
Parallelisation of a Simulation Tool for Casting and
Solidification Processes on Windows Platforms

Carsten Clauss, Silke Schuch, Rainer Finocchiaro, Stefan Lankes, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University,

Kopernikusstr. 16, 52056 Aachen, Germany
{carsten, silke, rainer, lankes, bemmerl}@lfbs.rwth-aachen.de

Abstract

Since the beginning of computational engineering,
the numerical simulation of physical processes is an es-
sential element in the area of high performance comput-
ing. Thus, also the domain of metal foundry demands
the computational simulation of casting and solidifica-
tion processes. A popular software tool for this purpose
has been developed by the RWP GmbH in Roetgen, Ger-
many. This tool, named WinCast, is a complete soft-
ware suite, which contains modules for pre-, main- and
post-processing of simulation data sets. A core module
of WinCast is TFB, which determines the chronologi-
cal temperature distribution of a casting process based
on a finite-element-method and a Gauss-Seidel solver.
With the increasing demand for even higher precision
of the simulation results on one hand, and a growing
need for even larger data sets on the other hand, the
parallelisation of this module became inevitable. In this
paper, we present our work accomplished to parallelise
the solving algorithm of this module. We have chosen
an MPI based master-slave approach for compute clus-
ters by using a self-developed MPI library for Windows
platforms.

1. Introduction and Motivation

Traditionally, casting process development is an in-
herent trial and error workflow. Design and engineer-
ing departments develop the guidelines for building
a component mainly based on previous experiences.
Although the foundry aims to manufacture the com-
ponents in the desired quality, the initial casting tri-
als of new prototypes often fail due to design mis-
takes. Therefore, modern casting engineering demands
a stronger interlocking of the design and casting pro-
cess. This is because the later changes are made in this

process chain, the more expensive they become.
With the emergence of computer technology, Com-

puter Aided Design (CAD) has also entered the area
of casting engineering. The evolution of capable CAD
programs has made the drawing not only much easier
for the designer, but also helps to check and optimise
the resulting draft.

1.1. Computer Aided Casting Simulation

Nowadays, Computer Aided Design is not limited
to sketching and drafting, but also helps to create
analysable models as needed for computer based pro-
cess simulation. Since industrial process simulation
supports the identification of process issues and thus
aids in the formulation of new design rules, it has be-
come an inevitable part of the development chain.

Therefore, also the simulation of casting and solidifi-
cation processes has become a necessity in founding in-
dustry. A prior simulation of the entire manufacturing
process makes potential castability problems already
become apparent in the earlier design stages. Thus,
modelling and simulating the casting process by a ca-
pable software tool helps to reduce manufacturing costs
and to increase yield and casting quality. [4] [5] [9]

In Section 2 of this paper, we introduce such a sim-
ulation tool, which provides modules for pre-, main-
and post-processing for the simulation of casting and
solidification processes.

1.2. The Need for Parallelisation

Since numerical simulation makes only sense if the
obtained prediction is close enough to reality, a sim-
ulation tool must be capable of generating reasonable
and revisable forecast data. That means, that the ap-
plied design software must provide as exact models as
possible and that the simulating software must ensure
precise data sets and stable solving algorithms.

In order to obtain even more exact simulation re-
sults, the problem sizes increase due to finer discretised
structures and models. That is the reason why simula-
tion software will forever exploit the available compu-
tational power: as processor speeds increase, the sizes
of the problems to be solved increase likewise.

Hence, simulation software always works close to
the limit of the computational power of contemporary
CPUs. The only way to reach beyond this limit is
to distribute the load on multiple CPUs and therefore
to parallelise the problem. That is how it has been
since the beginning of high-performance computing in
conjunction with numerical simulation. And in future
there will be an even bigger demand for parallelism
since the end of the CPU cycle explosion seems to be
near.

In the past, only computer centres possessed the
computational resources to perform parallel compu-
tation on dedicated supercomputers. However, since
high-performance computing has found its way from
research into computational engineering, also smaller
companies started to request for increasingly powerful
systems, and thus for distributed solutions.

