
A Fair Benchmark for Evaluating the Latent Potential of
Heterogeneous Coupled Clusters

Carsten Clauss, Stephan Gsell, Stefan Lankes, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University,

Kopernikusstr. 16, 52056 Aachen, Germany
{clauss, gsell, lankes, bemmerl}@lfbs.rwth-aachen.de

Abstract

Coupled clusters usually exhibit a heterogeneous but
also hierarchical structure in terms of communication and
computation. Therefore, it is inevitable to adapt paral-
lel applications to such systems in order to gain reason-
able performance results. Moreover, also regular bench-
mark tools are not capable of exposing the latent potential
of such coupled cluster systems. Though without adapted
(or better self-adapting) benchmark tools for such systems,
it is almost not possible to forecast the scalability of well-
adapted applications and one is not able to compare the
possibly achievable performance in an application indepen-
dent manner. In this paper we present such a fair, self-
adapting and meaningful benchmark tool for heterogeneous
coupled cluster systems, following the MPI standard.

1. Introduction

Two significant trends can be recognized in the domain
of high performance computing in the the past few years:
On the one hand, cluster systems mainly build from com-
modity hardware have become more and more common.
On the other hand, there is also a strong trend towards dis-
tributed scientific computing, as for example provided by
grid computing environments. Thus, by combining dis-
tributed computing resources (namely computing clusters)
into a higher level, an even higher degree of parallelism
can be achieved and even larger problem instances can be
solved.

1.1. Cluster of Clusters

Such a coupled system, which can be understood as a
cluster of clusters (CoC), is heterogeneous by nature. Nev-
ertheless, the system is presented to the application as a
self-contained parallel computer, which still can be used in

a transparent way. Therefore, such a system is also com-
monly called a meta-computer. Since MPI [20] is the most
important API for implementing parallel programs, several
MPI libraries have been extended to meet the demand of
distributed and heterogeneous computing. The most com-
mon meta-computing and grid-enabled MPI libraries are
MPICH-G2 [17], PACX-MPI [5], MPICH/Madeleine [2],
GridMPI [18], StaMPI [25] and MetaMPICH [23], which
are all proven to run large-scale applications on coupled
cluster systems.

All those libraries offer the user and its applications
a transparent view onto a pretended homogeneous MPI
world, whereas the underlying computing environment is
heterogeneous in various ways. The interlinking network
between the coupled clusters usually constitutes the sys-
tem’s bottleneck. Additionally, different individual CPU
power, different number of nodes and also different internal
networks can lead to varying performance between the cou-
pled clusters. While the libraries’ feature of transparency
makes the porting of existing MPI applications to such a
system quite easy, the slowest network connection and the
slowest compute node will dominate the achievable perfor-
mance and scalability. Therefore, it is inevitable to adapt the
applications to the underlying heterogeneous system in or-
der to gain reasonable performance results. Although such
an adaptation may cause the loss of source code compati-
bility with regular MPI implementations, many of the above
mentioned grid-enabled MPI implementations offer a diver-
sity of additional adaptation features.

1.2. Need for Adapted Benchmarks

Moreover, just like non-adapted applications do not
scale, even regular benchmarks will just report poor per-
formance when measuring the heterogeneous system in a
transparent way. In fact, it is very difficult to forecast the
scalability of adapted applications because of the lack of fair
benchmark tools for such heterogeneous systems. In this
paper, we describe the development of such a fair bench-



mark tool, which also exploits the latent potential of cou-
pled clusters by taking the underlying heterogeneity into
account.

The presented benchmark is based on the common and
well-known parallel Jacobi Over Relaxation (JOR) algo-
rithm, which is illustrated in many essential publications [7]
[1] [15] [26]. Although the chosen algorithm is quite com-
mon, it can be seen as a simplification of various real-world
solving algorithms. Thus, the benchmark process can easily
be understood, while the measured results are still signifi-
cant related to real applications.

