
with almost no overhead during execution.

Open MPI. In Open MPI, the collective functions are
handled by thecoll framework. It is able to deal with
multiple available collective components which implement
a subset or all of the collective routines. The adapter is cur-
rently based on Open MPI 1.2.1 with collective framework
version 1.0.0. Upon the creation of a new MPI communica-
tor, thecoll framework queries the available components
to find the one most suitable for this particular setup. That
component is then used to create and initialize a module,
which is an instance of the component. The module returns
pointers to its collective functions to the framework. Func-
tions not implemented by this module are automatically
realized by generic algorithms from the includedbasic
component. The current version of the collective frame-
work can use multiple components and doesn’t need to fall
back to the generic functions if the best suited component
provides only a few collective operations.

The Open MPI adapter is available as a shared library
which maps collective routines required by Open MPI to
thescicoll interface. If put in the correct place, it is de-
tected by the framework and loaded automatically. Open
MPI supports MCA parameters that can be set in configura-
tion files and at the command line to influence the behaviour
of components. The adapter reads its parameters and hands
them to the library. This way, specific algorithms or modes
can be selected by a user.

NMPI. The origin of NMPI, MPICH2 supports the re-
placement of its collective functions by hooks that are called
each time a new communicator is created. A hook is a pre-
defined macro which is overwritten by the adapter to ini-
tialize the library. Only those collective operations which
are implemented byscicoll are replaced by optimized
versions while the others use their original algorithms. The
NMPI adapter is realized as a source code patch, therefore
a rebuild of NMPI is required. Parameters can be passed to
the NMPI adapter via a configuration file.

4. The Barrier Implementation

In MPI [?], a barrier is defined as a synchronization
among a group of processes which blocks the caller un-
til all group members have entered the corresponding call.
Thus no process can proceed with execution after the barrier
while there are processes which have not entered the barrier
yet.

In barrier algorithms, a process marks its arrival at the
barrier by emitting some kind ofsignalwhich must then be

passed to all the other processes until every process has re-
ceived enough signals to be sure that each other process has
reached the barrier. Thus, a signal carries the information
about the arrival of one or more processes at the barrier. The
generic barrier algorithms in Open MPI and NMPI use mes-
sage passing functions to send and receive such signals. To
avoid the overhead of the point-to-point communication, we
directly use the SISCI API for our barrier implementation.

SISCI allows the creation of SCI memorysegments
which can beexportedby a process A andimportedby a
process B running on a different node. After B has mapped
the segment into its virtual address space, it can send data to
A via CPU store operations with very low latency for small
messages. A signal for a barrier algorithm can thus be real-
ized by writing via a remote pointer.

The SCI adapters used by us (see Tab. 1) containstream
buffers, in which write gathering is performed for outgo-
ing data. Asequence checkmust be done to detect failed
data transfers, which are then repeated until the check suc-
ceeds. Each sequence check contains by default an inherent
store barrier to force the completion of all pending trans-
fers. These sequence checks take more than 5µs, but fail-
ures are rare, while a remote write operation with a size of
4 bytes stalls the sender’s CPU for about 200 ns. Therefore,
it is preferable to protect as many data transfer operations
as possible with a single check. Furthermore, our experi-
ments revealed that a dedicated store barrier followed by a
sequence check which has its inherent store barrier deacti-
vated is 1.5 to 2µs faster so that the combination of store
barrier and fast sequence check takes below 4µs.

4.1. Local Synchronization

If multiple processes are running on the same node, one
of them is nominatedmasterto communicate with the other
nodes. Theslavessynchronize with the local master by Sys-
tem V shared memory. Each slave sets a flag and the master
waits until all have checked in before it synchronizes with
the other nodes (Fig. 2). The check-in flags are aligned
at the beginning of a cache-line so that least cache misses
occur. After the remote synchronization, the master sets a
single check-out flag the slaves are waiting for.

Figure 2. Shared Memory Check-in/-out of Lo-
cal Processes

For any noden, this intra-node synchronization scales
linearly with the number of processesPn on the node . The
master readsPn−1 flags from the local memory and writes
a single one in addition to the remote synchronization. The
slaves issue only a single write and read operation. This
is very fast compared to the remote memory access and re-
duces the problem of the synchronization ofP processes on



connected SMP nodes to the synchronization ofN nodes
(with N ≤ P ). [?]

