
Optimising MPI Applications
for Heterogeneous Coupled Clusters with MetaMPICH

Carsten Clauss, Martin Pöppe, Thomas Bemmerl
Lehrstuhl für Betriebssysteme

RWTH Aachen University
Kopernikusstr. 16, 52056 Aachen, Germany

E-mail: {carsten, martin, thomas}@lfbs.rwth-aachen.de

Abstract

Cluster systems built mainly from commodity hardware
components have become more and more usable for high
performance computing tasks in the past few years. To in-
crease the parallelism for applications, it is often desirable
to combine those clusters to a higher lever, commonly called
metacomputer. This class of high performance computing
platforms can be understood as a cluster of clusters, where
each cluster provides different processors, memory perfor-
mance, cluster interconnect and external networking facil-
ities. Our project called MetaMPICH provides a transpar-
ent MPI-1 implementation for those inhomogeneous clus-
ter systems. While this feature of transparency makes port-
ing existing MPI applications to metacomputers quite sim-
ple, the slowest network connection and the slowest pro-
cessor will dominate the performance and scalability due
to the lack of opacity. This paper describes our approaches
to adapt iterative, grid based simulation algorithms to the
structures of such heterogeneous coupled clusters.

1. Introduction

With the emergence of cluster systems built from com-
modity hardware components in the field of high perfor-
mance computing, middleware and application developers
were confronted with new challenges in software develop-
ment. The new systems were not as easy to use as dedi-
cated parallel computers, because the components of the
cluster systems were originally designed for desktop pur-
poses. Many efforts have been made in the past years to
solve these problems, adding communication libraries and
services as well as process and resource management for
distributed and parallel computing to the operating systems
of the cluster nodes. Our own project called MetaMPICH
[5] provides a MPI-1 [7] implementation for heterogeneous

clustered systems. These systems can be understood as clus-
ters of clusters, where each cluster exhibits different capa-
bilities regarding processors, memory performance, cluster
interconnect and external networking facilities.

The first development goal of MetaMPICH was to pro-
vide a transparent MPI-system for the applications in the
Gigabit Testbed West project [2], in which an IBM SP2 was
coupled with a Cray T3E Supercomputer via a 2,4 Giga-Bit
ATM connection.

As ongoing work, we developed support for the nowa-
days widely used NORMA (NO Remote Memory Access)
and NUMA (Non Uniform Memory Access) cluster ar-
chitectures. While the MetaMPICH library still provides a
transparent MPI-system, an additional MPI-communicator
MPI_COMM_LOCAL reflects the group of processors on the
local parallel system, which we call a metahost [4]. This lo-
cal group uses a fast network to exchange MPI-messages
and is a homogeneous cluster or a SMP-system, which im-
plies that communication and computation is very efficient
in this local group, because there is no data conversion, load
balancing or network overhead necessary.

Figure 1 shows an example for a metacomputer config-
uration, in which the processes are grouped into three lev-
els: metahost A is a cluster of dual-processor systems, rep-
resenting the lowest grouping level 1, while metahost B is
a SMP system whose processors are grouped in the higher
level 2. As the sets of all processors in each metahost repre-
sent the second level (MPI_COMM_LOCAL), the third level
constitutes the metacomputer itself in the MPI communica-
tor (MPI_COMM_WORLD), which is the communicator con-
taining all available MPI processors.

2. Adapting Applications to the Structures of
Metacomputers

MetaMPICH’s feature of transparency hides the inho-
mogeneous communication structures of the metacomputer



level 2

level 3

Meta Computer

Meta Host B

1 1

1 1

Meta Host A

level 2

Processor

Network Interfaces
Network Connection

MPI_COMM_LOCAL

MPI_COMM_WORLD

Figure 1. Process Groups in a Meta Computer

from the application. While this simplifies the porting of ex-
isting MPI applications to metacomputers, the slowest net-
work connection and the slowest processor will dominate
the performance and scalability due to the lack of opacity.
Although the new communicator MPI COMM LOCAL al-
lows to differentiate explicitly between inner-cluster nodes
and nodes on other metahosts, its use demands a redesign
of the application’s communication routines – and in each
redesign the knowledge of the respective metacomputer’s
characteristics needs to be taken into account.