The algorithm’s adaptation on the underlying coupled
system is done automatically by exploiting information
about the system’s heterogeneous nature. Instead of gaining
this information by using incompatible customization fea-
tures provided by the respective grid-enabled MPI library,
the benchmark tool explores the system’s topology in an ini-
tial benchmark step without sacrificing compatibility. That
way, the adaptation is independent from the library used so
that the tool can also be deployed for performance compar-
isons among different library implementations.

1.3. Related Work

Meta-computing and grid applications are still very ac-
tive research areas. Nevertheless, the basic concepts of link-
ing two or more compute sites into a higher unit are not very
new and a lot of research has already been accomplished in
these areas. While much of the prior work deals with the
architectural approaches for building meta-computing en-
vironments up from dedicated supercomputers like MPPs
[14] [24] [22], recent work often deals with grid-enabled
solutions based on coupled cluster systems [21] [9] [8].

Since reasonable performance can only be obtained if the
applications are optimized to take the heterogeneous envi-
ronments into account, a lot of publications focus on this is-
sue of optimizing and analyzing the achievable performance
gain [3] [16] [11].

2. An Approach for a Fair Benchmark

In this section, we detail our approach to develop a fair
and meaningful benchmark tool for systems characterized
in Section 1.1.

On first consideration, an appropriate kernel algorithm
has to be chosen. The elected algorithm must fulfill cer-
tain requirements concerning scalability and adaptability.
For instance, the algorithm has to scale inherently with the
number of processes on homogeneous systems. This means
that the order of computation costs should exceed the or-
der of communication costs. Furthermore, the algorithm
must offer potentials to adapt the load of computation and

communication to heterogeneity. Additionally, the algo-
rithm should be comprehensible and significant for scien-
tific computing.

Therefore, we have decided to base our benchmark on
the Jacobi Over Relaxation algorithm (JOR), because it of-
fers all those required attributes and is quite common at the
same time.

2.1. The JOR Kernel

The simulation kernel being at the bottom of our bench-
mark is based on the well-known Laplace problem of heat
transfer, a model partial differential equation (PDE). The
mathematical task is to solve the Dirichlet boundary value
problem for Laplace’s equation on a rectangular domain.
When discretizing Laplace’s PDE on a two dimensional
N × N mesh, the resulting linear equation system can be
solved iteratively by applying the JOR method. The result-
ing Jacobi iterations are then described by the following for-
mula:

xk+1
i =

xk
i−N + xk

i−1 + xk
i+1 + xk

i+N

4

where xi is the value of the ith mesh point computed from
the ith equation of the system, while the superscript k in-
dicates the respective iteration step. This common scheme,
known as the five-point-stencil, is shown in Figure 1.

N

N

Xi−N

Xi+1

Xi−1

Xi+N

Figure 1. The Laplace Problem on a Rectan-
gular Mesh

We emphasize that the Laplace equation as well as the
JOR method are the simplest representatives of their classes
respectively. Although there exist plenty more recent and
more appropriate techniques to solve even more complex
and even more significant PDEs, we use the simple Laplace
problem and the simple JOR solver as a fundamental exam-
ple of simulation algorithms.



2.2. Parallelization

When parallelizing the algorithm, a decomposition of
the discrete mesh either into square blocks or rectangular
stripes or columns can be applied. By assigning each of
those same-sized areas to one of the parallel processors, a
good load balance can be achieved in a homogeneous sys-
tem. In order to determine the exact same approximation of
the PDE as in a serial run, each processor must communi-
cate with all its adjacent neighbors after each iteration step
(see Figure 2). Note that obtaining the same numerical re-
sults in a parallel run as in a serial run is an attribute of the
JOR algorithm, whereas the convergence behavior of other
solvers, e.g. the Successive Over Relaxation method (SOR),
is not independent of the number of processors used.

Figure 2. Domain Partitioning and Communi-
cation

Just like for the sequential algorithm, the Jacobi itera-
tions should terminate when the approximated solution is
good enough. Therefore, each processor must initially de-
termine the current local error of its sub-domain during
the iterations. Subsequently, after a reduce operation has
been performed among all processors, the global termina-
tion condition can be checked during the iterations.

