
An Approach for Deploying Externally Defined MPI Communicators at Runtime

Carsten Clauss, Stephan Gsell, Stefan Lankes, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
{clauss, gsell, lankes, bemmerl}@lfbs.rwth-aachen.de

Abstract

When writing parallel applications according to the
MPI standard especially for hierarchical computing envi-
ronments, the recognition of the underlying heterogeneous
hardware structure at application level is not trivial at all.
Although the MPI standard tries to support the application
programmer with some process grouping and mapping fa-
cilities (notably the communicator concept and the topology
mechanism), the actual hardware hierarchy is usually still
kept opaque. In this paper, we present a generalized ap-
proach that allows the programmer to create suitable pro-
cess groups according to the given topologies by externally
defining MPI communicators in corresponding XML files.
We further introduce a small external library for MPI im-
plementations that is able to parse those XML files and can
build the desired communicators at runtime. That way, the
actual hardware hierarchy becomes visible also at applica-
tion level.

1 Introduction

An important feature of the Message Passing Interface
(MPI) [15] is the communicator concept. This concept al-
lows the application programmer to group the parallel pro-
cesses by assigning them to abstract objects called com-
municators. For that purpose, the programmer can split
the group of initial started processes into sub-groups, each
forming a new self-contained communication domain rep-
resented by such a communicator object [13].

This concept usually follows a top-down approach where
the process groups are built according to the communi-
cation patterns required by the parallelized algorithm. In
this way, hierarchical communication structures within the
algorithms can easily be implemented on top of the MPI
layer. However, since most MPI implementations nor-
mally assume homogeneous hardware environments, the
processes are usually mapped onto the available proces-
sors in a transparent way so that an arbitrary (or at least an

implementation-dependent) process-to-processor mapping
is most likely to result. That means that the MPI runtime
system usually does not draw any association between the
logical communication patterns of the algorithm on the one
side and the underlying physical hardware topology on the
other side. Although the MPI standard offers such an as-
sociation feature in terms of the MPI topology mechanism,
its intended functionality is very rarely realized by generic
MPI implementations [19, 18].

Heterogeneity-Aware MPI In contrast to ordinary MPI
implementations, heterogeneity-aware MPI libraries often
provide dedicated adaptation features which help the appli-
cation programmer to adapt the algorithms’ communication
patterns to the respective heterogeneity of the physical com-
munication topology. However, the implementation of such
optimization features normally follows a bottom-up method
where the topology information must be passed from the
MPI runtime system to the application in a more or less
unconventional way. At this point, two different ways can
be followed: the one way is to aim to keep standard con-
formity, whereas the other way is to sacrifice source code
compatibility e.g. for a more convenient handling. For
instance, several heterogeneity-aware MPI libraries supply
the programmer with additional predefined MPI communi-
cators that try to reflect the underlying hardware hierarchy.
However, if the symbol names of those additional commu-
nicators are already set at compile time of the MPI library,
an application breaks with the standard when using them
and hence makes its source code less portable.

Remainder of the Paper In this paper, we present a gen-
eralized approach that circumvents the communicator de-
termination at compile time by providing the programmer
with the ability to use self-predefined MPI communicators
whose group composition is just determined at runtime. Af-
ter a brief recapitulation of the communicator concept in
Section 2, we present a small additional library for MPI
implementations in Section 3 that follows our approach
and which is capable of building the desired communica-

tors for the application. Although the approach introduced
is mainly intended to build communicators following the
bottom-up method for heterogeneous computing environ-
ments, it can also be applied for a top-down strategy where
the communicators are built, guided by the programmer, ac-
cording to the patterns of the respective algorithm. There-
fore, application examples for both those methods are pre-
sented in Section 4. An overview of related work and pos-
sible future extensions to our work concludes the paper in
Section 5.

2 The MPI Communicator Concept

In order to follow the novelty of the approach introduced
in this paper, one needs some basic knowledge about the
common way of dealing with MPI communicators. For that
reason, we briefly resume the MPI communicator concept
and its handling on application level in this section. For
more detailed explanations, please refer to [10, 11, 13].

