
MPIXternal: A Library for a Portable Adjustment of
Parallel MPI Applications to Heterogeneous Environments

Carsten Clauss, Stefan Lankes, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
{clauss, lankes, bemmerl}@lfbs.rwth-aachen.de

Abstract

Nowadays, common systems in the area of high perfor-
mance computing exhibit highly hierarchical architectures.
As a result, achieving satisfactory application performance
demands an adaptation of the respective parallel algorithm
to such systems. This, in turn, requires knowledge about
the actual hardware structure even at the application level.
However, the prevalent Message Passing Interface (MPI)
standard (at least in its current version 2.1) intentionally
hides heterogeneity from the application programmer in or-
der to assure portability. In this paper, we introduce the
MPIXternal library which tries to circumvent this obvious
semantic gap within the current MPI standard. For this pur-
pose, the library offers the programmer additional features
that should help to adapt applications to today’s hierarchi-
cal systems in a convenient and portable way.

1. Introduction

Today, hierarchical hardware architectures have become
prevalent in the area of high-performance computing. Ex-
amples range from Grid-related wide-area computing and
cluster-of-clusters, through ccNUMA systems and NoRMA
clusters with shared-memory nodes, to multi-core-related
cache level hierarchies. If one wants to exploit such sys-
tems at their best, an adaptation of the parallel algorithms
to the respective hardware structure becomes inevitable, be-
cause otherwise the system’s bottlenecks (e.g. in terms of
communication) will limit the overall performance. Thus,
a likewisehierarchicalalgorithm design will accommodate
such systems. This design approach seeks to consolidate
information at different levels of the hardware hierarchy in
order to reduce the message traffic and to avoid the con-
gestion of bottlenecks [7]. As a result, this approach for
optimization requires knowledge about the respective hard-
ware structure either within the application and/or insidethe

communication library, as for example within an MPI im-
plementation [12].

In order to assure portability, the MPI standard inten-
tionally hides the actual hardware structure from the appli-
cation programmer, at least in its current version 2.1 [9].
Due to this, it should be the responsibility of every MPI
implementation to exploit the underlying target system as
efficiently as possible [14]. However, in doing so, the MPI
runtime system would have to be aware of the properties of
the actual parallel algorithm. Although the standard offers
such a notifying mechanism in terms of the so-calledpro-
cess topologies, for various reasons, thistop-down-related
approach is not realized in most common MPI applications,
as well as not implemented beneficially in most common
MPI libraries. For that reason, many heterogeneity-aware
MPI implementations provide the application programmer
with additional adaptation features that follow abottom-up
approach. This means that these MPI implementations offer
non-standard-conforming methods for passing hardware-
related information up to the application level. At this point,
a semantic gap in the current MPI standard concerning to-
day’s hierarchical systems becomes obvious: Since an MPI
implementation cannot handle the adaptation of parallel al-
gorithms to the target systems, the application programmer
has to perform this, though lacking standard-conforming
methods.

In this paper, we introduce a new additional library,
called MPIXternal, that attempts to circumvent this seman-
tic gap by providing programmers and users with additional
features for supporting the optimization-related flow of in-
formation in both directions: up to the application as well
as down to the respective MPI implementation. This is
achieved by giving the programmer the ability to introduce
hierarchy-awareness into the application, while the respec-
tive semantic of this awareness can be adjusted to each tar-
get environment by the user via an XML-coded configura-
tion file. Figure 1 should illustrate this approach.

The remainder of the paper is organized as follows: First,
we will discuss some useful extensions to thecommunicator



Application

MPIXternal

Hardware

MPI library

C
on

fig
ur

at
io

n 
F

ile

Top−Down

Bottom−Up

XML

Figure 1. MPIXternal in the Layer Model

and attribute concept of MPI according to thebottom-up
approach. Then, we will focus on topology mapping, as it
is also provided by the MPI’s process topology mechanism,
and then go on to discuss how our library can accommodate
its utilization in both directions. Finally, a brief summary
and some prospects for the future conclude the paper.