2.3. Adaptation to Heterogeneity

Obviously, when transferring the algorithm from a ho-
mogeneous system to a heterogeneous system, load balanc-
ing gets more complicated. If retaining a static assignment
of the mesh areas onto the heterogeneous processors, in-
formation about the respective computational performance
must be gathered and introduced into the primary domain
decomposition. Therefore, the same algorithm should be
deployed as an initial serial benchmark in order to mea-
sure the performance characteristics of each processor in-
volved. Thus, a fair and adapted benchmark tool for hetero-
geneous systems must include a preliminary benchmark-run
that serves to explore the unknown nature of the system.

Besides a non-uniform distribution of compute power,
heterogeneous systems often exhibit an inhomogeneous
communication infrastructure, too. In case of the Laplace
problem and the applied JOR solver, the chosen domain de-
composition also governs the communication pattern of the
algorithm. Therefore, a fair and adapted benchmark tool
must provide an optimal mapping of the logical commu-
nication structure onto the underlying hardware communi-
cation infrastructure by means of a proper decomposition
scheme.

2.4. Asynchronous Relaxation

Furthermore, in case of the JOR solver, an additional
dependency between the computational load and the com-
munication structures can be introduced: While the com-
mon parallel JOR algorithm is synchronous in a way that
all processors are working at the same iteration step at the
same time, there is also an asynchronous relaxation proce-
dure thinkable. Suppose the blocking communication (and
thus the synchronization) after each iteration to be removed,
a processors would be able to go on with the next itera-
tion step after checking for new messages without the need
of waiting for them. The idea of such a chaotic updating
scheme was already introduced by Chazan and Miranker
in their seminal paper [10] in 1969. Therein, they stated
a simple necessary and sufficient condition that guarantees
the convergence also in case of such asynchronous itera-
tions. Since its introduction, asynchronous relaxation has
been studied by many authors [13] [4] [19] [6], whereas
much work deals with the special case of periodic relax-
ation.

Such a periodic relaxation scheme exhibits a well-de-
fined periodic updating order, in which each processor per-
forms a fixed number of relaxation iterations without com-
munication before being synchronized. While the local er-
rors decrease during such an asynchronous relaxation pe-
riod, they suddenly rise again at the beginning of the next
period. This is because the updated neighbor values disturbs
the local relaxation after communication. For that reason,
the global error and the respective termination condition can
only be checked after a synchronization step.

In Figure 3, the error evolution is plotted once for a
synchronous and once for a periodic (aka partially syn-
chronous) relaxation method with a period of ∆ = 10. Note
that the line of the partially synchronous evolution is just
plotted as the envelope of the actual evolution according to
the periodic updating order. As one can see, the conver-
gence rate for the partially synchronous method is smaller
than that of the full synchronous one, but the number of
communication cycles is reduced (by a factor of ten in this
example). Thus, it is possible within this algorithm to com-
pensate weak communication resources by deploying com-



0 50 100 150 200 250 300 350 400 450 500
Number of Iterations

0

1

2

3

4

5

6

7

8

9

10

E
rr

or
 R

es
id

ua
l

Partially Synchronous Method
Strictly Synchronous Method

Figure 3. Error Evolution for Strictly and Par-
tially Synchronous Methods

puting power by means of performing additional iteration
steps.

3. Benchmark Description

The benchmark assumes a heterogeneous system build
of two homogeneous computing sites (e.g. two clusters),
each with an arbitrary number of parallel processors. The
benchmark tool measures the parallel solving time for those
processors applying a partially synchronous JOR solver for
the Dirichlet problem of Laplace’s equation on a rectangu-
lar domain. Thereby the tool performs multiple runs with
varying parameters.