With the emergence of cluster systems in the field
of high performance computing, even more compa-
nies could capitalise on those parallel systems. Be-
sides dedicated compute clusters built from commodity
hardware components, so-called Office Grids became
more and more interesting especially for small and
medium-sized enterprises (SME). These Office Grids,
also known as Network of Workstations (NOW), con-
sist of existing workstations which are connected by
Ethernet. Especially considering the upcoming Dual-
Core CPUs [2], there will be more computing power
available in one single workstation. This additional
CPU power can be utilised when either the worksta-
tion is under-worked with office applications or it is
actually unused. Thus, users in SME who can not af-
ford or do not want to buy a dedicated cluster, can
benefit from parallel applications, too.

1.3. Parallelisation Strategy

Since both of the before-mentioned parallel architec-
tures exhibit a distributed memory nature, intermedi-
ate data needs to be transferred as a message via the
connecting network. Therefore, a parallelisation of the
simulating software according to the message passing
paradigm, in particular corresponding to the Message-
Passing-Interface standard (MPI) [7], is strongly rec-
ommended here. In chapter 3 of this paper, we present
our practical experiences gained in parallelising a code
for casting process simulations according to an MPI

based master-slave approach.

2. The WinCast Simulation Suite

The software suite WinCast, which is developed by
the RWP GmbH in Roetgen, Germany, provides de-
tailed computer aided simulation of casting and solidi-
fication processes. As its name indicates, WinCast is a
GUI1-based software for Windows operating systems,
which are the standard operating systems in casting
industry.

The WinCast code is derived from the SIMTEC
casting simulation suite for UNIX systems. SIMTEC
in turn is rooted in a research project at the foundry
institute of the RWTH Aachen University, which had
the aim to develop a numerical simulation model using
the finite element method. The WinCast / SIMTEC
suite is made up of five main components:

• initially, an automatic mesh generator for finite ele-
ment preprocessing,

• a module to simulate the mould filling process,

• the core module TFB to compute the temperature field
characteristics,

• a module to calculate stress, distortion and strength,
and

• finally, a postprocessing module to display the ob-
tained results.

2.1. A Layered Finite-Element-Model

Similar to SIMTEC, the finite element preprocessing
module of WinCast decomposes the three dimensional
casting part by dividing it into horizontal slices. When
modelling the resulting layers into finite elements and
finally re-meshing the structures, the complete part is
represented as a Finite-Element-Model (FEM) image
in memory.

Layer 1

Layer 2

Figure 1. Prisms as Finite Elements

1Graphical User Interface

The basic element used in WinCast is a finite prism.
Thus, the generated meshes are composed of layers of
clustered wedges, as shown in Figure 1. The nature
of prisms offers good clustering capabilities and the
layered style allows to model even fine onion skins in
order to manage high temperature gradients, as they
frequently emerge especially in casting simulations.

In the WinCast model, three vertices of a prism al-
ways belong to an upper slice layer while the other
three vertices likewise belong to a lower slice layer. Ad-
ditionally, the mesh nodes can be spatially shifted in
or out of a layer to create a more adapted model mesh.
In spite of these possible modifications of the basic ele-
ment, the rigid vertex assignment and thus the strictly
layered style are internally retained. Therefore, it is
not feasible to shift a mesh node into a next-but-one
layer.

When parallelising the relating solver code, the data
storage scheme following from this layered structure
will again become a matter of importance, as pointed
out in chapter 3.

2.2. Computation of the Temperature Field

The core task of a casting simulation program is to
compute the heat distribution in the virtual mould at
ascending time steps. In the case of WinCast, this
operation is done by the TFB module.

Thereby, the basic heat transfer equation is stated
by the law of heat conduction, also known as Fourier’s
law:

ρcp
∂T

∂t
=

∂

∂x

(
λ

∂T

∂x

)
+

∂

∂y

(
λ

∂T

∂y

)
+

∂

∂z

(
λ

∂T

∂z

)
+ Q̇

This partial differential equation states the tempera-
ture T as a function of time t and the Cartesian coor-
dinates x, y, z, where ρ is density, cp is specific heat
at constant pressure and λ is the thermal conductivity.
Thus, the time derivative of the temperature at a point
is determined by the flow of heat quantity and a term
describing heat sources and sinks.

