
Design of a Real-Time CORBA Event Service
customised for the CAN Bus

Rainer Finocchiaro, Stefan Lankes, Andreas Jabs
Lehrstuhl für Betriebssysteme,

RWTH Aachen, Kopernikusstr. 16,
52056 Aachen, Germany

E-mail: {rainer, stefan, jabs}@lfbs.rwth-aachen.de

Abstract

Real-Time Corba and minimumCORBA are the founda-
tions many so called distributed real-time embedded (DRE)
systems are built upon. These specifications describe mid-
dleware suitable for connecting different parts of a complex
embedded system. Efficient group based communication in
such a system can be achieved by using the Event Service.
This article focuses on the design of such a service comply-
ing to the OMG Event Service standard. It is optimised for
the CAN bus, a widely used interconnect, where real-time
characteristics are a requirement. A new protocol for the
efficient distribution of events in a CAN-based distributed
control system is presented, a protocol which is tailored to
the CAN bus and produces very low overhead by utilising
CAN-specific features.

Keywords: Real-Time CORBA, Controller Area Net-
work (CAN), distributed real-time embedded (DRE) appli-
cations, Event Service

1 Introduction

Control systems in automotive, manufacturing and
aerospace industries have to fulfill tasks of increasing com-
plexity. All these systems provide growing safety and com-
fort functionality. For example, today, more and more au-
tomobiles are equipped with safety systems like ABS (Anti
Blocking System), ESD (Electronic Skid Detection), auto-
matic gearboxes, systems ensuring the correct distance to
the surrounding traffic, and comfort utilities like multime-
dia systems and air conditioning.

In oder to implement these systems in a cost-effective
way, small specialised and inexpensive functional units,
such as sensors, actuators, and processing units, are com-
bined into a distributed system. This distributed approach is

furthermore preferred over a setup of a single highly pow-
erful general purpose computing unit, as it facilitates imple-
mentation of fault tolerance.

Unfortunately, this distribution of functional units comes
at a cost: development of software for distributed systems
is inherently more complex than it is for centralised sys-
tems. To cope with this increasing software complexity and
to facilitate programming of distributed systems in general,
middleware has been developed.

General purpose middleware like CORBA, Java/RMI
and DCOM has some drawbacks when used in Distributed
Real-time Embedded (DRE) systems [14]: it usually has
a high memory footprint (some Object Request Brokers
(ORB) require several megabytes of memory) and offers
poor real-time functionality. To address these problems,
ROFES - a real-time CORBA ORB for DRE systems (see
http://www.rofes.de) - has been developed at the Chair of
Operating Systems [6]. The ORB itself enables point-to-
point communication between remote objects. Communi-
cation in distributed systems that predominantly exchange
sensor data is rarely limited to two communication partners.
Often, a varying number of functional units is interested in
data from a varying number of sensors. Point-to-point com-
munication badly represents the needs of the above men-
tioned systems. A more decoupled communication scheme,
where producers and consumers of data do not have to know
about each other, is provided by the CORBA Event Service
[9].

This article elaborates on an implementation of the
CORBA Event Service specification, which is customised
for operation over the CAN bus (Controller Area Network)
[1]. The CAN bus is a widely-used real-time control net-
work that features broadcasting as its native addressing
scheme. This implementation of the Event Service makes
extensive use of the CAN bus features in order to provide
real-time characteristics and allow resource conscious de-
livering of event data from producers to consumers.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

The article is organised as follows: Section 2 briefly in-
troduces the technical background and terminology. Section
3 presents the actual implementation of our Event Service,
while section 4 gives more detail about the protocol used
for communicating events over the CAN bus. Section 6
concludes the status of the developed implementation of the
Event Service and gives an outlook into future extensions.

2 Technical Background

2.1 Basic CAN Features

The Controller Area Network (CAN[12]) is an ISO de-
fined serial communication bus. It was originally developed
during the 80’s by Robert Bosch GmbH for the automotive
industry. Because of its robustness against all electric influ-
ences and its error detection capability, it is widely used in
automotive, manufacturing and aerospace industries.