The decomposition of the 2 ·N×N domain is based on a
strip partitioning, which is denoted in Figure 4 (lb is a load
balancing factor). Such a strip partitioning has the advan-
tage that each processor only needs to communicate at most
with two neighbors, and that in turn reduces the impact of
latency. Note that there are only two processors to commu-
nicate across the inter-cluster-link, which is assumed to be
the system’s bottleneck. Therefore, we call those distinc-
tive processors the front-ends of each site. The benchmark
automatically chooses that processor pair to be the front-
ends, which exhibit the fastest inter-cluster communication
characteristic.

3.1. The Start-Up Phase

First of all, the benchmark tool must be aware of the sup-
posed two-tier system hierarchy. Therefore, the benchmark
offers two possibilities: either the tool can determine the hi-
erarchy by itself by performing simple round-trip time mea-
surements among all participating nodes, or the site affilia-
tion must be stated explicitly by the user via a configuration

N N

Front−End Processors

.N lb N (1−lb).

Cluster BCluster A

Figure 4. Initial Domain Decomposition for
the two Clusters

file or via a hostname mask. While the first option is quite
user friendly, the search for the hierarchy classes demands
start-up communication in the magnitude of O(p2), which
is not feasible in large parallel environments.

3.2. Determining the Power Distribution

The next step is to determine the relative computational
power of each site. For this purpose, each cluster site per-
forms a local parallel run on the N × N domain on its own
by applying the fully synchronous JOR method internally
without any interaction between the sites. While the num-
ber of iterations to be performed is the same for both sites,
the measured times lead to the ratio of computing power
between the two clusters.

Note that this ratio is also governed by the cluster inter-
nal communication because of its impact on the local paral-
lel run-time. Thereby, the chosen partitioning scheme of the
solution domain potentially impacts the performance. This
is due to the fact that a block partitioning scheme is best
for networks with small latencies, while a striped scheme is
best in case of larger communication latencies [26]. Nev-
ertheless, since the inter-cluster communication pattern be-
comes more complex in case of a block-wise decomposi-
tion, we still assume a striped partitioning. Note that the
number of processors per cluster may differ between the
sites.

After the first local run on an N × N domain, a second
local run on a 2 · N × N domain is going to be performed.
The reason for that further local run is to analyze the im-
pact of the caches on the performance of the coupled sys-
tem. This is because the cache size may be large enough to
hold the local problem of a coupled cluster configuration,
but too small to carry the whole problem, when it is only
spread among a single cluster. Conversely, if the measured
time ratios of the local runs on the differently sized domains
are not approximately the same, then a cache boundary has
been crossed on one of the clusters. Hence, in such a case,



these cache effects have also to be taken into account when
determining an optimized load balancing.

3.3. A Transparent Run

Although the system’s heterogeneous nature is now de-
termined, the next step is just a transparent benchmark-run
with both coupled clusters working together. This run is
transparent in that way that there is still no load balanc-
ing applied between the clusters and that communication
is performed straight forward in each iteration step. Hence,
the measured run-time gives information about the perfor-
mance gain (or even the performance loss) when running
an accordingly unadapted application on the coupled sys-
tem instead of using the most capable of both sub-systems
without the other’s help.

It has to be mentioned at this point that all those bench-
mark-runs clock the time of iterations needed to divide the
initial error by a factor of ten. In order not to include time
consumed by the termination detection mechanism (that are
mainly the all-reduce operations for calculating the global
error evolution), the number of needed iterations is prede-
termined before the actual measuring run. Thus, a clocked
benchmark-run always executes a fixed number of iterations
while disregarding the current error evolution. In real world
applications, the impact of the global termination detection
mechanism is usually reduced by checking the abort criteria
just after a certain amount of iterations in a cyclic manner.
This approach works because the JOR method converges
quite slowly. [15]

3.4. The Best Periodic Updating Scheme

Now it is time to determine the best periodic updating
scheme concerning the inter-cluster communication. Since
the link between the front-end nodes is assumed to be the
system’s bottleneck, the partially synchronous scheme is
just applied to this pair of nodes, whereas the local updat-
ing scheme is still a synchronous one. Therefore, the tool
performs a series of benchmark-runs each with a different
amount of local iterations between the inter-cluster synchro-
nization steps. The first run of this series is just a fully syn-
chronous relaxation, while the updating period gets respec-
tively increased in each next run. Thereby, the number of
iterations needed for the sufficient relaxation is furthermore
predetermined for each applied updating period in order to
clock just the respective solving time. Note that the num-
ber of iterations to be performed also depends on the load
balance applied because the domain frontier between the
clusters may be displaced.