Intra-Communicators An MPI communicator is, as al-
ready mentioned in the introduction, an abstract object that
represents a (sub-)group of parallel processes defining an
explicit communication space. According to the MPI stan-
dard, there exist three predefined communicators in every
MPI environment. Those communicators are:

• MPI_COMM_WORLD — specifying all started pro-
cesses within an MPI run

• MPI_COMM_SELF — identifying each MPI process
itself

• MPI_COMM_NULL — pseudo communicator repre-
senting invalid communicators

The first and, to a very minor degree, also the second of
those can be used by an application programmer for (intra-
group) communication as well as for deriving new commu-
nicator groups. For that purpose of creating new commu-
nicators, the standard defines, amongst others, the function
MPI_Comm_split() that partitions the group of a par-
ent communicator into disjoint subgroups. Each process of
those subgroups in turn will be associated either with the re-
spective communicator created or with MPI_COMM_NULL
if the calling process does not take part in any of the de-
fined subgroups. At this point it should be emphasized that
the created child communicators within one call to the split
function will get the same communicator names assigned.
That in turn means that a symbol name representing a com-
municator object on application level does not necessarily
represent identical groups for the different processes at run-
time (see Figure 1).

0 2 31

MPI_COMM_WORLD

10

MPI_COMM_REALM MPI_COMM_REALM

2 0

Split

Figure 1. Splitting of a Communicator

Inter-Communicators Besides the regular communica-
tors introduced in the last preceding paragraph, which are
intended for intra-group communication, there also exists
a further type of communicators, which is designated for
inter-group communication. Therefore, communicators of
this second type are formally called inter-communicators,
whereas those of the prior type are formally called intra-
communicators. The difference between both types is that
an inter-communicator is associated with two groups of pro-
cesses: a local and a remote group.

In the context of inter-communicators, the processes
are always identified by their rank within the remote
group. That way, messages sent or received via an
inter-communicator are always exchanged between pro-
cesses of the two disjoined groups. Therefore, the cre-
ation of a new inter-communicator is based on the inter-
linkage of two disjoined intra-communicators by calling the
MPI_Intercomm_create() function.

At this point it should be emphasized that the returned
data type of an inter-communicator is the same as for a
regular intra-communicator. Hence, in order to be able
to distinguish between those communicator types repre-
sented by the same data type, the standard provides the
MPI_Comm_test_inter() function.

Process Identification When defining new MPI commu-
nicators, the application programmer can build them either
according to the top-down approach, which is the usual
case, or according to the bottom-up approach for hardware
awareness. In the first case, the world ranks of the processes
can serve as a unique differentiator among them.

The second case, following the bottom-up approach, is
a little bit more complicated: First of all, each process has
to determine on which node of the hardware topology it is
running. This identification can be done by utilizing the
result of the MPI_Get_processor_name() function,
whereas the programmer has to supply the correlation be-
tween processor names and the actual topology to be repre-
sented by the new communicators. By comparing its own
name with a list of processor names assigned to correspond-
ing communicator groups, each process can then determine
if it becomes part of a new communicator or not.

3 Implementation Details

3.1 A Library for Communicator Creation

So far, an application programmer usually has to encode
the process identification described in the former section di-
rectly into the respective application. In order to ease the
creation of self-defined communicators on the one hand and
to make the process identification more flexible and inde-
pendent from the application code on the other hand, we
have developed a small software library that relieves the
programmer from dealing with the communicator creation
procedure.

For that purpose, the library provides a special function
that only expects a reference to an uninitialized MPI com-
municator object as well as the symbol name of that object.
When called, the function will look up a table containing the
descriptions of the new communicators indexed by the com-
municator name. If the desired communicator can be found
in the table, each calling process will check the respective
description in order to determine whether it becomes part
of a new communicator group or not. Afterwards, the par-
ticipating processes will build the new communicator while
the others will just return a reference to MPI_COMM_NULL.