The CAN bus works according to the Producer-
Consumer-Principle: messages are not sent to a specific
destination address, but rather as a broadcast (aimed at all
receivers) or a multicast (aimed at a group of receivers). A
CAN message has a unique identifier, which is used by de-
vices connected to the CAN bus to decide whether to pro-
cess or ignore the incoming message. For that purpose,
CAN bus interface cards offer one or more programmable
mask registers, which allow filtering of messages based on
the CAN message identifier at hardware level. That means
that at a particular computing node, only messages of in-
terest have to be processed by software; other messages are
discarded by hardware and do not affect the processing re-
sources.

There are two variants of the CAN Protocol: The main
difference between CAN 2.0A and CAN 2.0B is that the
former uses 11 bits to uniquely identify each message, while
the latter uses 29 bit identifiers. For correct operation of
the CAN bus, the identifiers of two messages sent at the
same time must never be the same. As a consequence, CAN
2.0B offers greater flexibility regarding message IDs, at the
cost of blocking the bus for a longer time, thus deteriorating
response times.

The CAN bus protocol uses the Carrier Sense Mul-
tiple Access arbitration scheme with Collision Avoidance
(CSMA/CA). This collision avoidance is achieved by care-
ful selection and interpretation of the identifier bits. Dur-
ing the arbitration process, any node willing to send a CAN
message starts sending bit by bit the 11 (or in case of CAN
2.0B, the 29) identifier bits. Each time a bit is applied to the
bus, the sending node checks whether the bus adapts to the
corresponding voltage level – high for an applied logical 1
and low for an applied logical 0.

If any one of the attached nodes applies a logical 0, the
whole voltage level of the bus is drawn to low - this be-

haviour is called Wired-And. The CAN Specification [12]
therefore calls the logical 0 the dominant bit and the logical
1 the recessive bit.

If the sending node detects a difference between the bit
it sent and the voltage level of the bus, it backs off and loses
this arbitration cycle. As soon as the bus is free again, it
retries to send the same message. This arbitration process
only works if messages have unique identifiers (the CAN
Specification ensures this). As a consequence of this arbi-
tration scheme, messages with a low identifier (i.e. starting
with many zeros) have a high priority and are sent before
messages with a lower priority.

Because of these priorities, time guarantees for high pri-
ority messages can be given, which is a basic requirement
for real-time operation (compare with section 4.5). This,
together with its broadcasting nature, makes the CAN bus
especially suited for a real-time Event Service.

2.2 Basic Real-Time CORBA Features

To understand the interaction of our Event Service and
Real-Time CORBA, this section explains the necessary fea-
tures of the Real-Time CORBA specification. A more de-
tailed description of the Real-Time CORBA specification is
given in [11] and [13].

In general, extensions can be classified into those for
management of processor resources and those for manage-
ment of inter-ORB communication. For the management
of processor resources, Real-Time CORBA specifies prior-
ity mechanisms, thread pools, standard synchronizers, and
a global scheduling service. Managing inter-ORB commu-
nication comprises selection and configuration of protocol
properties, and explicit binding, which is used in our inter-
orb protocol for the CAN bus - CANIOP [7].

The extensions of importance for this work are the prior-
ities associated with an invocation and the thread pools of-
fering a standard way of programming threads in CORBA.
The latter allow defining properties, such as the number of
threads created initially, the maximum number of threads
that can be created dynamically, and the threads‘ default
priority.

2.3 Event Service

With the Event Service [9], the OMG satisfies the de-
mand for a more decoupled communication between dis-
tributed objects. Standard CORBA requests result in the
synchronous execution of an operation by an object. These
requests are directed to a particular object. In contrast to
that, the Event Service allows for a looser binding between
senders and receivers of requests. Participants of the Event
Service no longer have to know with how many other ob-
jects they communicate, nor where those other objects are

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

located; even more than that: they do not even have to know
if these other objects exist at all. They just send their event
data to or get it from the Event Channel – and do not have
to care about the rest.

The Event Service defines two roles for objects: the sup-
plier role and the consumer role. Suppliers produce event
data and consumers process event data. These two roles are
both subdivided into an active and a passive model.

• Suppliers (shown on the left-hand side in figure 1) can
either actively push their produced event data to the
Event Service – this is called the Push-Model – or pas-
sively wait until the Event Service pulls it from them
(Pull-Model).

• Consumers (shown on the right-hand side in figure 1),
on the other hand, can actively pull event data from the
Event Service (Pull-Model), or passively wait until the
Event Service pushes it to them (Push-Model).

