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Abstract

Nonblocking collective communication operations are
currently being considered for inclusion into the MPI stan-
dard and are an area of active research. The benefits of such
operations are documented by several recent publications,
but so far, research concentrates on InfiniBand clusters.
This paper describes an implementation of nonblocking
collectives for clusters with the Scalable Coherent Interface
(SCI) interconnect. We use synthetic and application kernel
benchmarks to show that with nonblocking functions for
collective communication performance enhancements can be
achieved on SCI systems. Our results indicate that for the
implementation of these nonblocking collectives data trans-
fer methods other than those usually used for the blocking
version should be considered to realize such improvements.

1. Introduction

The Scalable Coherent Interface (SCI) [1] is an intercon-
nect technology for clusters which is currently distributed
as “Dolphin Express D” by Dolphin Interconnect Solutions.
A part of a cluster node’s physical memory can be mapped
into the global SCI address space and can be accessed from
a remote node via CPU load and store operations to mapped
memory. While in this so called “PIO mode” a data transfer
stalls the sender’s CPU, CPU offload can be achieved by
using the DMA engine on the Dolphin Express D cards.

Dolphin Express D networks are composed of ringlets
(essentially a 1d torus) that can be combined to build tori of
higher dimensions (2d and 3d are supported). Especially for
collective communication with large messages, it is impor-
tant to avoid contention of the SCI links. Therefore, we have
implemented algorithms that are tailored for torus networks
and take the network topology into account (Section 3).

1.1. Nonblocking Collective Communication

Nonblocking collective operations [2] offer an interface
that enables the application programmer to start and com-
plete a collective communication operation independently.
A nonblocking interface to all Message Passing Interface
(MPI [3]) collectives is discussed in the MPI Forum for
inclusion in the MPI 3 standard. Implementations typi-
cally divide the operation in an initialization call (e.g.,
MPI Ibcast()), which only starts the communication but
does not depend on other processes, and a blocking (e.g.,
MPI Wait()) or nonblocking (e.g., MPITest()) test for com-
pletion of the operation. This scheme enables overlapping
communication with computation if some computation can
be performed while the communication is running.

Such an optimization has been discussed for parallel ap-
plications [4]. A particular example with a three-dimensional
Poisson equation showed a performance improvement of
34% by applying nonblocking collective operations [5]. The
runtime of a strong-scaling medical image reconstruction
algorithm [6] could be improved up to 8%.

However, a nonblocking interface does not mean that
the operations are actually performed asynchronously in
the background. Asynchronous execution of collective op-
erations is a complex task that requires careful hardware-
dependent optimization. Such an optimization for InfiniBand
networks is described in [7].

Our work extends this line of research towards another
interesting HPC network which allows to choose between
Programmed I/O (PIO) and Direct Memory Access (DMA)
for the host-to-host communication: The Scalable Coherent
Interface (SCI). We wanted to investigate whether this very
different network, as compared to InfiniBand, also offers
comparable performance improvements via the usage of
nonblocking collectives and how such operations should best
be implemented on SCI networks.



1.2. Related Work

Several research groups begin the implementation of opti-
mized nonblocking collective operations. The baseline is set
with LibNBC [2] which only requires MPI to run. However,
its algorithms are generic, without special hardware opti-
mizations. LibNBC fully relies on the MPI library’s asyn-
chronous progression. An optimized version of the library
was implemented for InfiniBand [7] and shows significant
better performance for the communication time as well
as asynchronous progression. IBM’s Component Collective
Messaging Interface (CCMI [8]) also implements optimized
nonblocking collective operations for different architectures.

Several research groups have investigated blocking col-
lective communication operations on SCI clusters. [9] de-
scribes the combination of DMA and PIO in pipelining
algorithms for Broadcast, Reduce, and Allreduce. We used
the ideas presented in [10] to tailor our algorithms for torus
networks. [11], [12], [13] describe an SCI optimized MPI
implementation, including algorithms and benchmark results
for collective operations. To the best of our knowledge, the
implementation of nonblocking collective operations on SCI
networks has not been analyzed before.

2. Implementation

On our test cluster equipped with current-generation SCI
hardware (see Section 4), a CPU store of 4 Byte to a remote
memory location stalls the CPU for 200 ns if the I/O pipeline
is fully saturated. On idle, it just stalls the processor forthe
duration of that single instruction. It takes between 1.3 and
1.4µs for this data to arrive on the remote node and we
have measured a maximum throughput of 325 MiB/s with
PIO transfers.