In order to supply the building function with the needed
information stated in the lookup table, an additional initial-
ization function must firstly read the desired communica-
tor configurations from an appropriate XML file. The dis-
placement of the communicator definitions into an external
configuration file offers several advantages and opportuni-
ties: For example, the application does not need to be re-
compiled if the desired grouping scheme or the processor
names have changed. Furthermore, the configuration needs
not necessarily be written by a user or an application pro-
grammer. In fact, the XML file containing the communica-
tor definitions can rather be generated by a process sched-
uler, for instance, or even by the runtime environment of a
heterogeneity-aware MPI implementation.

3.2 The XML Configuration Files

The reasons for XML [20] being the file-format of choice
are that it is human readable, easy to understand and widely
used. Another important reason was that it is highly hierar-
chical structured and thus represents the computer structure
in use quite well. There exist some public domain XML
parsers of which we chose libxml21 for our implementa-
tion.

The data is being structured by so-called elements.
Usually an element consists of the wanted information
surrounded by a dedicated start tag and the correspond-
ing end tag. For example, in our implementation we

1http://xmlsoft.org/

use <processor>igor</processor> to specify a
processor named igor. For the definition of a pro-
cess group represented by a communicator, we have in-
troduced the <comm> tag. This element may harbor
processor elements as well as other comm elements, al-
lowing a recursive definition style. To name a communi-
cator, we use a corresponding attribute within the tag like
<comm name="MPI_COMM_RED">...</comm>.

Identification by Processor Names In order to identify
the nodes of the hardware topology according to the bottom-
up approach, the communicators have to be associated with
the respective processor names. Therefore, consider the fol-
lowing example of a short configuration file:

<comm name="MPI_COMM_RED">
<processor>pd-01</processor>
<processor>pd-02</processor>
<comm name="MPI_COMM_PINK">

<processor>pd-02</processor>
</comm>

</comm>
<comm name="MPI_COMM_RED">

<processor>pd-03</processor>
</comm>
<comm name="MPI_COMM_BLACK">

<processor>pd-04</processor>
</comm>

Here, the first communicator, named MPI_COMM_RED,
contains the processors pd-01 and pd-02, whereby
the latter is also in a sub-communicator named
MPI_COMM_PINK. It is important to know that each
sub-communicator may only consist of processors that are
also defined in its parent communicator. Therefore it is for
instance not possible in the above example configuration
for the sub-communicator to include the processor pd-03,
since it is not in the parent-communicator. As already
stated in Section 2, the MPI standard allows for different
communicator groups to having the same symbol name (as
above with MPI_COMM_RED), which is also supported by
our library.

An additional feature is that processor names may also
include regular expressions, as for example p[d4]-01.
This expression matches the processors pd-01 and p4-01
which can be quite useful for example if you have two clus-
ters at hand that use the same naming scheme. (In fact, PD
and P4 are names of two actual cluster installations at our
institute.)

Although the new communicator-internal processor
ranks are typically derived from the order of occurrence in
the XML file, they can also be stated explicitly via an ad-
ditional key attribute. However, in case of a regular ex-
pression, the communicator-internal ranks are determined
by the alphabetical order of the actual processor names.

Inter-Communicators In analogy to Section 2, it is pos-
sible to define inter-communicators, too. In the XML file
this can be accomplished in a way alike the following:

<intercomm name="MPI_COMM_INTER">
<first color="1">MPI_COMM_RED</first>
<second>MPI_COMM_BLACK</second>

</intercomm>

This code fragment defines an inter-communicator
named MPI_COMM_INTER between the communicators
MPI_COMM_RED and MPI_COMM_BLACK. Since inter-
communicators may only connect two communicators that
have the same parent, the intercomm element may only
stand within a comm element (or in the top level node with
MPI_COMM_WORLD being the common parent). In our im-
plementation, different communicators with the same name
are distinguished by their different colors, which again is
just a value between zero and the number of the equally
named communicators minus one. If the communicator
name is unambiguous, the color statement can be omitted.
That means in this example that the inter-communicator
will represent an interlinking domain between the proces-
sors pd-03 and pd-04.