2. Predefined MPI Communicators

An important feature of the Message Passing Interface
is the communicator concept. This concept allows the ap-
plication programmer to group the parallel processes by as-
signing them to abstract objects calledcommunicators. For
that purpose, the programmer can split the group of initially
started processes into sub-groups, each forming a new self-
contained communication domain. This concept usually
follows the top-downapproach where the process groups
are built according to the communication patterns required
by the parallelized algorithm.

2.1 Heterogeneity-aware MPI

However, this grouping concept can also be exploited in
heterogeneous environments in order to group the processes
according to a given hardware hierarchy. Although the im-
plementation of such a hardware-oriented splitting proce-
dure can also be done at the application level, it is usually
not a good idea to burden the application programmer with
this issue. This is because otherwise the programmer finds
himself/herself faced with the task of inquiring explicitly af-
ter all needed environmental information (e.g. by querying
the respective hostnames) and assuring the determination of
an appropriate splitting scheme on her/his own.

For this reason, heterogeneity-aware MPI implemen-
tations usually accommodate the application programmer
with additional predefined MPI communicators with group
affiliations reflecting the actual hardware structure. Thus,
by providing such additional communicators, an MPI im-
plementation offers the programmer an adaptation feature
following the bottom-upapproach, where the topology in-
formation is passed via the MPI layer up to the applica-
tion level in an abstracted manner. Although the applica-
tion must still be written to be heterogeneity-aware in terms
of utilizing those additional communicators, the application
programmer is absolved from dealing with tangible hard-
ware characteristics like hostnames, for example.

On the other hand, the MPI standard (at least in its cur-
rent version 2.1) does not specify any other valid predefined
communicators than the commonMPI_COMM_WORLD and
MPI_COMM_SELF. That means that heterogeneity-aware
MPI implementations which provide such adaptation fea-
tures of additional communicators are moving beyond the
standard. This in turn means that an MPI application which
makes use of such a feature becomes tied to this implemen-
tation and thus becomes less portable.

Cluster "bar"Cluster "foo"
MPI_COMM_INTER

MPI_COMM_WORLD

MPI_COMM_ATMOSMPI_COMM_OCEAN

01

02

00

01

03 00

0302

Figure 2. Two Linked Clusters

2.2 The MPIXternal Library

For that reason, and as already mentioned in the intro-
duction, we have developed a new library that allows an
application programmer to develop heterogeneity-aware ap-
plications without the need of relying on non-portable opti-
mization features provided by a particular MPI implementa-
tion. This is accomplished by introducing a new and gener-
alized approach for predefined MPI communicators whose
semantics are specified externally within a suitable XML-
coded configuration file. For this purpose, the library pro-
vides a special function that expects a reference to an unini-
tialized MPI communicator object as well as the name of
this object. By means of this passed communicator name,
the function can then look up a table containing the descrip-
tions of all previously defined communicators being spec-
ified within the external configuration file. If an inquired
communicator can be found in this table, each calling pro-



cess checks whether it takes part in this predefined commu-
nicator or not. This identification can be done by means of
comparing the ownprocessor name(as returned by an inter-
nal call to theMPI_Get_processor_name() function)
against a list of node names associated with that communi-
cator. Afterwards, all included processes will build the in-
quired communicator, whereas the non-included ones will
report their absence in reference to that new communicator.

2.3 An External Configuration File

For purposes of illustration, consider the example in
Listing 1 and the associated Figure 2 of a communica-
tor configuration which may be written for acoupled-
code simulation on a hierarchical system consisting of
two linked clusters. Here, the first communicator, named
MPI_COMM_OCEAN, should cover all processes running
on nodes belonging to a cluster namedfoo. This
can be achieved by matching the hostnames against the
stated cluster name (which is in fact a regular expres-
sion) because in this example it is assumed that the node
names of the two clusters are composed in a simple
cluster_name:node_name manner.