When discretising the partial differential equation
by using finite element analysis and considering the
boundary conditions, the problem can be reduced to
solve one linear equation system per examined time
step. Since the resulting system is strictly diagonally
dominant, the TFB module uses the applicable Gauss-
Seidel method to solve this problem.

In order to provide symmetric results even for the
special case of axially symmetric problem models, the
solver in TFB iterates alternating through the layers.
This proceeding is illustrated in Figure 2 for the time
of one Gauss-Seidel iteration step through all layers.

La
ye

rs

Time

Figure 2. Iteration Order through the Layers

The number of iterations to be performed per time
step results from the progression of average error and
current variation. The abort criteria are met either
when the average error and the maximal variation
reach lower limits or when the current number of itera-
tions exceeds a maximum. All these limits are adapted
after each time step according to the time span between
the last and the next state to be computed.

2.3. Internal Data Structures

Consider the vertex point P in Figure 3, which pos-
sesses the four neighbour points N1 to N4 in its own
layer. In addition, the point P has got the immedi-
ate neighbours NU , NL and further four neighbours
in the upper layer (NU1 − NU4) and in the lower layer
(NL1 −NL4), respectively. However, if a vertex point is
located on a material boundary, then additional neigh-
bours may exist, so that the number of neighbours can
vary.

The linear equation system to be solved provides
one equation per unknown temperature of the discrete
system. Since the value at each point only depends on
the values of those nearest neighbour points, the ma-
trix containing the equation system possesses non-zero
elements only on the main and on those corresponding
secondary diagonals.

Since most parts of the TFB code such as the
solver and other core components are written in
FORTRAN 77, most data is stored in static Fortran
arrays. This affects especially the data of memory hun-
gry FEM models. Therefore, the WinCast suite con-
tains multiple binary versions of TFB, each with ap-
propriate array sizes for several different sizes of FEM
models. This helps to reduce unnecessary memory con-
sumption.

However, in order to avoid further useless waste of
memory by a static storage of the equation system, the
matrix elements are handled via a C-written interface,
performing dynamic memory allocation.

Layer 2

Layer 1

Layer 0

N

N

N

N

N
N

N

N

N

N
N

1

2

4
3P

U

L

U1
U3

N U2

N U4

N L

L

L
L

1

2

3
4

Figure 3. Vertex with its Fourteen Neighbours

3. Parallelisation of TFB by Using MPI

As already stated in the introduction, numerical
high-end simulation always demands parallel process-
ing. Hence, it is not surprising that also WinCast users
started to request a parallel version, at least for the
time-consuming main processing part.

3.1. The Master-Slave Approach

One common approach to parallelise an existing
code is the master-slave concept. Usually, the se-
rial program is decomposed into two separate sub-
programs: namely the master and the slave program.
With this paradigm [11], the master consists of the
inherent serial parts of the original program, like ini-
tialisation and data preparation, while the slaves form
a group of identical processes that process the actual
computational work in parallel, driven by the master.

If dynamic process creation is available, the mas-
ter can spawn slaves and gather their results later on.
This procedure follows the Multiple-Program-Multiple-
Data paradigm, which is the most common method es-
pecially for computation in a Parallel-Virtual-Machine
(PVM) environment [10].

However, the MPI approach is commonly associated
with the Single-Program-Multiple-Data paradigm,
where the same single program runs on all participat-
ing nodes. Although there is only one single program,
a master-slave organisation can also be achieved in an
MPI environment by letting master and slave select
different program parts to execute.

When parallelising the TFB module of WinCast, we
have also chosen such a master-slave approach using

Master

Frontend

Slaves

Recv()

Send()

Cluster

. . .

−
 U

se
r

In
te

ra
ct

io
n

−

Solving Phase

Figure 4. Master-Slave Concept

MPI. The reason for this decision was the fact that the
TFB module contains a lot of GUI-based user inter-
action and I/O operation parts besides the numerical
solver algorithm. Thus, when choosing this approach,
the master can handle all those non-parallelisable inter-
actions, while the slaves get just active when entering
the solving routine. The idea was to run the master
process on a frontend node, e.g. the common desktop
computer of the user, while the slaves are started for
example on dedicated cluster nodes in a server room
or on the remote nodes of an office grid, as denoted in
Figure 4. All synchronisation and communication be-
tween the master and the slaves and among the slaves,
respectively, is then done by message passing via a com-
mon TCP-enabled network like ethernet.