3.3 Portable Integration into Applications

To us, it was very important that our approach chosen for
deploying externally defined communicators ensures porta-
bility. Portability means that the library introduced is inter-
operable with any underlying MPI library on the one side,
and that the respective applications can still be written in
a standard conform manner on the other side. However, in
order to utilize the new features introduced, an application
has to be written in a distinctive way that will be described
below. That way, the application can not only be compiled
with and without the additional library but can also still be
started in both cases while switching back to the standard
communicator environment in the latter case of lacking sup-
port.

For that reason, we have chosen to place our library
transparently between the application and the respective
MPI implementation. Thus, the call to the new communica-
tor creation function described in Section 3.1 becomes in-
visible to the application by hiding it inside faked MPI com-
mands. Therefore, the application merely has to include
an also faked mpi.h header instead of the corresponding
header file of the native MPI library when being compiled.

Nevertheless, another possible way is to place the call
to the new communicator creation function directly into the
application code and using preprocessor directives for en-
suring portability. However, in this paper we want to focus
on the former alternative described.

Faked MPI Functions When using this option, the
externally defined communicators are built at runtime
during an appropriate call of MPI_Comm_rank() or
MPI_Comm_size(), assuming that those are one of the
initial MPI functions called which expect a communicator
as one of the arguments. For that purpose, all occurrences of
those function calls are replaced within the application via
the preprocessor by the following directives and prototypes
(for MPI_Comm_size() in an analogous manner):

#define \
MPI_Comm_rank(a, b) \
MPIX_FAKE_Comm_rank(&a, b, #a)

int MPIX_FAKE_Comm_rank
(MPI_Comm *comm,
int *rank,
char *name);

That way, the library can get aware of the respective
communicator name in case the function is called with the
object’s symbol name as an immediate argument.

That is for example:

MPI_Comm_rank(MPI_COMM_BLACK, &rank);

Whereupon the symbol name MPI_COMM_BLACK is
passed as the third argument of the fake function into the
string name. By searching in the previously memorized
look up table, the library can now determine whether the
given communicator is an externally defined one, and if so,
how to create the desired entity. Furthermore, since the pre-
processor also converts the former call-by-value style for
the communicator argument into a call-by-reference one,
a reference of the currently built communicator entity can
now be returned back to application level. By this means, a
second search for this communicator becomes unnecessary
for further MPI function calls because the returned refer-
ence now actually represents a valid MPI communicator.

Usage at Application Level Nevertheless, since the li-
brary has to decide whether it is a first call or not, all com-
municators that are assumed to be defined externally have
to be explicitly declared as MPI_COMM_NULL before be-
ing used (or rather, before being built). However, due to
the fact that a call with a NULL communicator will most
likely result in an abort of the running program in common
MPI environments, an application has to take appropriate
measures in order to be still consistent with the standard.
For that purpose, an application should ensure that an MPI
function also returns in case of an erroneous communica-
tor argument. This is usually done by setting the MPI error
handler to MPI_ERRORS_RETURN. That way, the applica-
tion can determine on its own whether a communicator is
valid or not.

In order to clarify the handling of those issues, refer to
the following code example:

MPI_Comm MPI_COMM_RED
= MPI_COMM_NULL;

MPI_Errhandler_set(MPI_COMM_WORLD,
MPI_ERRORS_RETURN);

if(MPI_Comm_rank(MPI_COMM_RED, &rank)
== MPI_SUCCESS)

{
/* I am part of MPI_COMM_RED! */
. . .

}
else
{
/* I am NOT in MPI_COMM_RED! */
. . .