<comm name="MPI_COMM_OCEAN">
<attribute key="DEPTH" value="3.8km"/>
<cluster name="foo">
<attribute key="CPU_SPEED" value="2.2"/>

</cluster>
</comm>

<comm name="MPI_COMM_ATMOS">
<attribute key="PRESSURE" value="101.325kPa"/>
<node name="bar:00">
<attribute key="CPU_SPEED" value="2.0"/>

</node>
<node name="bar:01>
<attribute key="CPU_SPEED" value="2.2"/>

</node>
<node name="bar:02">
<attribute key="CPU_SPEED" value="1.8"/>

</node>
<node name="bar:03">
<attribute key="CPU_SPEED" value="2.0"/>

</node>
</comm>

<intercomm name="MPI_COMM_INTER">
<first> MPI_COMM_OCEAN </fisrt>
<second> MPI_COMM_ATMOS </second>

</intercomm>

Listing 1. Example Configuration

However, the second communicator in this example
(MPI_COMM_ATMOS) is configured for containing just
those processes running on the explicitly stated nodes
bar:00 up to bar:03. Thus, both the types of nota-
tion are supported by MPIXternal. In addition, alsointer-

communicators, as they are defined by the MPI standard for
communication betweenremotegroups of processes, can
easily be specified within the external configuration file, as
shown here in Listing 1 forMPI_COMM_INTER.

The relocation of the communicator definitions into an
external configuration file offers several advantages and op-
portunities. For example, the application does not need to
be recompiled if the desired grouping scheme or the pro-
cessor names have changed. Furthermore, the configuration
does not necessarily need to be written by a user or an ap-
plication programmer. In fact, the XML file containing the
communicator definitions can be generated, for example, by
a process scheduler, by a topology analyzing tool or even by
the MPI runtime environment itself.

2.4 Usage at Application Level

As already mentioned, the MPIXternal library (that
can be used in addition to any MPI library) provides
new and additional functions that aim to extend the MPI
standard by the feature of externally adjustable seman-
tics for MPI objects like communicators. An example
for utilizing this feature at application level is shown
in Listing 2, where an externally defined communicator
(MPI_COMM_OCEAN) is built by a call to such a new func-
tion, namelyMPIX_Comm_external().

#define MPIX_Comm_external_(a,b) \
MPIX_Comm_external(&a,#a,b)

#define MPIX_Keyval_external_(a,b) \
MPIX_Keyval_external(&a,#a,b)

MPI_Comm MPI_COMM_OCEAN = MPI_COMM_NULL;
MPIX_Comm_external_(MPI_COMM_OCEAN, &flag);

if (flag) {
/* I am part of MPI_COMM_OCEAN! */

int DEPTH = 0;
MPIX_Keyval_external_(DEPTH, &flag);

if (flag) {
/* Found attribute key for "DEPTH"! */

char* value = NULL;
MPI_Attr_get(MPI_COMM_OCEAN, DEPTH,

&value, &flag);

if (flag) {
/* Got attribute value for "DEPTH"! */

printf("Ocean is %s deep.\n", value);
. . .

Listing 2. Usage at Application Level

One may argue that using this extending API would
cause the respective application to become tied to our ad-



ditional library, just like when using other non-portable op-
timization features. However, first of all, our solution is in-
dependent from the kind of the underlying MPI implemen-
tation, and that in turn means that our approach is portable
in such a way that it can be applied in any system provid-
ing an MPI runtime environment. Secondly, as we have
already described in a former publication (see [4]), it is fea-
sible that even when using our additional library, an appli-
cation can still be written in a standard-conforming manner.
For this purpose, our library offers two APIs: one that pro-
vides new functions (and which are therefore not standard-
conforming) and one that covers common MPI function
calls in such a manner that the externally defined seman-
tics are attached in atransparentway. However, to simplify
matters, we will focus on the former case of the new and
additional API in the remainder of this paper.

3. MPI Attributes and Info Objects

Another frequently used way for passing environmental
information from an MPI implementation to the application
level is to utilize so-calledattributes. In terms of MPI, such
attributes belong to a ”caching” facility provided by the re-
spective MPI implementation that allows an application to
attach arbitrary pieces of information to MPI objects like
communicators (see [9], p.221). Even though this facility
has not been introduced to the standard with the actual in-
tent of passing environmental information from an MPI im-
plementation to an application, it still can be exploited for
that purpose, for example by attaching additionalpredefined
attributes toMPI_COMM_WORLD. In fact, even the standard
defines a set of such predefined attributes that describe the
actual execution environment of an MPI job. Furthermore,
the standard also suggests that MPI vendors may add their
own implementation specific attributes to this set (see [9],
p.260). However, since the symbol names of such addi-
tional attributes are set at the compile time of the respec-
tive library, using them at the application level is not very
portable.