Using the DMA engine adds a constant overhead to each
data transfer for setting up the DMA queue and requires
an additional local data transfer at the receiver’s side. In
our measurements, DMA transfers achieved a maximum
throughput of 195 MiB/s and an 8 Byte transfer (the min-
imum possible size) took 34.5µs. Although using the DMA
engine seems to be a natural choice when implementing
nonblocking collectives to achieve overlap between cal-
culation and communication, the performance difference
between PIO and DMA motivates the investigation of all
implementation alternatives.

In fact, NMPI, an MPICH2-based MPI implementation for
SCI clusters, uses polling (PIO) to detect incoming messages
and does not utilize the DMA engine, even for nonblocking
point-to-point operations. This eliminates the possibility
of overlap completely [14]. Polling may be avoided by
exploiting remote interrupts, which are triggered by a small-
latency remote write that notifies the blocked receiver. The
“SuperSockets” kernel module from Dolphin, which we
used for benchmarking together with Open MPI’s TCP Byte

Transport Layer (BTL), does not use DMA, but PIO and
remote interrupts to provide low-latency, high-throughput
STREAM sockets over SCI [15].

2.1. The SCI Collectives Library

Figure 1. Architecture of the SCI Collectives Library

As a tool to evaluate our implementations, we used the
SCI Collectives library (SCIColl) [16]. Fig. 1 shows its
position between higher-level software, coupled via adapter
modules, and the lower-level SISCI (Software Infrastructure
for SCI) [17] interface to the SCI interconnect. Among other
functionality, SISCI provides operations to import and export
memory regions for PIO and to setup DMA transfers.

So far, we had already implemented several blocking
collective operations and adapter modules for Open MPI and
NMPI to give these MPI implementation access to these
optimized functions. The adapter modules also provide a
registration interface for point-to-point operations, such that
the SCI Collectives library can use these functions from
the MPI libraries. We added nonblocking collectives to the
SCIColl core plus a new adapter module for the LibNBC
interface to be able to use the benchmarks described in
Section 4.

2.2. Implementation Considerations

We evaluated several alternatives in order to find the op-
timal implementation for nonblocking collective operations
over SCI networks. This also allows us to compare our
implementation decisions to those that have been made while
implementing nonblocking collective operations on Infini-
Band networks, a technology that is significantly different
to SCI.

As the main purpose of nonblocking communication oper-
ations is the overlapping of computation and communication,
using a communication co-processor to offload the CPU
seems a natural choice when implementing nonblocking
collectives. This choice is certainly being made on Infini-
Band networks, but given the shortcomings of the DMA
engines on our SCI cards, as described in Section 2, the



question was whether PIO transfers were preferable in
this case even if this eliminates the possibility of overlap.
Apart from overlap, parallel applications may benefit from
a reduction of blocking wait times that occur because of
process skew and network jitter. Minimizing these wait times
with nonblocking collectives is independent of the transfer
method.

Another open question was the use of parallel threads
to achieve asynchronous progress, without a DMA engine.
There are several things to say against a multi-threaded
implementation of nonblocking collective operations [2],but
we wanted to try this out nonetheless.

As a result of these considerations we implemented the
following types of nonblocking collective operations in
SCIColl:

• single-threaded with DMA transfers that needs manual
progress

• single-threaded with PIO transfers that needs manual
progress

• additional communication thread with DMA transfers
• additional communication thread with PIO transfers

3. Collective Operations

So far, we have nonblocking block and vector variants
of Gather and Alltoall available in the first version of the
SCIColl Library. The rationale for choosing these commu-
nication patterns first was the availability of application
kernel benchmarks that use these in a nonblocking manner
(Section 4.2). We will explain our implementation choices
in the following.

3.1. Gather

We have implemented four gather algorithms:Binary
Tree, Binomial Tree, Flat Tree (essentially all processes
sending to the root process at the same time, without any
coordination), andSequential Transmission, which is like
Flat Tree, but the messages are sequentialized by the root
processes sending a signal to the other processes to trigger
the data send operation.