Event Service

Not part of the OMG Standard

Event Flow

create()

Pull
Supplier

Supplier
Admin

Event
Channel

Proxy
Pull

Consumer

Event
Channel
Factory

Proxy
Push

Supplier

Consumer
Admin

Proxy
Pull

Supplier
Pull

Consumer

Push
Consumer

push() pull()

Push
Supplier

Proxy
Push

Consumer

Figure 1. Structure of the Event Service

In the next subsections, the components of the Event Ser-
vice – as shown inside the grey box in figure 1 – are de-
scribed in greater detail in bottom-up order: Starting with
the Event Channel Factory component, which is first cre-
ated when setting up an Event Service, and continuing to-
wards the proxies, which are created when connecting to a
specific Event Channel. Section 2.3.6 presents a real-world
example to demonstrate how all these components interact.

2.3.1 Event Channel Factory

The Event Channel Factory is the first object to be created
when setting up an Event Service. Its purpose is to offer an
interface for the creation of Event Channels. With an Event
Channel Factory running, it is possible for local and remote
objects to create any number of Event Channels. Platform-
specific details of Event Channel creation are hidden from
the user of the Event Channel Factory.

2.3.2 Event Channel

The Event Channel is created by the Event Channel Factory.
It is the main component of the Event Service. Responsible
for creation of administration objects, it keeps track of con-
nected objects and multiplexes event data. All event data
sent from suppliers to consumers passes through the Event
Channel.

2.3.3 Administration Objects

There are two administration objects: one is used by event
consuming objects (Consumer Admin) and one by event
producing objects (Supplier Admin). These admins are re-
sponsible for creating proxy objects for the Pull-Model and
the Push-Model (i.e. the Supplier Admin creates Prox-
yPushConsumers and ProxyPullConsumers, whereas the
Consumer Admin creates ProxyPushSuppliers and Proxy-
PullSuppliers). The administration object’s only purpose
is proxy-creation, i.e. event data passing from suppliers
through the Event Channel to consumers does not pass
through the admins.

2.3.4 Proxies

Proxies are the last objects created when connecting to the
Event Channel. They are created by the administration ob-
jects. Each supplier and each consumer connects to exactly
one proxy object. The proxy objects offer a consumer inter-
face to the supplier and a supplier interface to the consumer,
so that each object connecting to the Event Service has the
impression of being connected to and communicating with
only one partner.

2.3.5 Event Data

The event data, which is sent by suppliers via the Event
Channel to the consumers, has to be in the form of a
CORBA::Any. This is a standard CORBA data type, which
basically consists of the data itself (a series of bytes) and
a Type Code containing information about how to interpret
this data (e.g. as an integer, string, character or any other of
the 32 CORBA defined data types).

2.3.6 Example Scenario

The following real-world example is used to explain the
purpose of the Event Channel and the interactions between
its components:

As depicted in figure 2, there is a sensor ready to send
the oil temperature of a car engine to whatever component
is interested (display, central computer, etc.), at a regular
interval. Here, the sensor represents a Push Supplier as it
actively wants to push its data (the temperature value) to
the consumers. In contrast to that, Pull Suppliers would

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

EC77°C

77°C

77°C

Oil
Temperature

Sensor

ProxyPush
Consumer

ProxyPush
Supplier

ProxyPush
Supplier

Event Service

Display
Temperature

77°C

Computer
Central

Figure 2. Oil Temperature Sensor pushing
Event Data to Consumers

wait passively until some interested component pulls the
data from it (compare with figure 1).

When the car is started, only the Event Service, which
provides an Event Channel Factory interface, is started. The
central computer uses the Event Channel Factory to create
the needed oil-temperature Event Channel (this could in fact
be done by e.g. the sensor, as well). After the specific Event
Channel is set up, any consumer (central computer, the dis-
play, etc.) or supplier (here the sensor) can connect to it.

Connecting is a three-step process which involves the
other components, which have not been mentioned by now
in this example (the administration objects and the proxies).
A close look onto figure 1 is helpful to visualise the compo-
nents referred to in the following listing:
(1) The Event Channel is called to return a Supplier Admin.
The Supplier Admin is responsible for creating ProxyPush-
Consumers oder ProxyPullConsumers.
(2) The sensor calls the Supplier Admin to create and return
a ProxyPushConsumer.
(3) The sensor (or Push Supplier) connects to the Proxy-
PushConsumer. The connection from the supplier to the
Event Channel is established.