Therefore, it would be desirable to create a new inter-
mediate layer on top of MetaMPICH, which a number of
applications can easily attach to and which simultaneously
respects the particularities of the metacomputer. This ap-
proach allows to benefit from a transparent view for the
applications and from the ability to provide load balanc-
ing (depending on performance characteristics) and to avoid
bottlenecks in communication.

How to create such a new layer and which possibili-
ties exist to decrease those bottlenecks is shown below for
the important class of iterative, grid based simulation algo-
rithms. This class of grid based algorithms contains all those
whose cores solve discrete boundary value problems by it-
erative relaxation methods. The best known versions are the
Jacobi and the Gauss-Seidel method [6].

3. An Approach to Optimise Grid Based Al-
gorithms for Metacomputers

In parallel systems, a fair distribution of computational
load is mandatory for efficient use of the computing re-
sources. Therefore, various strategies of load balancing for
different kinds of parallel systems have been developed.
Applications running on a metacomputer require such a

strategy as well, but due to the inhomogeneous structures
it turns out to be much more difficult than on homogeneous
systems [3][1][9]. Load balancing at runtime is often infea-
sible, because in this case the adjustment has to be done
across the inter-metahost bottleneck. Instead of that, a fair
a-priori load distribution among the metahosts by means of
performance measurements is more preferable.

Another interesting approach is not to distribute the load
explicitly, but to balance the computational power by in-
troducing so-called virtual processors, as shown in [8]. In
this model, stronger physical processors have to manage
more virtual processors than weaker ones. The disadvantage
of this concept is that scheduling those virtual processors
and the additional communication among them will cause a
non-negligible overhead.

Besides a fair load distribution, communication is a key
factor. In grid based algorithms, each process works on
a section of the entire grid, so that values on borders of
those sections have to be exchanged between the processes.
Thereby, the effort of communication for a process depends
on the border length of these sections and on the location of
its neighbours, because communication with neighbours in
other metahosts will reduce performance.

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
��������� ���������������

���������������
���������������
���������������

���������������
���������������
���������������
���������������

Metahost C

Metahost B

M
et

ah
os

t A

Figure 2. Example: Flow Channel

The question is whether the effort for inter-metahost
communication can be reduced by partitioning these sec-
tions in a smart way. In most cases, the given boundary
value problems specify additional boundary values within
the grid. These inner boundary values are fixed or can
be calculated by each process on its own. The underlying
idea is now to disregard such fixed values during the inter-
metahost communication phase, because they do not need to
be exchanged. Hence, in case of a smart partition scheme,
the message length and thus the communication effort be-
tween the metahosts will decrease. This concept is depicted
in figure 2 for the application of a flow channel simulation.



4. An Implementation of an Adaptation
Layer on MetaMPICH

Within the scope of our research, the mentioned ap-
proaches to adapt grid based algorithms to the struc-
tures of metacomputers were evaluated and finally im-
plemented in form of a small programming interface
between MetaMPICH and the applications. This inter-
face called MetaComm provides simple communica-
tion functions, which can replace all explicit MPI function
calls within a parallel application and can easily be in-
cluded into serial applications to make them parallel.
The functions are designed to be called by all applica-
tion processes, whereby the target paradigm of SPMD
(Single-Program-Multiple-Data) is strongly maintained.

The optimizing features of MetaComm are based on an
appropriate predetermined partition scheme for the entire
grid. During initialization, each single application process
acquires its own grid section, including all inner bound-
ary values. Afterwards, each process only needs to take
care of the computational progress on its own section data.
All required exchanges of values on borders of these sec-
tions are transparently performed by calling the new com-
munication functions. In the first instance, MetaComm pro-
vides only two functions: InitCommunication() and
DoCommunication().