Our gather algorithms communicate in a way that is aware
of the torus topology of the SCI network. The basic idea is
the association of the processes to virtual ranks that reflect
the processes’ order in a Hamiltonian Path [10] through the
2d torus as shown in Fig. 2 (a). Because the SCI links
are unidirectional, sending, for example, from node 0 to
node 2 and from node 1 to node 3 concurrently may cause
contention of the link from node 1 to node 2 in the case
of large messages. Our Binomial Tree gather algorithm as
shown in 2 (b) communicates in a way that avoids sending
two messages over the same link during any step. We ignore
other traffic, such as acknowledgment packets here, but this

is feasible for large messages as the data packets are much
longer than packets of any other type in this case.

For the vector variant we implemented aFlat Tree and
Sequential Transmissiononly. TheSequential Transmission
has been implemented as a DMA and a PIO variant. All
other variants are PIO-only implementations. As nonblock-
ing variants, we support all blocking variants in an additional
communication thread and theSequential Transmissionwith
an additional progress functionality in a single thread.

(a) Hamiltonian Path
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Figure 2. Avoiding Link Contention in a 4x4 SCI Torus

3.2. Alltoall

For the Alltoall communication scheme, we considered
four approaches: The algorithm developed byBruck et al.
[18], a Pairwise Exchangein N − 1 steps ifN is an even
number of processes [19], aRing algorithm with recursive
doubling in which a Hamiltonian Path is used to established
the order of the processes in the ring [11], [19], and aFlat



Tree function that just posts all send and receive operations
and waits for completion.

All four variants are available as blocking functions and
as nonblocking functions using an additional communication
thread. Out of these, thePairwise Exchangealgorithm has
been implemented with DMA as a single-threaded, non-
blocking function. The same holds true for the vector variant,
except that we do not have functions using theBruckor Ring
algorithms available here.

4. Benchmark Results

Benchmark results were obtained at the Chair for Op-
erating System’s PD Cluster, consisting of 16 nodes in a
4x4 2d SCI torus, each equipped with a single Pentium
D (dual core) processor running at 2.8 GHz, 2 GiB RAM
and a D352 SCI card from Dolphin. The nodes are also
attached to an InfiniBand Switch (x4, DDR) via Mellanox
MHGS18-XT HCAs. We used Open MPI 1.2.8, NMPI 1.3.1,
and NBCBench 1.0.

4.1. Synthetic Benchmark Results

First, we discuss some microbenchmarks in order to
assess the minimal communication overhead of the different
implementations. In Figure 3, we compare the overheads of:

• LibNBC/NMPI/SCI LibNBC over NMPI (SISCI),
• LibNBC/Open MPI/SCI Open MPI’s TCP BTL over

SuperSockets,
• SCIColl/SCI the SCIColl library over SCI (SISCI),
• LibNBC/Open MPI/IB Open MPI’s openib BTL over

InfiniBand

We used NBCBench to gather these overhead results.
NBCBench starts a nonblocking operation, and tries to over-
lap the communication with computation. Figure 3 shows
the remaining overheads (nonoverlappable communication
parts) for Gather and Alltoall. We see that NMPI and
the SuperSockets implementation allow very little or no
overlap. The SCIColl library shows significant performance
improvements by optimizing the overlap of communication
and computation. To achieve this, it uses theSequential
TransmissionAlgorithm for Gather and thePairwise Ex-
changeAlgorithm for Alltoall with DMA transfers. Both
were executed in a single thread and progressed every 2048
bytes. In comparison to the faster InfiniBand, we see that
the SCIColl library enables higher overlap than LibNBC
with Open MPI. However, we also see in the experiments
experiments, that the InfiniBand-optimized LibNBC per-
forms better than any SCI configuration. This is mostly
due to the higher bandwidth and highly optimized DMA
implementation of the InfiniBand network. In the following,
we analyze the different SCI configurations with several
application kernel benchmarks in the next section.
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Figure 3. Communication Overhead measured with
NBCBench

We would expect a constant overhead for SCIColl with
growing message-sizes as the DMA setup costs are constant
for all message sizes. Since we test for progress every 2048
bytes we add an overhead that grows with the message size.