All of those runs are performed with balanced load. This
means that the 2 · N × N domain is distributed onto the
two clusters according to the previously measured power

ratio. Hence, the first and thus the fully synchronous run of
the series gives information about the impact of an adapted
load distribution compared to the results of the transparent
run.

As already explained, when increasing the updating pe-
riod between the clusters, the inter-cluster communication
effort decreases, whereas the number of iterations to be per-
formed increases. Therefore, in case of a slow interlinking
network, there must be an optimal periodic updating scheme
which exhibits a period of ∆ > 1. This is because up to this
certain period, the impact of the reduced communication
time dominates over the increased computation time caused
by the additional iterations. On the other hand, if the in-
terlinking network is about as fast as the internal networks,
the synchronous scheme with a period of ∆ = 1 becomes
potentially the best choice.

This correlation is denoted in Figure 5 of the next sec-
tion, where the run-time of the solver is plotted over the
period applied. As one can see in this example, in case of a
slow inter-cluster network, an adaptation by means of an op-
timal chosen updating period can enhance the performance
of a coupled system in a distinctive way.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Updating Period

20

25

30

35

40

45

50

55

60

R
un

tim
e

Figure 5. Runtime over Updating Periods ∆
for a Class A Problem

3.5. Summary of Benchmark Procedure

At first, the benchmark tool performs local runs on an
N × N and a 2 · N × N domain without any inter-cluster
communication. The results of these two runs are used to
determine the distribution of compute power in order to pro-
vide an optimal load balancing.

Next, there is a transparent run on a 2 · N × N domain
still without load balancing applied, but with an inter-cluster
synchronization after each iteration step. Comparing this
run-time with the the shortest local run-time on the 2·N×N



domain provides the information if also an unadapted run
can already benefit from the cluster coupling. This is what
we call the Artless Speedup.

The next series of runs are all performed with an opti-
mal balanced load, while the synchronization period gets
increased in each run. Finally, the run-times measured in
this manner help to dentify the best period, which in turn
implies the best run-time. Hence, the fraction of the best
local run-time with this best global run-time is here called
the Artful Speedup. Note that these speedup values refer to
the coupled system of two clusters, thus an optimal speedup
is about a factor of two.

4. Selected Results

In this section, we want to present some results that we
have measured with the benchmark tool introduced. All
these benchmark runs have been performed on a meta envi-
ronment composed of the following two clusters, which are
both equipped with the Scalable Coherent Interface (SCI)
as fast internal networks (275 MB/s MPI-Bandwidth, 4µs
MPI-Latency) and with Gigabit-Ethernet:

P4-Cluster:

• 8 Nodes, 16 CPUs

• Dual Intel Xeon 2.4 GHz, 512 kByte Cache

• 400 MHz FSB, 8 GByte Total Memory

• Scalable Coherent Interface (SCI), 2*4 2D-Torus

PD-Cluster:

• 16 Nodes, 16*2 (DualCore) CPUs

• Intel PentiumD 2.8 GHz, 1 MByte Cache

• 533 MHz FSB, 32 GByte Total Memory

• Scalable Coherent Interface (SCI), 3*4 2D-Torus

We have used MetaMPICH as grid-enabled MPI library
in order to link both clusters. MetaMPICH is a part of the
MP-MPICH project, which in turn also includes the SCI-
MPICH library [27]. That way, MetaMPICH supports a di-
rect access to the underlying local SCI networks for cluster-
internal communication, while the interlinking communica-
tion is based on TCP drivers.