}

Initially, a variable of the data type MPI_Comm is de-
clared for the new communicatorMPI_COMM_RED and ini-
tialized with MPI_COMM_NULL. Since the error handler
of the MPI environment gets instructed to return all oc-
curring errors to the application level, the subsequent call
to MPI_Comm_rank() with a NULL communicator does
neither abort if the new communicator could not be found
in the external communicator definition, nor in the case that
the application was built without our library’s support. In
both cases, all calling processes will discover that they are
not part of MPI_COMM_RED. However, in the other case
of an adequately defined external communicator, the call-
ing processes will build the new communicator according
to its grouping definitions from the XML file right within
the faked MPI_Comm_rank() function. At this point it
should be emphasized that the creation of a new communi-
cator is a collective operation within the parent group. That
in turn means that even though they may become not part
of the new communicator group, all processes within the
parent group have to call the respective function.

For inter-communicators, all these descriptions can
be applied in a similar manner with the exception that
MPI_Comm_test_inter() is used as the communica-
tor building fake function:

if(MPI_Comm_test_inter(MPI_COMM_INTER,
&flag) == MPI_SUCCESS) && (flag))

{
/* inter-communicator created! */
. . .

}

And also in this case, the function must be called by all
processes within the parent communicator because it serves
as the so-called bridge communicator in MPI terms.

4 Application Examples

The examples presented here are derived from paral-
lel algorithms that perform so-called nearest neighbor ex-
changes of row and column halos from a 2D array [4, 10,
21]. We have chosen this communication pattern because it
is a common operation for domain decompositions applied
in parallel simulation applications. Such a decomposition
scheme is exemplarily shown in Figure 2, where 12 proces-
sors work on a 3 × 4 block partitioned domain. As one can
see, the resulting communication pattern is quite structured
since only directly neighboring pairs of processors are ex-
changing messages in a horizontal and vertical manner.

Proc 0 Proc 1

Proc 4 Proc 5

Proc 8 Proc 9

Proc 3

Proc 7

Proc 11

Halo Exchange

Proc 10

Figure 2. Domain Decomposition

A Top-Down Process Grouping According to this com-
munication pattern, the processes can obviously be arranged
into horizontal and vertical communicating subgroups as
quoted below:

Group Processes
Horizontal 0 0, 1, 2, 3
Horizontal 1 4, 5, 6, 7
Horizontal 2 8, 9, 10, 11

Group Processes
Vertical 0 0, 4, 8
Vertical 1 1, 5, 9
Vertical 2 2, 6, 10
Vertical 3 3, 7, 11

Of course, this simple grouping scheme can easily be im-
plemented inside an application, that means without deploy-
ing externally defined communicators. Nevertheless, exter-
nally defined communicators can still be useful here in order
to map the virtual topology (that is the algorithm’s commu-
nication pattern) onto the underlying (homogeneous) hard-
ware topology. If the underlying network is, for example, a
Cartesian mesh, then an optimal virtual to physical topol-
ogy mapping can be performed by placing the processes
onto the appropriate processors as denoted in Figure 3. In
this example, the processor names are composed of a tuple

that indicates the position (row and column) of a processor
in the mesh network. Thus, by creating the above process
groups according to this naming scheme , an ideal mapping
can be accomplished.

Proc 0 Proc 1 Proc 2 Proc 3

Proc 5 Proc 6 Proc 7Proc 4

Proc 8 Proc 9 Proc 10 Proc 11

pd−00 pd−01 pd−02 pd−03

pd−10 pd−13pd−11 pd−12

pd−20 pd−21 pd−22 pd−23

Figure 3. Process to Processor Mapping

When using externally defined communicators for that
purpose, just the following XML entries have to be supplied
with substituted x and y:

<comm name="MPI_COMM_HORIZONTAL_x">
<processor>pd-[x][0-3]</processor>

</comm>
<comm name="MPI_COMM_VERTICAL_y">
<processor>pd-[0-2][y]</processor>

</comm>

At this point it should be mentioned that the MPI topol-
ogy mechanism is exactly what the standard defines to over-
come this issue. In particular, the MPI_Cart_create()
function serves as an easy way to create a new communi-
cator with a Cartesian topology attached [10, 13]. Further-
more, an MPI implementation may reorder the processes
within this function call for a better performance. Unfor-
tunately, this reorder mechanism is only very rarely real-
ized in a beneficial way in common MPI implementations
[19, 18]. Since our library provides an explicit rank reorder-
ing determined on the basis of the processor names rep-
resenting the actual hardware topology, its utilization can
obviously be helpful if the respective MPI implementation
does not offer appropriate mapping facilities on its own.