For this reason, we have extended our library with the
ability to attachself-predefinedattributes to all externally
defined communicators (and even toMPI_COMM_WORLD).
That way, an application programmer can inquire after the
values of those attributes via the functionalities provided by
MPIXternal in an MPI implementation independent man-
ner, whereas the application user is able to adjust the actual
values to each respective environment later on. Moreover,
the user can also exploit this mechanism in order to pass
job-dependent parameters to the application in a topology-
and group-oriented manner.

For illustration purposes, please consider Listing 1 and
Listing 2 once again. As one can see, attribute keys and
values are stated asstrings in the configuration file. In

contrast to this, the attribute retrieve functions of MPI
(MPI_Attr_get(), or MPI_Comm_get_attr() in
the case of MPI-2) expect a uniqueintegervalue identifying
the respective attribute and returnvoid-pointers to arbitrary
data types. As a result, a prior attribute initialization via
a call ofMPIX_Keyval_external() becomes neces-
sary, while the later returned value should be interpreted as
a pointer to the stated value in the form of astring.

A further caching mechanism that has become available
along with the MPI-2 standard is formed in terms of the so-
called MPI info objects (see [9], pp.287ff). In contrast to
MPI attributes, such an info object stores an unordered set
of strings, each retrievable by an also string-coded key. For
that reason, this mechanism may also be a practical way for
passing runtime information to the application level in the
form of such key/value-pairs. However, the normal usage of
such info objects is to pass information in the other direc-
tion according to thetop-downapproach. That means that
these objects have been introduced into the standard in or-
der to provide MPI implementations with more information
about the actual needs of the current application. Never-
theless, the other way around is also possible, and because
of this, our library also supports an external predefinition
of such info objects. Additionally, our implementation also
provides a conversion feature that allows a programmer to
demerge such an info object from the attributes of a com-
municator, and vice versa. However, since the usage of info
objects instead of attributes is quite similar within the con-
text of our library, we do not provide any code examples
here.

4. Rank Reordering and Topology Mapping

In this section, we will focus on another important aspect
in heterogeneous environments:rank-reorderingin terms of
topology mapping. This technique arises from the fact that
in many parallel applications a linear ranking order of the
processes does not adequately reflect their actual communi-
cation patterns. However, when splitting an existing com-
municator into separated sub-groups, the initial ranking or-
der of the processes does not necessarily need to be retained.
Particularly in the case of a hardware topology that still ex-
hibits an non-homogeneous (or at least a highly structured)
nature even within the separated process groups, an appro-
priated rank adjustment during the splitting procedure can
lead to an improved communication performance. In order
to clarify this, we take a second look at Figure 2 showing
the two linked clusters, each built up in the form of aring
network. In the case of an application with a communica-
tion pattern that is characterized by a strictlyneighbor-to-
neighborcorrelation, the placement of immediate neighbors
on directly linked network nodes may be a good mapping
scheme in order to avoid unnecessary network contention.



At this point it should be mentioned that the MPI stan-
dard offers this kind of mapping feature in terms of the
process topology mechanismwhich follows thetop-down
approach (see [9], p.241ff). This means that the applica-
tion programmer has to specify the respective communica-
tion pattern of an algorithm e.g. in terms of an unweighted
graph (the so-calledvirtual topology) that then can be used
by the MPI runtime system to find a good rank mapping
onto the physical hardware topology. However, this gen-
eralized mechanism has neither been considered in many
MPI applications nor has it been implemented beneficially
in many common MPI implementations [14]. Actually, this
mechanism is often just implemented in the most trivial way
while simply ignoring the optional topology information.