(Iterative Simulation)
Application

Algorithm
Grid Based

Boundary Values

Problem

MetaComm

SmartPart

Partition Scheme

Problem

MetaMPICH

Figure 3. Adaptation Layer on Top of
MetaMPICH

4.1. The Initialisation Phase

During the initialisation of MetaComm the composi-
tion of the respective metacomputer is analysed. This is
basically done only by using the new MPI communica-
tor MPI COMM LOCAL. Every process whose local rank is
equal to zero sends the information about its local meta-
host size to the process with global rank zero. This pro-

cess, playing a special role during the start-up phase, re-
ceives all those size messages until the sum is equal to the
total number of processes. By analysing the correlation be-
tween the senders’ global ranks and the information about
the respective metahost sizes, the metacomputer’s process
arrangement can now easily be determined.

Metahost B

M
et

ah
os

t A

Metahost C
N

M

Figure 4. Area Distribution onto the Meta-
hosts

Communication between metahosts will mainly be per-
formed via the first and the last processes of the local rank
lists, so in the following those processes are called the gate-
ways of a metahost. The reason for this feature is that we
want to centralise the message preparation for the inter-
metahost communication within each metahost.

4.2. Distribution of the Partition Scheme

Assuming that all metahosts are working on an N × M

grid, every metahost x acquires its own nx × mx subsec-
tion, as it is predetermined in the partition scheme. Thereby,
the partition scheme is explicitly passed to MetaComm via
a special partition file, as shown as an example in figure 5.

N=160, M=240

MetahostA: n=160, m=80, OffsetN=0, OffsetM=0, horizontal
MetahostB: n=80, m=160, OffsetN=0, OffsetM=80, horizontal
MetahostC: n=80, m=160, OffsetN=80, OffsetM=80, vertical

Figure 5. Example of a Partition File

The further distribution of the metahosts subsections
onto the individual processes is done in a simple algorith-
mic way, assuming an inner homogeneity of the metahosts’
computational power. This redistribution can be done in a
horizontal or a vertical manner. That means that the section
of a metahost is divided by means of line or column distri-
bution onto the processes, as can be seen in figure 6. Which
kind of redistribution is to be chosen for a particular prob-
lem is also an issue of a smart partition scheme.



Proc0

Proc1

Proc2

Proc0

Proc1

Proc2

Pr
oc

0

Pr
oc

2

Pr
oc

1

Pr
oc

3

Proc3

N

M
Figure 6. Redistribution of the Subsections

4.3. The Inner Boundary Values

To consider the inner boundary values in computation
and communication, MetaComm manages an additional
grid array where attributes of those boundary grid cells can
be stored. This array can be filled by an explicit pattern, by
algebraical functions or by specified polygons for an easy
areal description.

The specifications of size and position of the local work-
ing areas are passed to the individual processes by the ini-
tialisation function. However, in most cases the processes
do not need to know about their position within the en-
tire grid, because all boundary values are transparently
passed to them either by the communication functions or
they can be considered by an additional probe function of
MetaComm. This feature offers a total transparent view for
the applications, in which no distinction between processes
or metahosts needs to be taken into account.

4.4. The Communication Phase

By analysing the partition scheme in conjunction with
the knowledge of the inner boundary values, the gateways
of each metahost determine which cells must be exchanged
and store this information in a so-called partner list.

When finishing a computation cycle, the parallelised ap-
plication generally has to perform an exchange of bor-
der values among the processes. When using MetaComm,
this is simply done by calling the DoCommunication()
function. Apart from the grid values themselves, no fur-
ther parameters need to be passed to this function, since all
needed data structures have already been built during the
initialisation phase.