3.2. Implementation Details

When entering the solving phase, the master ini-
tially sets up the whole equation system. This is done
independently for all of the slice layers of the FEM
model. Hence, this process could be parallelised as
well, but it is only marginally time-consuming to let
the master do this on its own. A further reason why
we have chosen this approach is that the slaves would
require much more information and parametrised data,
which would have to be sent to each of them after every
time step.

The equation system, however, must be sent anyway
at least partly to the respective slave processes. In our
implementation, the domain decomposition, according
to the data structures, is based on the layered style of
the FEM model. Thus, each slave acquires a fixed num-
ber of slice layers for which it is responsible and solves
the associated equations. If the number of layers is not
divisible by the number of slaves without remainder,
the remaining layers are assigned to the slaves symmet-
rically to the centre of the model. Since a layer is the
finest granularity of decomposition, a small number of

layers per processor may be a source of load imbalance.
As in common use cases the number of layers will be
orders of magnitude bigger than the numbers of avail-
able processors, this represents a minor problem. See
also Section 4 for measured effects on runtime.

In order to provide a global load balance in case of a
heterogeneous computing environment, e.g. in an office
grid, the parallel TFB provides optional dynamic layer
assignment. After the completion of each time step, the
slaves tell the master how long the last computation
cycle took and how long they have been waiting in
synchronisation barriers. Thus, a dynamically adapted
reassignment for the next time step can be performed.

Before the parallel computation of the first time
step, the master has to send all the needed static data
and parameters to the slaves. Since this information
does not change during iterations and further time
steps, this big amount of data needs to be distributed
only once per simulation run.

In order to solve the local part of the equation sys-
tem, the slaves need to know about the current approx-
imation of the values on the border layers adjoining to
their own layers. Therefore, after each parallel Gauss-
Seidel iteration step, independently performed by the
processors on their local layers, this information must
be exchanged via point-to-point messages.

Time

S
la

ve
 1

S
la

ve
 2

S
la

ve
 3

S
la

ve
 4

Figure 5. Pipelined Processing of Iterations

This information is needed whenever a process is
working on the first or the last of its own layers. In
order to obtain the same results as when performing
serial processing, the processes must also emulate the
alternating iteration order through the layers. There-
fore, they work according to a pipeline scheme. During
the first Gauss-Iteration step, only the slaves assigned
to the top and to the bottom of all layers are working.

When they have processed their last layer (while iter-
ating in opposite directions), they send this informa-
tion to their median neighbours, as shown in Figure 5.
Now, the next inner slaves can receive these messages
and start with the Gauss-Seidel iterations, too. This
sequence is then continued to the centre of all slaves
and layers. That way, after ”number of slaves DIV
2” iterations all slaves are working. Whenever a slave
has finished the calculation on a local border layer,
the results are immediately forwarded to the respec-
tive neighbour via a non-blocking send-operation.

Assuming that the time for exchanging the data of
one layer is much shorter than the computation time
for all the local layers, communication and computa-
tion can be overlapped in a way that helps to keep the
processes busy at all times. As you can see in Figure 5,
”Slave 1” and ”Slave 4” have already performed four
complete iterations in that time while a serial process
would have performed only one iteration step.

Of course, the shown Figure is idealised by assum-
ing zero communication latency. And in fact, pipeline
stalls appear if a slave must wait for a message to
arrive, as denoted for ”Slave 3”. But assuming fully
asynchronous communication operations, which can be
overlaid with computation, those stalls can almost be
hidden. Here it must be pointed out that an assump-
tion of a completely overlayable communication may be
flawed in real world. However, especially the Windows
operating system offers such specific asynchronous and
overlapped communication functions, as we state in
Section 3.3.

In order to detect the termination of the Gauss-
Seidel iterations of a time step, global error and max-
imal variation must be determined and distributed
among the slaves. Therefore, the master and all the
slaves perform Allreduce-like operations after each it-
eration step. Thus, each slave can check the abort cri-
teria, and the master is always aware of the progression
of the current relaxation and can display those param-
eters to the user.