4.1 Explicit Rank-Reordering

For this reason, we have also added anexplicit rank-
reordering feature to the MPIXternal library that can help to
circumvent such a semantic gap between an algorithm’s vir-
tual topology and the topology of the underlying hardware.
This is achieved by giving the user the ability to specify
explicit rank-reordering schemes within the external con-
figuration file according to thebottom-upmanner. In do-
ing so, whenever a new and externally defined communica-
tor is created, an appropriate process-to-processor mapping
can be enforced by the user for the resulting sub-group of
processes. However, applying such an appropriate mapping
scheme demands that the user is aware of both the physical
as well as the virtual topology. While the actual hardware
topology should usually be known by the user (or at least
by the system’s administrator), the logical communication
pattern of a certain algorithm can easily be determined by
applying profiling tools such asMPE/Jumpshot, KOJAK or
the Intel Trace AnalyzerTM (formerly known asVAMPIR)
[1, 10, 11].

<comm name="MPI_COMM_OCEAN">
<cluster name="foo"/>
<reorder expr="(NAMERANK*2)%(COMMSIZE-1)"/>

</comm>

<comm name="MPI_COMM_ATMOS">
<node name="bar:00" reorder="0"/>
<node name="bar:01" reorder="1"/>
<node name="bar:02" reorder="3"/>
<node name="bar:03" reorder="2"/>

</comm>

Listing 3. Rank-Reordering Example

Listing 3 shows an example configuration for this kind
of user-defined rank-reordering scheme, tailored to the sub-
topologies of the two linked ring networks, as shown in Fig-
ure 2. Here, again, the hostnames can serve for considering

the hardware topology, while the actual remapping is per-
formed during the splitting procedure of the parent com-
municator (MPI_COMM_WORLD) into the two stated sub-
communicators. As before, all nodes of clusterbar are
stated explicitly within the configuration and also the new
ranks are stated explicitly, whereas for clusterfoo, the
new ranks are determined by means of anexpressionto be
evaluated by each respective process at runtime. As one
can see, MPIXternal supports the substitution of variable
names such asNAMERANK (representing the alphabetical
order of each processor name within the new communica-
tor) or COMMSIZE (representing the number of processes
within the new communicator) for the evaluation of such
expressions. Additionally, further variables are supported
for addressingworld andparent rank, as well as forworld
andparent size, respectively.

4.2 Stating Virtual Topologies

At this point one may argue that it is the responsibil-
ity of the MPI implementation to assure a proper process-
to-processor mapping rather than being the user’s liability.
Nevertheless, even in the case of an MPI library being ca-
pable of applying a beneficial mapping scheme (based on
the topology mechanism), the respective application also
has to provide its virtual topology information to the im-
plementation in order to gain an improved communica-
tion performance. Thus, in reality, it seems that usually at
least one of these two counterparts (and oftentimes both)
lacks the needed support for conducting a convenient rank-
reordering.

<comm name="MPI_COMM_OCEAN">
<cluster name="foo" />
<topology type="virtual" reorder="true">
<edge>
<first rank="3"/> <second rank="2"/>

</edge>
<edge>
<first rank="2"/> <second rank="1"/>

</edge>
<edge>
<first rank="1"/> <second rank="0"/>

</edge>
</topology>

</comm>

<comm name="MPI_COMM_ATMOS">
<cluster name="bar" />
<topology type="virtual" reorder="true">
<edge>
<first expr=" COMMRANK " />
<second expr="(COMMRANK-1)*(COMMRANK>0)"/>

</edge>
</topology>

</comm>

Listing 4. Stating Virtual Topologies



Therefore, besides applying explicit rank reordering
schemes, MPIXternal also allows attaching virtual topolo-
gies, just similar to attributes, to all externally defined com-
municators (and even toMPI_COMM_WORLD). For this pur-
pose, the user can state such topologies within the exter-
nal configuration file in terms of unweighted graphs. In
this way, the user can supply the runtime system with the
needed virtual topology information even in the uncom-
mon case where the respective MPI implementation sup-
ports topology-aware rank-reordering, whereas a given ap-
plication does not utilize the MPI’s corresponding topology
mechanism.