4.1. The Problem Classes

The size N of the problem solved by the benchmark tool
during a run is governed by a so-called problem class, which
has to be chosen at startup time. This approach is borrowed
from the NAS benchmark suite [12], whereas the classes
and their sizes are chosen here as follows:

Class Size Purpose

S 16 × 16 Small Systems and Test-Runs
W 128 × 128 Small Clusters of Workstations
A 256 × 256 Midsize Productivity Clusters
B 512 × 512 High Performance Clusters
C 1024 × 1204 Coupled Top-500 Systems

In our first benchmark scenario, the two clusters were
coupled via Gigabit-Ethernet, while the internal communi-
cation was handled over the SCI network. Thereby, only the
two front-end nodes had to communicate across the inter-
linking bottleneck as it has already been denoted in Figure
4. Note again that the benchmark automatically chose the
best pair of nodes for the inter-cluster communication.

In Figure 6 and Figure 7, the measured speedup is plot-
ted over the number of nodes used per cluster. That means
that the number of processes was identical for both clus-
ters. Note that in this case the power distribution and thus
the load balance is almost symmetric because the perfor-
mance characteristics are quite similar for both systems.
We have only measured the speedups for problems of the
classes W,A and B. The reason was that the S class is just
intended for test runs and the C class is too large for our
cluster testbeds.

As one can see, for small problem sizes like in class W,
the Artless Speedup is rather a loss of speedup than a perfor-
mance gain. However, when increasing the problem sizes,
the achievable speedup rises, too. This is due to the fact
that the order of the computational load is O(N2), whereas
the communication is about O(N). That means that the im-
pact of the inter-cluster bottleneck shrinks when the prob-
lem size grows. On the other hand, the impact of the in-
ternal communication increases when the number of nodes
per cluster gets incremented. That is the reason why the
speedup drops for larger environments.

Nevertheless, when looking at the Artful Speedup, it
becomes clear that customizing the application (here rep-
resented by the adapted benchmark run) is inevitable on
heterogeneous systems in order to achieve efficient perfor-
mance gains.

4.2. Load Balancing

In Figure 8, the applied load balancing is plotted over the
number of nodes for the different problem classes. Here, the
percentage deviations for the applied decomposition of the
2 ·N × N domain for the two clusters are shown. Remark-
able is that the load balance and thus the determined distri-
bution of computational power varies between the different
classes. While the measured stand-alone performance of the
two cluster systems is quite similar for the W class, the P4
cluster seems to weaken especially when applying a class



2x2 4x4 8x8 16x16
Processors

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

1.8 1.8

2.0 2.0

Sp
ee

du
p

Class W
Class A
Class B

Figure 6. Measured Artless Speedup for Differ-
ent Problem Classes

2x2 4x4 8x8 16x16
Processors

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

1.8 1.8

2.0 2.0

Sp
ee

du
p

Class W
Class A
Class B

Figure 7. Measured Artful Speedup for Differ-
ent Problem Classes

A or B problem. The reason for this strange behavior are
the different cache sizes of the two cluster systems. While a
CPU of the PD-Cluster posseses a cache size of 1MB, the
P4-Cluster just exhibit 512KB cache memory. The class A
problem demands a total memory of

2 · (2 · 256 × 256) · 8Bytes = 2MBytes

on a 2 · N × N domain. Note that the JOR method needs
a duplicated solution matrix. Thus, when just deploying the
P4-Cluster to solve the whole problem on its own, the prob-
lem would not fit into its CPU caches when using up to four
processor nodes. This issue can clearly be recognized in
Figure 8, where the assigned load is unequal up to a cou-
pling of two four-node systems. Note that for an optimal
load balance, these issues have to be taken into account.
Although up to eight nodes the class B problem (8MB)
even does not fit into the caches of the PD-Cluster, the PD-
Cluster outperforms the P4-Cluster also for such large prob-
lems due to its faster main memory bandwidth.