3.3. The NT-MPICH Library

In this section, we want to introduce the NT-MPICH
library, which is also developed at our institute. NT-
MPICH, which is a subset of our MP-MPICH project
[1], enables the user to perform MPI message passing
on Windows platforms. Since WinCast is an applica-
tion for Windows operating systems, the use of this
library in order to perform message passing paralleli-
sation seems obvious to us. In particular the deep
knowledge about NT-MPICH implementation details
enhances the overall performance of WinCast.

The communication device of NT-MPICH is mainly
based on TCP communication via sockets. Addition-
ally, on SMP2 or Multicore systems an appropriate
communication via shared memory can also be per-
formed. In order to obtain maximal communication
performance, NT-MPICH does not use the common
Berkeley socket functions (aka BSD socket API), but
utilises the native Winsock–2 API [6] of Windows. Al-
though the Winsock API is based on BSD sockets and
covers almost all their features, several extensions and
enhancements have been integrated. One of the men-
tionable advanced features is the possibility to perform
fully asynchronous data transfer via non-blocking send
and receive functions. That means that computation
and competing communication can effectively be over-
lapped. This is the reason why the parallel TFB with
its pipelined iteration scheme scales very good, espe-
cially when running in an NT-MPICH environment.

Although NT-MPICH uses those native functional-
ities, the external TCP protocol is of course still inter-
operable with Berkeley sockets. Thus, it is possible to
port the communication device to UNIX platforms as
well by emulating the special overlapped communica-
tion functions. Actually, by using the nt2unix library
[8], which has been also developed at our institute, a
combined and cooperative operation of Windows and
UNIX processes is possible in the same MPI-run.

4. Performance Evaluation

All performance measurements were performed on
our 8 node Xeon cluster by testing an appropriately
big problem size. The test environment was as follows:

• 8 Nodes, 16 CPUs

• Dual Intel Xeon 2.4 GHz 512 kByte Cache

• 8 GByte Total Memory

• 100 Mbit Fast- and 1000 Mbit Gigabit-Ethernet

• MPI Latency: ≈ 82µs (FE) / ≈ 62µs (GE)

• MPI Bandwidth can be seen in Figure 6

Problem characteristics:

• 52 Time Steps

• about 10137 Points and 30096 Lines per Layer

• 103 x 19960 Elements in 103 Layers

• ≈ 350 MB Memory Usage (in a serial run)

2Symmetric Multi Processors

In Figure 7 the measured speedup for the big prob-
lem is plotted over the number of slave processes, each
running on a different cluster node. All nodes of this
test run were using Gigabit-Ethernet as interconnect.
As the figure shows, the parallelised problem scales
quite well with the tested number of processes. Al-
though the number of layers (here 103) is not divisible
without remainder onto the eight slaves, the achieved
efficiency is still proximate to 80% (≈6,4/8).

A further graph in Figure 7 shows the total mea-
sured execution time for this problem when using dif-
ferent numbers of slaves. First of all, it can be seen
that a serial run takes more than 36 hours, which is
about one and a half day. Whereas, when using the
parallel TFB on an 8 node cluster, the execution time
can be squeezed down to about six hours, which is in
turn smaller than a usual work day. Since shortening
the simulation process speeds up the whole work flow,
these results impressively legitimate the need for par-
allelised simulation tools.

In fact, certain users of WinCast have insistently re-
quested a parallelised TFB module, in order to reduce
the main processing time from about ten days down
to one work day by using a 16 node compute cluster.
Since the needed parallel efficiency is just 62,5%, we
have forecasted its feasibility.

Unfortunately, we were not able to prove this on
our own cluster. Although we possess a cluster with 16
CPUs, it is only an 8 node cluster, which means that
the CPUs have to share the memory in pairs. Common
problem sizes, even divided by the parallelisation, do
not fit into the local cache of the CPUs. Due to this
fact, the memory bus is a bottleneck anyway and when
using two competing CPUs on an SMP machine, this
effect gets doubled.