4.2. Remote Synchronization

For the synchronization among the nodes, each master
process exports a local SCI segment and imports the seg-
ments of the other nodes. Each flag is aligned at the top of
the stream buffer size so that writing to that position makes
the SCI adapter issue the network transfer instantly. The
flags are always located at the receiver so that setting the
flag requires one data transfer and waiting for the flag can
be done by polling a variable in local memory.

The communication pattern is prepared during initializa-
tion and stored as barrier-data within the MPI communica-
tor. During the barrier call, each process just executes the
precomputed list of write and read operations.

Hierarchical Shared Memory Barrier. The hsb algo-
rithm described in [?] and implemented in SCI-MPICH
concentrates the arrival signals of all processes to a tree root
(a gatherpattern forming anfin-ary tree) andbroadcasts
the arrival information in the opposite direction afterwards
(via anfout-ary tree). In SCI-MPICH, this algorithm is per-
formed withf = fin = fout = 8. We re-implemented it
and did an experimental evaluation to find out the optimal
value off on our cluster. Our experiments did not yet show
any advantages of setups withfin 6= fout.

Figure 3. Hierarchical Shared Memory Barrier

As an example for thehsbalgorithm, Fig. 3 shows the
synchronization of seven nodes with a ternary tree (f = 3).
Node 1 waits until 4, 5 and 6 have set their flags and sets
afterwards its fan-in flag at node 0. After that one has de-
tected all flags from 1, 2 and 3 it begins the fan-out process
by setting the corresponding flags in these nodes. Node 1
was waiting for this event, promotes the signal to its chil-
dren and returns from the barrier call.

Each node waits for up tof children by reading local
memory until a flag is set. Except the tree root, a single
remote write operation with sequence check and the wait-
ing for the fan-out flag follows. Finally, the children are
released by up tof remote write operations and a single se-
quence check. The effort of each process is highly scalable
but the further down a node is located in the tree, the longer
it has to wait until the signal is promoted to the tree root and
back. This algorithm performs2 · ⌈logf N⌉ steps.

Exchange Algorithms. The exchange algorithms were
inspired by the binary exchange barrier also presented in
[?]. But the number of steps is bound by O(log

2
N ) and

each step requires a time consuming sequence check. To
decrease their number, we generalized the binary exchange
to an n-ary exchange (nx) so that the number of steps is
bound by O(logn N ) which is better forn > 2. Each node
issues(n− 1) flags, but as setting a flag just creates a small
data transmission, this does not congest the network for a
reasonable number of nodes.

Two modes are realized. In the first one, in each of
logn(N) steps, groups ofn nodes synchronize themselves.
The groups are assembled in a way that in each step repre-
sentatives from different groups meet (Fig. 4) and convey
the synchronizations they made before.

Figure 4. n-ary Exchange

This algorithm has the disadvantage that it requiresN

to be a power ofn. If this precondition cannot be met, ad-
ditional synchronization is needed, resulting in a total of
⌊logn N⌋ + 2 steps.

This overhead can be avoided by a different communica-
tion pattern (mode 2) derived from the (binary) dissemina-
tion algorithms presented in [?] and used in MPICH2. This
algorithm requires⌈logn(N)⌉ steps. In stepi, each node
nid sets(n − 1) flags at the nodesnid + ni (mod N),
nid+ 2 ·ni (mod N) etc. and waits for the same number
of local flags to be set by other nodes. Figure 5 illustrates
the dissemination of the first node’s signal forn = 3 on 9
nodes. In the same manner, the signal of each other node is
dispersed.

Figure 5. n-ary Dissemination

With the factorn, the number of steps (thus sequence
checks) and network packets can be influenced. In the
above example, each node sends and receives 4 signals dur-
ing 2 steps and a total of9 · 4 = 36 remote write operations
are executed. Withn = 9, only a single sequence check is
done, but each node sends and receives 8 signals, a total of
72 remote write operations.