An Example following the Bottom-Up-Approach As
already pointed out in the introduction, many heterogeneity-
aware MPI implementations provide the application pro-
grammer with additional adaptation features that should
support an appropriate process mapping onto the (mostly)
hierarchical physical topology. However, the realizations of
those features are usually not conforming to the standard
and, moreover, depend on the MPI implementation used.

That means that when adapting an application to a hierarchi-
cal topology by using the auxiliary features offered by a cer-
tain MPI implementation, the application becomes bound to
this particular environment. In fact, this issue was the ori-
gin of the work presented here since we were looking for
a portable way to specify hierarchical topologies in an MPI
convenient manner.

MPI_COMM_P4

PD−Cluster

MPI_COMM_WORLD

P4−Cluster

MPI_COMM_PD

Figure 4. Two Coupled Clusters

Assume the following two-tier hierarchical system con-
sisting of two coupled clusters in Figure 4. In such a cou-
pled system, the interlinking network between the clusters
obviously constituted the system’s bottleneck, whereas the
cluster internal connections are usually built up from dedi-
cated high performance interconnects. Hence, in order to
be able to forward messages along the inter-cluster link,
while still be able to benefit from the fast internal cluster
networks, an MPI implementation with multiple network
support needs to be applied. There exist a couple of multi-
network capable MPI implementations like Open MPI [9]
or MPICH/Madeleine [1] and special Grid-enabled MPI li-
braries like MPICH-G2 [12], PACX-MPI [3] and GridMPI
[14]. All of those libraries are proven to run large-scale ap-
plications and most of them offer an individual implemen-
tation of the above mentioned adaptation features.

However, at this point, an application programmer now
has the opportunity to abandon the use of those intrinsic fea-
tures by utilizing our approach of externally defined com-
municators that reflect the system’s hierarchy in a portable
way. Although in this case an additional communicator con-
figuration file needs to be supplied, this can be either stated
by a user who possesses the information about the hard-
ware structure, or this file can be generated by an automated
mechanism.

Currently, we have already implemented such a mech-
anism into the runtime environment of MetaMPICH [16],
a Grid-enabled MPI library that has also been developed
at our institute. MetaMPICH allows the user to config-
ure the coupled system in a very detailed way via so-called
meta-configurations that help to provide an explicit defini-
tion of each cluster involved. By extending such a meta-
configuration, it is now possible for the user to include an
additional communicator assignment into the configuration
in order to provide self-named MPI communicators repre-

senting the respective cluster sites. The following paragraph
shows an exemplary section of such a meta-configuration
that typically contains many more items than shown here,
as for example the types of the internal networks and the in-
formation about the interlinking topology between the sites.
For more information about MetaMPICH and the syntax of
its meta-configurations, please refer to [5].

METAHOST p4_cluster
{
NODES = p4-01,p4-02,p4-03,p4-04;
INTRACOMM = "MPI_COMM_P4";
. . .

}

METAHOST pd_cluster
{
NODES = pd-01,pd-02,pd-03,pd-04;
INTRACOMM = "MPI_COMM_PD";
. . .

}

CONNECTIONS
PAIR p4_cluster pd_cluster
- { INTERCOMM = "MPI_COMM_INTER" }
. . .