4.1. Impact of Load Imbalance

The measured load imbalance increases with the
number of slaves used, because the layer ratio of disad-
vantaged slaves to the others rises accordingly. While
the loss of speedup due to this imbalance is just 2% for
2 slave processes, it amounts up to 8% when using 8
slaves:

• 2 Slaves: 1x52 + 1x51 layers → ratio is 52/51=1,0196

• 8 Slaves: 1x13 + 7x12 layers → ratio is 13/12=1,0833

Of course, when using an adapted total number of
layers, the speedup would scale even better, but we pre-
fer to present achievable results for all common models.
Due to this increasing loss of efficiency when scaling up
the number of processes, the use of larger systems de-
mands for bigger problems and vice versa.

16 KB 32 KB 48 KB 64 KB 80 KB 96 KB 112 KB 128 KB

MPI Message Size

0

10

20

30

40

50

60

70

80

90

100

B
an

dw
id

th
 (

M
B

/s
)

Fast-Ethernet
Gigabit-Ethernet

Ping-Pong Bandwidth

Figure 6. Ping-Pong Bandwidth

1 2 4 8

Number of Slave Processes

6 h

12 h

18 h

24 h

30 h

36 h

42 h

48 h

T
ot

al
 E

xe
cu

tio
n

T
im

e
in

 H
ou

rs

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Sp
ee

du
p

Ideal Speedup
Meassured Speedup
Total Execution Time

Speedup vs Number of Slaves

Figure 7. Speedup and Total Execution Time

Figure 8 shows how the presented problem with its
103 layers may scale for even more processes. In this
figure, a theoretical upper bound for speedup, just re-
duced by the effects of load imbalance, is plotted over
the number of slave processes and the according ratio
of the unequally distributed number of layers.

It can be seen that the theoretically achievable effi-
ciency for 8 slave processes is about 92%, whereas the
measured efficiency is just about 80%. This gap is just
due to the neglected communication overhead in the
theoretical approach of Figure 8.

4.2. Impact of Communication

Hence, a further interesting aspect is the impact of
the required communication on the speedup. As al-
ready stated in Section 3.2, there are two types of com-
munication within a time step.

Initially, the master distributes the equation system

0 % 1,96 % 4,0 % 8,33 % 16,67 % 33,33 %

Load Imbalance

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

E
ff

ic
ie

nc
y

0 (1 Slave) (2 Slaves) (4 Slaves) (8 Slaves) (16 Slaves) (32 Slaves)

as Ratio of Unequally Distributed Number of Layers

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Sp
ee

du
p

Ideal Speedup
Max. Speedup
Max. Efficiency

Max. Speedup vs Load Imbalance
 Theoretical Upper Bound for 103 Layers

Figure 8. Impact of Load Imbalance

0 1000 2000 3000 4000 5000

Number of Iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

It
er

at
io

n
T

im
e

in
 S

ec
on

ds

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Sp
ee

du
p

Serial Execution Time
Parallel Execution Time (Fast-Ethernet)
Speedup (Fast Ethernet)
Parallel Execution Time (Gigabit-Ethernet)
Speedup (Gigabit-Ethernet)

Speedup vs Number of Iterations (8 Slaves)

Figure 9. Speedup Depending on Iterations

to the slaves and gathers the results later on when the
time step is finished. This part of the communica-
tion consumes roughly the same time for each time
step independent from the number of iterations per-
formed. Its impact on speedup can be recognised in
Figure 9. This static portion of communication causes
the speedup to increase with number of iterations. If
the number of iterations is small, this portion domi-
nates the execution time and holds the speedup down.
In turn, for a larger number of iterations the speedup
rises and converges to a maximum.

The second communication part is the accumulated
data exchange among the slaves during the iterations.
In case of the presented problem, an amount of 98 KB
of data needs to be exchanged in each iteration per
neighbouring slaves. The impact of this communica-
tion can be measured by using different interconnects.
As can be seen in Figure 9, the maximal speedup de-
creases when utilising the slower Fast-Ethernet instead
of Gigabit-Ethernet. This reduction of speedup shows

that the assumption of fully overlapped communication
and computation is limited in reality. Nevertheless, us-
ing the slower network only causes a speedup loss of
about 10%, while the bandwidth ratio is about 8:1 for
the exchanged message size (see Figure 6). That means
that the influence of the slave-to-slave communication
on the execution time is still pretty moderate.