A further discussion on load balance can be based on
Figure 9, where the measured speedups are plotted for an
asymmetric number of nodes applied for each cluster. In
this benchmark scenario, there are always twice as much
processes started on the P4-Cluster as on the PD-Cluster.
Remarkable are the speedup measurements for the (4x2)-
nodes environment, where the Artful Speedup exhibits an
efficiency of up to 90%. This is due to fact that both sys-
tems would not be able to hold the whole problem in their
caches in case of a stand-alone run. Though when working
together, the subproblems fit into the caches so that coupling
the systems is very worthwhile in this case.

2x2 4x4 8x8 16x16
Processors

-0.4 -0.4

-0.3 -0.3

-0.2 -0.2

-0.1 -0.1

0.0 0.0

0.1 0.1

Po
w

er
 D

ev
ia

tio
n 

(P
4 

- 
PD

)
Class W
Class A
Class B

Figure 8. Measured Power Ratio between P4-
and PD-Cluster

4x2 8x4 16x8
Processors

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

1.8 1.8

2.0 2.0

Sp
ee

du
p

Class W: S artless
Class W: S artful
Class A: S artless
Class A: S artful

Figure 9. Speedups for Asymmetric Environ-
ments

5. Conclusions and Outlook

In this paper, we have presented a tool to benchmark cou-
pled clusters, so-called meta-computers. With that bench-
mark, one can check if it makes sense to couple two clus-



ters (of different performance) to solve a given problem, or
if it even slows down the faster cluster. Also different con-
figurations can be checked, by taking the load balance into
account. Since our tool is independent of the underlying,
grid-enabled, MPI library, it can also be used to compare
these different implementations with each other. We have
shown that the speedup can indeed be increased by adapting
the existing MPI-application to the given meta-computer,
rather than just coupling two clusters and let the application
run transparently on them.

In the future, we might add an option to split the 2·N×N
area into blocks, rather than stripes, since this is better for
intra-cluster networks with low latency [26]. Although such
a decomposition pattern does not reduce the impact of the
inter-cluster latency, the aggregated bandwidth between the
clusters may also be increased due to the pairs of processes
exchanging data across the inter-cluster link in this case.

References

[1] Y. Aoyama and J. Nakano. RS/6000 SP: Practical MPI Pro-
gramming (SG24-5380/ISBN 0738413658). IBM Japan red-
book, 1999. RS/6000 Product Management & Marketing,
IBM Japan.

[2] O. Aumage and G. Mercier. MPICH/MADIII: a Cluster of
Clusters Enabled MPI Implementation. In Proc. of the 3rd
IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages pp. 26–36, May 2003.

[3] H. E. Bal, A. Plaat, M. G. Bakker, P. Dozy, and R. F. H. Hof-
man. Optimizing parallel applications for wide-area clus-
ters. In IPPS/SPDP, pages 784–790, 1998.

[4] G. M. Baudet. Asynchronous iterative methods for multi-
processors. JACM: Journal of the ACM, 25:226–244, 1978.

[5] T. Beisel, E. Gabriel, M. Resch, and R. Keller. Distributed
Computing in a Heterogeneous Computing Environment. In
Proc. of the 5th European PVM/MPI Users’ Group Meeting,
pages pp. 180–187, September 1998.

[6] D. Bertsekas and J. Tsitsiklis. Convergence Rate and Termi-
nation of Asynchronous Iterative Algorithms. In Proceed-
ings of the 1989 International Conference on Supercomput-
ing, pages 461–470, 1989.

[7] D. P. Bertsekas and J. N. Tsitsikilis. Parallel and distributed
computation: numerical methods. Prentice Hall, Englewood
Cliffs, N.J., 1989.