Although a meta-configuration is not coded in XML but
in a proprietary syntax, a designated parser, which is part
of the MetaMPICH runtime system, can read this configu-
ration and is able to setup the needed XML file containing
the desired communicator definitions. For that purpose, the
name and the path to the XML file are passed via environ-
ment variables to our library, whereas the runtime system of
MetaMPICH has to assure the accessibility of the generated
XML file on all relevant nodes. For the presented example,
the resulting XML file would look like the following:

<comm name="MPI_COMM_P4">
<processor>p4-01</processor>
<processor>p4-02</processor>
<processor>p4-03</processor>
<processor>p4-04</processor>

</comm>
<comm name="MPI_COMM_PD">

<processor>pd-01</processor>
<processor>pd-02</processor>
<processor>pd-03</processor>
<processor>pd-04</processor>

</comm>
<intercomm name="MPI_COMM_INTER">

<first>MPI_COMM_P4</first>
<second>MPI_COMM_PD</second>

</intercomm>

The user can, of course, choose arbitrary communicator
names representing the cluster sites. That way, it is possible

to adapt an application e.g. for a hierarchical system con-
sisting of two or more coupled sites without being bound
to any actual system. Moreover, since the creation of the
XML file may also be delegated to another instance than
MetaMPICH, as for example to a topology analyzing tool,
the application also becomes independent of the runtime en-
vironment in use.

PD−ClusterP4−Cluster

MPI_COMM_P4 MPI_COMM_PD

Figure 5. Application on Coupled Clusters

As a result, also the recently introduced application ex-
ample can easily be adapted to a hierarchical system as de-
noted in Figure 5. In this exemplary case, the domain is
partitioned into strips (columns) so that only two proces-
sors have to communicate across the inter-cluster link. For
that purpose, the processes can now be grouped by the cor-
responding intra-communicators representing their respec-
tive cluster sites, whereas an additional inter-communicator
can serve to handle the communication between the two
clusters. That way, an adaptation of the application to the
heterogeneous system can be achieved by applying a par-
tially synchronous relaxation scheme between the sites (in
this case, the inter-cluster halo exchanges are just performed
in a periodic manner), while sill being fully synchronous
within the clusters. By this means, the inter-cluster com-
munication bottleneck can be compensated by employing
accessory computing power in terms of additional iteration
steps. For more details about this adaptation and optimiza-
tion approach, please refer to [21, 2, 6].

5 Conclusions, Outlook and Related Work

In this paper, we have presented our approach to sim-
plifying the communicator creation for an MPI application
programmer without loosing the freedom of choosing an ar-
bitrary underlying MPI library on the one hand, and, more-
over, without breaking the applications’ source code porta-
bility and standard conformity on the other hand. By us-
ing XML, it is also possible that not the programmer him-
self needs to write the communicator configuration file, but,
given an appropriate plug-in, this can also be automatically
done, for example, by a process scheduler, by a topology

analyzing tool or even by the MPI runtime environment it-
self. Further application areas may be the automated and
standardized communicator definition by load balancers or
by domain decomposition tools that are able to provide
simulation applications with appropriate process grouping
schemes for a given problem to be solved on a certain sys-
tem.

Currently, we plan to develop a plug-in for the MP-
Cluma cluster management tool [17] that should allow the
user to compose the desired communicators in a very con-
venient way. MP-Cluma has also been developed at our in-
stitute in order to enable a uniform and comfortable startup
of MPI applications on heterogeneous systems. Since MP-
Cluma offers a Java-based graphical frontend to the user,
we want to include an intuitive drag-and-drop facility for
an easy grouping of processes. And, furthermore, since
MP-Cluma needs to collect information about the respec-
tive hardware environment, the inclusion of an additional
topology analyzer seems obvious.

There also exists some related work within this scope of
GUI-based handling of MPI artefacts like communicators
and MPI-related data types: VisualMPI [8] and BladeRun-
ner [7] are tools that help the user to program MPI appli-
cations by representing those data types in a visual and ab-
stract way. However, both projects focus rather on a semi-
automated code generation at development time of an MPI
application than on the mapping of communication patterns
at runtime, as we do.

References

[1] O. Aumage and G. Mercier. MPICH/MADIII: a Cluster
of Clusters Enabled MPI Implementation. In Proceedings
of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, May 2003.

[2] H. E. Bal, A. Plaat, M. G. Bakker, P. Dozy, and R. F. H.
Hofman. Optimizing Parallel Applications for Wide-Area
Clusters. In Proceedings of the IPPS/SPDP Workshops on
Parallel and Distributed Processing, Orlando, Florida, April
1998.