5. Related Work

The parallelisation of iterative solvers is a well un-
derstood domain of computational engineering and a
lot of research and development has already been con-
ducted in this area. There exists a huge amount of
literature dealing with those subjects. Thus, citing all
this related work would go far beyond the scope of this
paper.

Nevertheless, we want to mention two competitive
products to WinCast in order to present actual related
work in the domain of parallelised casting simulation.
The first product is ProCAST by the ESI-Group and
the second product is the casting simulation suite from
MAGMASOFT. Both suites possess parallelised solv-
ing cores for distributed memory systems and both
tools are runnable on Windows platforms as well as
on UNIX-like operating systems.

6. Conclusions and Outlook

Since the computer aided simulation of casting
and solidification processes has become a necessity in
founding industry, also the demand for parallelisation
of the respective simulation tools increased in the last
years. In this paper, we have presented our work ac-
complished to parallelise the core module TFB of the
WinCast simulation suite. The measured performance
results show that the chosen master-slave approach
scales quite well on compute clusters. This approach
also offers the facility to use the software tool in a famil-
iar manner, where the GUI-based master is running on
the user’s desktop computer, while the slave processes
are working transparently on a cluster or an office grid.
Particularly the use of the NT-MPICH library for mes-
sage passing, which provides support for the enhanced
native Windows socket communication functions, offers
an efficiently overlapped computation and communica-
tion scheme for the slave processes.

Although Windows is not a common cluster oper-
ating system, the parallel TFB allows convenient and
advanced main processing at the same time. Since
WinCast is ported from the UNIX-related SIMTEC
suite, even a cooperation of a Windows-based mas-
ter with UNIX-based slaves is thinkable. Especially

the NT-MPICH library is already ported to UNIX and
enabled to perform interoperable message passing via
TCP sockets.

In future, parallel architectures and parallelised code
will become even more important, also in the area
of mid-performance and desktop computing. Besides
symmetric multi processor systems, Dual- and even
Multi-Core processors will increasingly enter this area
of computing. In order to exploit such platforms ef-
ficiently, thread-level parallelism should be preferred.
Hence, an additional OpenMP-based [3] parallelisation
of the casting simulation code would be very desirable
in future. But since the memory bus is still a bottle-
neck also in those systems, this approach will demand
deeper changes in the solving code in order to obtain a
cache adapted parallelisation.

References

[1] Chair for Operating Systems, RWTH-Aachen, Univer-
sity. MP-MPICH – User Documentation & Technical
Notes.

[2] M. T. Chapman. The Benefits of Dual-Core Processors
in High-Performance Computing. White Paper, June
2005.

[3] L. Dagum and R. Menon. OpenMP: An industry-
standard API for shared-memory programming. IEEE
Computational Science & Engineering, 5(1):46–55,
1998.

[4] M. Gremaud and M. Gäumann. Introducing Casting
Simulation in Industry: The Steps Towards Success.
In Report of the 133rd Annual Meeting & Exhibition
of The Minerals, Metals & Materials Society (TMS),
2004.

[5] W. Kapturkiewicz, E. Fras, and A. Burbelko. Why is
the computer modelling needed in casting? Przeglad
Odlewnictwa (Foundry Journal), 55(1):15–23, 2005.
AGH University of Science and Technology, Krakow,
Poland.

[6] Microsoft. Windows Sockets 2 Application Program-
ming Interface, An Interface for Transparent Network
Programming Under Microsoft Windows. Manual.

[7] MPI Forum. MPI: A message-passing interface stan-
dard. International Journal of Supercomputing Appli-
cations, 1994.

[8] S. M. Paas, T. Bemmerl, and K. Scholtyssik. Win32
API Emulation on UNIX for Software DSM. In Pro-
ceedings of the 2nd USENIX Windows NT Symposium,
pages 39–46, Seattle, Washington, USA, August 1998.

[9] R. D. Pehlke. Computer Simulation of Solidification
Processes - The Evolution of Technology. Metall.
Mater. Trans. A, 33A:2251–2275, 2002.

[10] V. S. Sunderam. PVM: A framework for parallel dis-
tributed computing. Concurrency, Practice and Expe-
rience, 2(4):315–340, 1990.

[11] B. Wilkinson and M. Allen. Parallel Programming.
Prentice Hall, 2nd edition, 2005.