4.3. Benchmark Results

To find optimal parameter settings, we benchmarked
each barrier algorithm with the Intel MPI Benchmarks
(IMB) on our development cluster, which is detailed in
Tab. 1, using the software with the given versions. The re-
sults for thenxalgorithms with different values forn are il-
lustrated in Fig. 6, where each additional step can be seen as
an abrupt increase in the time taken for the barrier. Within
a constant number of steps, only a slight increase is visible.
The graph forn = 16 shows thatn should not be set greater
thanN . Up to 16 nodes,n = N is the optimal parameter



selection for this algorithm. Above 16 nodes,n = 2 and
n = 16 would require an additional step, butn = 6 can
avoid this for up to 36 nodes. By extrapolation, we assume
that the graphs forn = N andn = 6 cross at about 20
nodes.
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Figure 6. Optimization of the n-ary Exchange
Algorithm

All presented barrier algorithms were analyzed likewise
and by default, their parameters for a barrier concerning up
to 16 nodes is set to the number of nodes (hsb: fin = fout =
N − 1 andnx: n = N ) in the SCI Collectives Library. We
limit the parameters and set them to a much lower value
(e.g. 6) above a certain number of nodes. This reduces
the network traffic accepting additional steps but should be
faster.

Therefore, both algorithmshsbandnx degenerate to se-
quential access (hsb) and all-to-all communication (nx) be-
low 16 nodes. The additional steps do not appear until more
nodes are involved, but the behaviour above that limit is cur-
rently extrapolated and must be confirmed by experiments.

We measured the performance of our algorithms in com-
parison to NMPI and the optimized barrier of SCI-MPICH
on our cluster, the results are depicted in Fig. 7. The NMPI
barrier took more than 15µs on 3 nodes and about 37µs on
16 nodes and is therefore not contained in that figure. The
newly implementedhsbalgorithm is slightly slower below 9
nodes than the same algorithm in SCI-MPICH. Above, SCI-
MPICH needs two steps because of the fixed fan-parameter
8 so that our optimized algorithm becomes faster by using
a single step. The newnx algorithm proved to be faster for
any number of nodes up to 16 than the other barrier rou-
tines. Bothhsbandnx algorithms show the same perfor-
mance with the Open MPI and the NMPI adapter, demon-
strating that neither of the two adapters introduces too much
overhead.

If two processes are running on each node, the barrier

Hardware

Processor 16 x Intel Pentium D 2.8 Ghz
RAM 2 GB per node
SCI D352 adapter, 4x4 2D Torus

Software

DIS Release 3.2.5
Open MPI 1.2.1

SCI-MPICH rc-1.5
NMPI 1.2

Linux Kernel 2.6.18
IMB 3.0

Table 1. Hardware and Software used for Per-
formance Evaluation
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Figure 7. Comparison of Barrier Implementa-
tions

time increases by 0.5µs for the local synchronization (Sec.
4.1) independent of the number of nodes.

5. Conclusion, Outlook, and Acknowledge-
ments

This work describes the SCI Collectives Library, a new
software designed to provide optimized collective commu-
nication routines for SCI clusters to different MPI imple-
mentations. Our experiences in developing this library as
well as the performance results we present for the barrier
implementation show that this is indeed a feasible goal.

By implementing and evaluating various barrier algo-
rithms in the SCI Collectives Library, we were able to show
that the fan-parameterf for thehsbalgorithm was set sub-
optimally in SCI-MPICH. In addition to that, the newnxal-
gorithm shows significantly better performance on our clus-



ter than any other barrier algorithm we tested. Thus, there
is now an improved barrier available for users of Open MPI
and NMPI on SCI clusters.

We plan to implement a full set of collective communica-
tion patterns in this library to support all available collective
functions of MPI. We also strive to develop adapter modules
for MPI implementations which are not yet supported, es-
pecially Intel MPI. We will also explore the possibility to
support other APIs besides MPI, which include collective
communication routines, with our library. Concerning our
barrier algorithms, we are currently conducting tests on a
cluster with more nodes to gather new insights.

We would like to thank Intel Corporation for sponsor-
ing this work and Dolphin Interconnect Solutions for their
support.
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