Listing 4 shows an example configuration for such exter-
nally attached virtual topologies. As one can see, the edges
of such topologies also can be described bothexplicitly (by
stating from- and to-ranks) as well asimplicitly (by stat-
ing appropriateexpressions) within a configuration. In this
example, each of the two stated topologies just describes
an application’s communication pattern which exhibits a
strictly neighbor-to-neighborcharacteristic. At this point
it should be mentioned that afirst-to-secondedge does not
imply a direction of the communication and that self-loops
are allowed but ignored (see also [9], p.247).

At application level, the reordering mechanism is
triggered during the creation procedure of each ex-
ternally defined communicator (by an internal call of
MPI_Graph_map()), provided thatreorder=true
is set within the configuration. However, since the
ranks of an already existing communicator cannot be
reordered afterwards, in the case of the invariably
MPI_COMM_WORLD, rank reordering must be performed
by creating and using a correspondingclonecommunicator
(e.g.MPI_COMM_REMAP) instead.

4.3 Patching the Topology Mechanism

As already mentioned, stating a virtual topology can only
be beneficial if the underlying MPI runtime system has the
ability to utilize this information with the objective of deter-
mining an appropriate mapping scheme for the processes.
Since many MPI implementations do not support such an
automated mapping feature, we want to introduce our own
approach for doing so in this subsection.

The general mapping problem is to find an embedding
of a stated virtual topology into the physical topology of the
underlying network so that communication costs become
minimal. Although this problem is NP-complete, a number
of good heuristics exist [8] that can help to yield nearly op-
timal results within a tolerable amount of time. However,
selecting and applying a certain heuristic demands at least
knowledge of the respective hardware topology in terms of
a weighted (or even unweighted) graph. For this reason,
an MPI runtime system would have to be notified about this

graph, but common MPI implementations usually do not of-
fer suitable mechanisms for doing so. Therefore, we have
added such a facility to MPIXternal in order to give the user
the ability also to describe the actual physical topology. Of
course, justdescribingthe hardware structures does not au-
tomatically lead to a good embedding scheme. Initially, an
appropriate mapping algorithm has to solve the given map-
ping problem within the MPIXternal layer. However, at this
point, we have to deal with a trade-off between the solu-
tion’s quality and the solving time invested. The MPI stan-
dard does not specify how much time an implementation
should spend on finding a good solution, since the applica-
tion programmer and/or the user know(s) how much time
could be beneficial in a given situation.

2 4 8 16 32 64 128
Number of Nodes

1

2

4

8

16

32

64

128

N
um

be
r 

of
 M

at
ch

in
g 

E
dg

es

Figure 3. Mapping a Ring onto a Ring

<comm name="MPI_COMM_REMAP">
. . .

<topology type="physical" timeout="1">
<cluster name="foo"/>
<cluster name="bar"/>
<edge>
<first node="foo:03"/>
<second node="bar:00"/>

</edge>
<edge>
<first node="foo:02"/>
<second node="bar:01"/>

</edge>
</topology>

Listing 5. Stating Physical Topologies

To keep it generic, we have decided not to use a cer-
tain heuristic but to base our mapping algorithm on atime-
bounded brute-forcemethod. This means that the user can
specify how much time he or she is willing to spend on find-
ing a good mapping scheme and that the best solution found
by then will be applied afterwards. Therefore, our mapping
algorithm follows arandom-based best-fitstrategy, which
means that within the brute-force search for a good solu-
tion, mappings of processes onto nodes with an identical or



at least similar number of edges are preferred. Additionally,
this search is performed in parallel by all physical proces-
sors involved, each using a different random seed, in order
to boost the search progress. Figure 3 shows exemplary re-
sults for aring-to-ringmapping problem, determined within
a timeout ofone secondby our brute-force algorithm. In
this graph, the number of well-matching edges is plotted
over the number of nodes used. As one can see, the algo-
rithm can yield good mapping results especially for small
but manageable numbers. However, for bigger and/or more
complex systems, a heuristic tailored to the respective hard-
ware topology could (and should) be provided by the re-
spective user.