4.4.1. Communication across the Gateways While the
metahost-internal communication is performed in a com-
mon way, in case of an inter-metahost communication the
gateways exchange the required values according to the ap-
propriate partner lists. Thereby, one gateway always com-
municates with the top and the left adjacent neighbours,
while the other gateway manages the communication with

the bottom and the right partners. To avoid chronological
order dependencies, firstly all inter-metahost messages are
sent in a non-blocking mode, before the receiving of inter-
metahost messages starts. As mentioned, only the inevitable
values are exchanged.

4.4.2. Left and Right Sided Communication Assuming
that the processes of a given metahost are distributed in a
horizontal manner, the gateways initially have no access to
all required values for left or right sided communication.
Thus, the local process must firstly send those values to their
respective gateways, which gather these messages and pre-
pare them for the inter-metahost transmission. This proce-
dure has the advantage that the inter-metahost communica-
tion is centralised, so that complex transmissions across this
bottleneck are avoided. However, the disadvantage is an in-
creased amount of interior communication, which is unfor-
tunately proportional to the number of the local metahost
processes. But, due to the assumed discrepancy between
the interior and the inter-metahost communication, this pro-
ceeding seems to be an appropriate approach.

5. The Search for a Smart Partition Scheme

To find a smart partition scheme, which can then be
used by MetaComm, we developed a software tool named
SmartPart, which automates the search for the optimal
partition for a given problem. By analysing the metacom-
puter’s structure (number of metahosts, number of nodes in
each metahost, etc.) and measuring the respective compu-
tational power, the tool can check every possible grid allo-
cation, regarding the knowledge (bandwidth and latency) of
the communication bottlenecks. Since MetaComm provides
an almost arbitrary allocation of the grid and SmartPart
iterates over all possibilities, an effective and optimal par-
tition will in most cases be found. It may be emphasised
that an optimal partition is always associated with a respec-
tive problem on one certain metacomputer.

5.1. Metrics and Scaling Factors

When searching for an optimal partition scheme,
SmartPart is geared to so called scaling factors. These
factors describe the metahosts by their ratio of computa-
tional effort (time to calculate n grid cells) to communica-
tional effort (time to send n grid cells to another metahost).
Those ratios can easily be determined by means of mea-
surements in the applications or by using simple synthetic
benchmarks.

In the current version of SmartPart it is assumed that
the parameters for inter-metahost communication are the
same for all participating metahosts. That means that ex-
changing a message between two metahosts A and B takes



two rightone left two left one right

one up

one down

two up

two down

Figure 7. Possible Division Patterns

the same time as exchanging the same message between A
or B and another metahost C. This assumption is necessary
to figure out the relations between the computational pow-
ers.

To perform the grid division, the algorithm uses two re-
cursive functions, each dividing a given (sub-) area into two
parts. Thereby, the first function tries to divide the area by
an optimal horizontal cut, while the second function divides
the area in a vertical manner. Both functions are called by
passing the dimension of the sub-area, the remaining num-
ber of metahosts to be assigned to this area and the respec-
tive scaling factors to them. To be able to decide which of
those two functions delivers the better division policy for
the current area, the functions return a metric, which is a
rating for this actual cut (a small metric is equal to a good
cut).

After each executed cut, both functions are applied to
the two resulting sub-areas to analyse their further division,
if there are still metahosts remaining to be assigned. This
proceeding leads to the data structure of a weighted tree,
wherein the best partition scheme can be recognised as the
lightest path of metrics from top to bottom. In figure 7 you
can see as an example the possible division patterns when
dealing with three metahosts.

Since SmartPart iterates over all possible allocation
patterns, this search is a NP-complete problem, but since
the number of metahosts is probably less than ten it will
only take a negligible amount of time.