4.2. Application Benchmark Results

We used three application kernel benchmarks to show the
feasibility of using nonblocking collective operations onSCI
networks: a Conjugate Gradient Solver (CG) [5], a parallel
Compression benchmark (PC) [2], and a three-dimensional
Fast Fourier Transform kernel (FFT) [20]. In the CG bench-
mark, each process overlaps computation with the exchange
of halo zones with its six neighboring processes in a three-
dimensional grid. This Communication is performed with a
blocking or nonblocking Alltoallv operation. PC compresses
data in parallel and gathers the results with a blocking or
nonblocking Gatherv operation (pipelined). The FFT kernel



performs a parallel matrix transpose with a blocking or
nonblocking Alltoall operation. A three-dimensional FFT
is split into three one-dimensional FFTs and the data re-
distribution for the z transformation is overlapped with the
transformation in the other two dimensions which do not
require communication among processes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Blocking (MPI)        Nonblocking (NBC)

A
pp

lic
at

io
n 

R
un

tim
e 

/ s

Flat Tree
Pair (PIO)

Pair (manual,DMA)

(a) CG

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Blocking (MPI)        Nonblocking (NBC)

A
pp

lic
at

io
n 

R
un

tim
e 

/ m
s

Flat Tree
Sequential (PIO)

Sequential (DMA)
Sequ. (manual,DMA)

(b) PC

 0

 1

 2

 3

 4

 5

 6

 7

Blocking (MPI)        Nonblocking (NBC)

A
pp

lic
at

io
n 

R
un

tim
e 

/ s

Flat Tree
Bruck
Circle

Pair (manual,DMA)
Pair (DMA)
Pair (PIO)

(c) FFT

Figure 4. Comparison of different Algorithms with Ap-
plication Kernel Benchmarks

These benchmarks compare blocking MPI collectives with

nonblocking LibNBC collectives. Fig. 4 shows the results
for 32 processes, comparing the different algorithms we
implemented. Unless marked with “manual” (for “manual
progression”), the nonblocking algorithms are just like their
blocking counterparts, but executed in an additional commu-
nication thread. The following findings can be drawn from
Fig. 4:

• Moving the collective communication to an additional
thread almost always increased the application perfor-
mance, although with 32 application processes and PIO
transfers, this led to having more active threads than
processor cores.

• As the algorithms stayed the same, moving them into
a separate communication thread should preserve the
relative performance among them. But there are a few
exceptions to this rule.

• For all three collective operations measured, the single-
threaded implementation, i.e., one that requires manual
progress, using the DMA engine turned out to be the
best choice for the SCIColl library in the nonblocking
case, whereas for the blocking versions, PIO based
implementations performed best. That means that us-
ing the DMA engine should be considered seriously
when implementing nonblocking collectives on SCI
networks, although it is usually not used for blocking
collectives.

Please note that we had some issues with the SCI card’s
DMA engine that occasionally caused the FFT and CG runs
to last extremely long, the results shown here are best case
results.

Fig. 5 compares the SCIColl library with Open MPI
(communicating via TCP over SuperSockets) and NMPI. For
our implementation, only the results for the best-performing
algorithms are shown. Neither Open MPI nor NMPI com-
municates with DMA here. For all three benchmarks and
all three communication libraries, the benefits of using
nonblocking collectives are clearly visible. This is especially
true for the CG and FFT (using Alltoall(v)) results for
Open MPI, we attribute this to the combination of PIO
and remote interrupts inside of SuperSockets. The results
for the SCIColl library in Fig. 5 (b) differ from those in
Fig. 4 (b) because they are from runs with different system
software versions. We still need to investigate the reason
for the comparably good results of Open MPI in the PC
benchmark (using Gather).

5. Conclusion and Outlook

We show that parallel applications may benefit from the
use of nonblocking collective communication operations on
SCI clusters. We evaluated different implementation alterna-
tives for such operations. Although usually, including theim-
plementation of blocking collective operations, Programmed
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Figure 5. Application Kernel Benchmark Results over
SCI

I/O is used for data transfer over current-generation SCI
hardware, because it provides significantly lower latency and
higher throughput, compared to DMA transfers, according to
our benchmark results, DMA is preferable for nonblocking
collectives because it acts as a communication co-processor.

Our implementation may provide a blueprint for future
nonblocking collective communication functions in NMPI

in case the MPI standard includes such functions in the
future. From a research perspective, we plan to support
the new DX interconnect from Dolphin [21] with our SCI
Collectives library. The DX technology provides significant
improvements in terms of latency, throughput and DMA
support, compared to SCI.
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