[8] B. Bierbaum, C. Clauss, T. Eickermann, L. Kirtchakova,
A. Krechel, S. Springstubbe, O. Wäldrich, and W. Ziegler.
Orchestration of distributed MPI-Applications in a
UNICORE-based Grid with MetaMPICH and MetaSchedul-
ing. In Proceedings of the European PVM/MPI Users Group
Meeting 2006, Bonn, Germany, September 2006.

[9] B. Bierbaum, C. Clauss, M. Pöppe, S. Lankes, and T. Bem-
merl. The new Multidevice Architecture of MetaMPICH in
the Context of other Approaches to Grid-enabled MPI. In
Proceedings of the European PVM/MPI Users Group Meet-
ing 2006, Bonn, Germany, September 2006.

[10] Chazan, D. and Miranker, W. L. Chaotic relaxation. Linear
Algebra and its Applications, 2:199–222, 1969.

[11] C. Clauss, M. Pöppe, and T. Bemmerl. Optimising
MPI Applications for Heterogeneous Coupled Clusters with
MetaMPICH. In Proceedings of the IEEE International
Conference on Parallel Computing in Electrical Engineer-
ing, Dresden, Germany, September 2004.

[12] D. Bailey et al. The NAS parallel benchmarks. Technical
Report RNR-91-002, NAS Systems Division, Jan. 1991.

[13] J. D. P. Donnelly. Periodic chaotic relaxation. Linear Alge-
bra and Application, 4:117–128, 1971.

[14] T. Eickermann, J. Henrichs, M. M. Resch, R. Stoy, and
R. Völpel. Metacomputing in gigabit environments: Net-
works, tools, and applications. Parallel Computing, 24(12-
13):1847–1872, 1998.

[15] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - second
edition. The MIT Press, 1999.

[16] J. Henrichs. Optimizing and load balancing metacomputing
applications. In International Conference on Supercomput-
ing, pages 165–171, 1998.

[17] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 63(5):551 –
563, 2003.

[18] M. Matsuda, Y. Ishikawa, Y. Kaneo, and M. Edamoto.
Overview of the GridMPI Version 1.0. In Proc. of the
SWoPP05, Japan, 2005.

[19] D. Mitra. Asynchronous relaxations for the numerical solu-
tion of differential equations by parallel processors. SIAM
Journal on Scientific and Statistical Computing, 8(1):S43–
S58, Jan. 1987.

[20] MPI Forum. MPI: A message-passing interface standard. In-
ternational Journal of Supercomputing Applications, 1994.

[21] M. S. Müller, M. Hess, and E. Gabriel. Grid enabled MPI
solutions for clusters. In CCGRID, pages 18–25. IEEE Com-
puter Society, 2003.

[22] S. Pickles, F. Costen, J. Brooke, E. Gabriel, M. S. Müller,
M. M. Resch, and S. Ord. The problems and the so-
lutions of the metacomputing experiment in SC99. In
Proceedings of the 8th International Conference on High-
Performance Computing and Networking (HPCN), Amster-
dam, The Netherlands, 2000.

[23] M. Pöppe, S. Schuch, and T. Bemmerl. A Message Pass-
ing Interface Library for Inhomogeneous Coupled Clus-
ters. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Nice,
France, April 2003.

[24] M. M. Resch, D. Rantzau, and R. Stoy. Metacomput-
ing experience in a transatlantic wide area application test-
bed. Future Generation Computer Systems, 15(5–6):807–
816, Oct. 1999.

[25] H. K. Toshiyuki Imamura, Yuichi Tsujita and H. Takemiya.
An Architecture of Stampi: MPI Library on a Cluster
of Parallel Computers. In J.Dongarra et al., editor, Eu-
roPVM/MPI2000, pages 200–207. Springer-Verlag Berlin
Heidelberg, 2000.

[26] B. Wilkinson and M. Allen. Parallel Programming. Prentice
Hall, 2nd edition, 2005.

[27] J. Worringen. SCI-MPICH - The Second Generation. In
Proceedings of SCI-Europe 2000 (Conference Stream of
Euro-Par 2000), pages 11–20, Munich, Germany, August
2000.