5. Some Selected Results

As already stated in the introduction, in case of hetero-
geneous environments, it becomes inevitable to adapt appli-
cations to the respective hardware structures. Especiallyin
hierarchical systems, process grouping (e.g. by using MPI
communicators) according to the respective hierarchy lev-
els can be a practicable method for accommodating the sys-
tem’s nature. The performance impact of application op-
timization by applying such appropriate grouping schemes
has already been studied in prior work [5, 3, 4, 2]. There-
fore, for the scope of this paper, we will focus the evaluation
here on the reordering techniques described in the former
section.

For this evaluation, we have set up a synthetic hetero-
geneous environment, consisting of eight nodes which are
linked together by alittle uncommontopology, as shown in
Figure 4. This topology can, for example, be understood
as two clusters (each internally equipped with a high-speed
cluster network) that are coupled by applying additional
gatewayconnections.

1 6

4

5

7

World Ranks

0 3

2

Cluster "bar"Cluster "foo"

MPI_COMM_WORLD

01

00 03

0201

00 03

02

Figure 4. Topology Testing Environment

For building this testing environment, we have used a
homogeneous cluster that features Gigabit-Ethernet as well
as standard (Fast-) Ethernet. Therefore, we have config-
ured the MPI runtime system to use Gigabit-Ethernet only
between those pairs of processes which are directly linked
by an edge within the hardware topology of Figure 5. Al-

0

1

3

2

4

5

7

6

Hardware Topology

4

0 1

5 6

2 3

7
4

0 1

5 6

2 3

7

LU MG

Figure 5. Physical and Virtual Topologies

though all processes are still able to communicate to all the
others via standard Ethernet, only pairs of processes on such
directly connected nodes may benefit from communicating
along the faster Gigabit-Ethernet connections.

The parallel application to be adjusted to this heteroge-
neous environment is emulated by two selected kernel al-
gorithms of theNumerical Aerodynamic Simulation(NAS)
benchmark suite [6], namely the LU (Lower/Upper trian-
gular solver) and the MG (Multi-Grid-based 3D Poisson
solver) benchmark. The communication patterns for these
algorithms, as they can be determined e.g. via profiling, can
be approximated for eight processes by the virtual topolo-
gies as shown in the lower part of Figure 5. As one can see,
the pattern of the LU benchmark can obviously be embed-
ded into the physical topology of our testing environment in
an optimal way. Thus, when applying an appropriate rank-
reordering, an improvement of the parallel performance of
this algorithm can be assumed. In order to check this as-
sumption, we have stated both the physical as well as the
LU’s virtual topology within an MPIXternal-related config-
uration file (Listing 5 shows an excerpt) and have just re-
placed all occurrences ofMPI_COMM_WORLD by the exter-
nally definedMPI_COMM_REMAP in the respective source
codes.

The charts in Figure 6 shows the measured performance
results in terms of the gained speedups. For comparability,
we have measured the runtime once for the direct mapped
case (that means that no rank adjustment has been applied)
and once for the case of reordered ranks, as they are de-
termined by our mapping algorithm. Furthermore, we have
also measured the runtime for the homogeneous case of a
pure Gigabit-Ethernet cluster, and for a pure Fast-Ethernet
cluster, respectively.

While the results for the LU benchmark confirm that the
applied rank-reordering leads to a significant performance
improvement (the gained speedup is here nearly identical
to that of the homogeneous Gigbit case), remapping does
not seem to be very worthwhile for the MG benchmark, at



least in this test environment. The reason for this is the fact
that the virtual topology of the MG algorithm is not per-
fectly embeddable into our simulated hardware topology.
In fact, even when checking all possible mapping schemes,
there will always be at least two communication-intense
pairs of neighbors left that can no longer be mapped onto
suitable connected nodes. As a result, the slow communi-
cation between these nodes dominates the overall parallel
performance and this is why the rank-remapping is not very
beneficial in this scenario.