[3] T. Beisel, E. Gabriel, M. Resch, and R. Keller. Distributed
Computing in a Heterogeneous Computing Environment. In
Proceedings of the 5th European PVM/MPI Users’ Group
Meeting, September 1998.

[4] D. P. Bertsekas and J. N. Tsitsikilis. Parallel and Distributed
Computation: Numerical Methods. Prentice Hall, Engle-
wood Cliffs, N.J., 1989.

[5] Chair for Operating Systems, RWTH-Aachen, University.
MP-MPICH – User Documentation & Technical Notes.

[6] C. Clauss, S. Gsell, S. Lankes, and T. Bemmerl. A Fair
Benchmark for Evaluating the Latent Potential of Heteroge-
neous Coupled Clusters. In Proceedings of the 6th Inter-
national Symposium on Parallel and Distributed Computing
(ISPDC 2007), Hagenberg, Austria, July 2007.

[7] B. R. T. Donald P. Pazel. Intentional MPI Programming in
a Visual Development Environment. In Proceedings of the
2006 ACM symposium on Software visualization SoftVis ’06.
ACM Press, September 2006.

[8] D. Ferenc, J. Nabrzyski, M. Stroinski, and P. Wierzejewski.
VisualMPI - A Knowledge-Based System for Writing Effi-
cient MPI Applications. In Proceedings of the 6th European
PVM/MPI Users’ Group Meeting, volume 1697 of Lecture
Notes in Computer Science, Barcelona, Spain, September
1999.

[9] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Cas-
tain, G. Bosilca, and A. Lumsdaine. Open MPI: A High-
Performance, Heterogeneous MPI. In Proceedings of the
Fifth International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks,
Barcelona, Spain, September 2006.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - second
edition. Scientific and Engineering Computation series. MIT
Press, Cambridge, 1999.

[11] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Ad-
vanced Features of the Message Passing Interface. Scien-
tific and Engineering Computation series. MIT Press, Cam-
bridge, 1999.

[12] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 63(5), 2003.

[13] M. Snir, W. Otto, S. Huss-Lederman, D.W. Walker and
J. Dongarra. MPI: The Complete Reference. Scientific and
Engineering Computation Series. MIT Press, Cambridge,
1996.

[14] M. Matsuda, Y. Ishikawa, Y. Kaneo, and M. Edamoto.
Overview of the GridMPI Version 1.0. In Proceedings of
the SWoPP05, Japan, 2005.

[15] MPI Forum. MPI: A Message-Passing Interface Stan-
dard. International Journal of Supercomputing Applica-
tions, 1994.

[16] M. Pöppe, S. Schuch, and T. Bemmerl. A Message Pass-
ing Interface Library for Inhomogeneous Coupled Clus-
ters. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2003), Nice,
France, April 2003.

[17] S. Schuch and M. Pöppe. MP-Cluma - A CORBA Based
Cluster Management Tool. In Proceedings of the Inter-
national Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA 2004), Las Vegas,
USA, June 2004.

[18] R. Thakur and W. Gropp. Open Issues in MPI Implemen-
tation. In L. Choi, Y. Paek, and S. Cho, editors, Advances
in Computer Systems Architecture, 12th Asia-Pacific Con-
ference, ACSAC 2007, Seoul, Korea, August 23-25, 2007,
Proceedings, volume 4697 of Lecture Notes in Computer
Science, pages 327–338. Springer, 2007.

[19] J. L. Traff. Implementing the MPI Process Topology Mech-
anism. In Proceedings of the IEEE ACM SC 2002 Confer-
ence, Baltimore, USA, November 2002.

[20] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edi-
tion). http://www.w3.org/TR/xml/, September 2006.

[21] B. Wilkinson and M. Allen. Parallel Programming - Tech-
niques and Applications Using Networked Workstations and
Parallel Computers. Prentice Hall, 2nd edition, 2005.