5.2. An Analysis of Performance and Effects

In some cases of an optimal partition scheme, some
metahosts get no section of the grid. This is the case when
the bottleneck is so serious that including those metahosts
means not to benefit from their computational power, but to
have a dominant communication overload. However, with
this kind of problems, the computational load increases
quadratically with the problem size, while the communica-

tion load will only rise in a proportional way. Thus the allo-
cation of those metahosts may recur at major problem sizes,
where metacomputing will be worthwhile again.

Metahost A Metahost B

N

Figure 8. A Simple Partition Example

An example for a simple partition scheme is shown
in figure 8, where two metahosts of equal computational
power are working on a N × 2N grid divided by a focus
barrier as can be found e.g. in a CFD simulation of a flow
channel. In figure 9, the achieved reduction of communica-
tion time (measured on our own clusters) is plotted over the
ratio of barrier length to grid height, and thus over the po-
tential reduction of the message length.

Figure 9. Reduction of Communication Time

As you can see, the resulting communication time does
not vanish, even for a reduction up to 99% of the original
message size. This is due to the inherent communication
start up latency – but its influence will decrease for major
grid sizes.

However, an increased number of grid cells also leads
to a rise of the computational effort. In figure 10 you can



see both the communication time for a message of n cells
and the computation time for n × n grid cells of a sim-
ple Poisson-problem. The breakeven points represent those
grid sizes, where the computation takes more time than the
inter-metahost communication. And for the considered ex-
ample these are the grid sizes where the metacomputing be-
gins to be worthwhile.

Figure 10. Communication VS Computaion

6. Conclusions and Outlook

The concept of metacomputing allows to bundle the dis-
tributed computational power and to dedicate it to a sin-
gle problem. However, heterogeneous structures lead to a
domination of bottlenecks on the achievable performance,
so that the benefit of metacomputing should not be taken
for granted. Nevertheless, the use of all available proces-
sors within a metacomputer is desirable for grid based algo-
rithms which are not communication intensive.

The results of our research confirm that the approaches
mentioned above are suitable for optimising this class of al-
gorithms for metacomputers.SmartPart and MetaComm
are powerful tools to improve the usability of the described
metacomputing platforms and regain a transparent interface
for an important class of parallel algorithms.

With the increasing acceptance of the use of computa-
tional grid infrastructures, the demand for larger parallelism
within SPMD-applications will grow in the future. Thus,
the integration of our tools in grid middleware environments
will be a future scope of our work.

References

[1] J. Brooke, S. Pickles, F. Costen, and S. Ord. Using metacom-
puting to process scientific data. Technical report, 1999.

[2] Eickermann, V ölpel, Wunderling. Gigabit Testbed West
Abschlussbericht. Technical report, Forschungszentrum
J ülich, March 2000.

[3] J. Henrichs. Optimizing and Load Balancing Metacomputing
Applications. Technical Report FZJ-ZAM-IB-9805, ZAM,
Research Centre Juelich, Germany, 1998.

[4] M. P öppe and J. Worringen. Meta-MPICH, user documenta-
tion & technical notes. Lehrstuhl f ür Betriebssysteme, RWTH
Aachen, 2002.

[5] Martin P öppe and Silke Schuch and Thomas Bemmerl. A
Message Passing Interface Library for Inhomogeneous Cou-
pled Clusters. In International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2003), Workshop for Communi-
cation Architecture in Clusters (CAC 03), Nice, France, April
2003.

[6] T. Meis and U. Marcowitz. Numerical solution of partial dif-
ferential equations. Springer Verlag, 1981.

[7] MPI Forum. MPI: A message-passing interface standard. In-
ternational Journal of Supercomputing Applications, 1994.

[8] C. Perez. Load balancing hpf programs by migrating virtual
processors. Technical Report RR-3037, Unite de recherche
INRIA Rhone-Alpes, 1996.

[9] S. Pickles, F. Costen, J. Brooke, E. Gabriel, M. Muller,
M. Resch, and S. Ord. The problems and the solutions of the
metacomputing experiment in sc99. In HPCN Europe, pages
22–31, 2000.