Figure 6. Measured Speedups for 8 Nodes

6. Conclusions

In this paper, we have presented our approach to accom-
modate the gap between today’s hierarchical parallel com-
puting systems and the flat non-hierarchical programming
model of the current MPI standard. We have also shown
that there are already existing facilities within the current
standard (e.g. in terms of communicators) that have the
ability to support a likewise hierarchical algorithm design.
However, since the standard consciously hides heterogene-
ity, it is quite difficult for an application programmer to
inquire into the needed information about the actual hard-
ware structure in a convenient and portable way. As a re-
sult of this, we have introduced MPIXternal, our additional
library, that allows the programmer to introduce hierarchy-
awareness into the application, whereas the respective user
can adjust this awareness to the actual target system later on.
We have explained how this library can be utilized for pro-
viding optimization-related information according to both
thetop-downand thebottom-upapproach.

Finally, it should be mentioned that the introduction of
hierarchy-awareness has already been discussed during the
standardization procedure of MPI-2.0 in terms ofcluster
attributes [13]. However, the current standard still lacks
a portable optimization features for hierarchical systems.
Nevertheless, the MPI-3 forum has fortunately announced
that it will address this issue in the near future and, perhaps,

our work may contribute some helpful suggestions to this
discussion.

References

[1] A. Barak, S. Guday, and R. Laor. The MPE Toolkit for
Supporting Distributed Applications.Cuncurrency: Prac-
tice and Experience, 4(6):459–480, September 1992.

[2] D. Becker, W. Frings, and F. Wolf. Performance Evaluation
and Optimization of Metacomputing Applications. InPro-
ceedings of the 3rd Workshop on Communication in Cluster-
and Grid-Systems (KiCC), RWTH Aachen University, Ger-
many, December 2007.

[3] C. Clauss, S. Gsell, S. Lankes, and T. Bemmerl. A Fair
Benchmark for Evaluating the Latent Potential of Heteroge-
neous Coupled Clusters. InProceedings of the 6th Interna-
tional Symposium on Parallel and Distributed Computing,
Hagenberg, Austria, July 2007. IEEE CS Press.

[4] C. Clauss, S. Gsell, S. Lankes, and T. Bemmerl. An Ap-
proach for Deploying Externally Defined MPI Communi-
cators at Runtime. InProceedings of the 3rd Workshop
on Communication in Cluster- and Grid-Systems (KiCC),
RWTH Aachen University, Germany, December 2007.

[5] C. Clauss, M. P̈oppe, and T. Bemmerl. Optimising MPI Ap-
plications for Heterogeneous Coupled Clusters. InProceed-
ings of the International Conference on Parallel Comput-
ing in Electrical Engineering, Dresden, Germany, Septem-
ber 2004. IEEE CS Press.

[6] D. Bailey et al. The NAS Parallel Benchmarks. Technical
Report RNR-91-002, NAS Systems Division, January 1991.

[7] A. Geist. MPI Must Evolve or Die. In15th European
PVM/MPI Users’ Group Meeting, volume 5205 ofLNCS.
Springer, September 2008.

[8] O. Krämer and H. M̈uhlenbein. Mapping Strategies in
Message-based Multiprocessor Systems.Parallel Comput-
ing, 9(2):213–225, January 1989.

[9] Message Passing Interface Forum.MPI: A Message-
Passing Interface Standard – Version 2.1. High-Perfomance
Computing Center (HLRS), Stuttgart, Germany, September
2008.

[10] B. Mohr and F. Wolf. KOJAK: A Tool Set for Automatic
Performance Analysis of Parallel Programs. InProcess-
ing of the 9th International Parallel Processing Conference
(Euro-Par’03), volume 2790 ofLNCS, Klagenfurt, Austria,
August 2003. Springer.

[11] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and Analysis
of MPI Resources.Supercomputer, 12(1):69–80, January
1996.

[12] R. Rabenseifner. Some Aspects of Message-Passing on Fu-
ture Hybrid Systems. In15th European PVM/MPI Users’
Group Meeting, volume 5205 ofLNCS. Springer, Septem-
ber 2008.

[13] The Message Passing Interface Forum. MPI-2 Journal of
Development. Technical report, , 1997.

[14] J. L. Tr̈aff. Implementing the MPI Process Topology Mech-
anism. InProceedings of the IEEE ACM SC 2002 Confer-
ence, Baltimore, USA, November 2002. IEEE CS Press.