The central computer and the display (compare with fig-
ure 2) have to perform analogous actions on the consumer
side (obtaining the admin and proxy and connecting).

As soon as a consumer (e.g. the display) and a supplier
(e.g. the sensor) are connected to the same Event Channel,
the first real sending of data (e.g. the oil temperature) from
suppliers to consumers can happen. As figure 2 shows, data
is not pushed directly from the Push Supplier to the Event
Channel. It is rather given to the Proxy first, then from the
Proxy to the Channel, from the Channel to each registered
Proxy, and from there it is finally pushed to the Push Con-
sumers (or pulled by Pull Consumers).

3 Implementation of the Event Service

In contrast to a centralised Event Service (as depicted in
figure 3), we chose a distributed approach as proposed by
Kaiser [3]. With the centralised Event Service, event data

would have to cross the rather slow network twice, when
supplier, consumer and Event Service are not colocated, but
reside all on different nodes. Exactly the latter scenario is
the typical use case, when connecting multiple sensors with
multiple sensor-data-consumers.

PushConsumer

Node1

Node2

create_channel()

push()

push() push()

push()push()

pu
sh

()

pull()

pull()

pull()

pull()

pull()

PullSupplier
PullSupplier

PullSupplier

PullSupplier
PullSupplier

PushSupplier
PushSupplier

PushSupplier

PushSupplier
PushSupplier

PushConsumer
PushConsumer

PushConsumer
PushConsumer

PullConsumer
PullConsumer

PullConsumer

PullConsumer
PullConsumer

Ethernet

EC

Factory
Channel

EC = Event Channel

Event

pull()

Figure 3. Centralised Event Service

The distributed Event Service (compare with section
Federated Event Channels [2]) is an attempt to reduce the
high amount of network traffic at the cost of higher setup
complexity. Furthermore, it addresses the problem of un-
necessarily high latency for event data sent from a supplier
to a consumer on the same node.

CAN Bus

CanBusHandler

Node Node
Consumer ConsumerSupplier Supplier

EC EC

CanBusHandler

Figure 4. Distributed Event Service for the
CAN Bus

Figure 4 shows that every node in the network has its
own Event Service with its own local Event Channel(s). In
addition to the advantage of less network traffic, the be-
haviour in case of a failure of nodes is better. In the cen-
tralised setup, the Event Service represented a single point

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

of failure, whereas in the distributed case, failure of a node
leaves the other nodes working as before.

Consumer 1

Consumer 2

Consumer n

ECSupplier

1 nMultiplexing

Figure 5. Multiplexing of Event Data

The CAN bus, as the network used for this implemen-
tation, gives some additional advantages to the distributed
setup: In general, Events have to be multiplexed as soon as
there is more than one consumer connected to any channel.
With point-to-point communication, which normal CORBA
operations are based on, this multiplexing has to be per-
formed by the Event Channel. One send-operation over
each point-to-point connection to a consumer has to be per-
formed (see figure 5).

With its broadcasting nature, the CAN bus automatically
multiplexes data: Every event data sent once on the CAN
bus is received by the corresponding Event Channel on all
listening nodes at the same time (see figure 6).

Node 1

Node n

Node 2
Supplier

1 nMultiplexing

EC

EC

EC

EC

CAN Bus

Consumer n

Consumer2

Consumer1

Node

Figure 6. Multiplexing of Event Data by CAN
Bus

The connection of distributed Event Channels is simpli-
fied when using the CAN bus in comparison to using stan-
dard point-to-point communication. Generally, using the
distributed Event Service setup, a particular Event Channel
- in our example for the ”Oil Temperature” - has to be set
up on every node.

With point-to-point communication, a link between
these channels has to be set up explicitly: Each channel has
to be connected to all the corresponding channels as a sup-
plier of events and as a consumer, too.

This is not necessary with the CAN bus. In this case
each Event Channel only has to be connected to the local
CAN Bus Handler. The protocol ensures that each con-
nected Event Channel receives its data.

The disadvantage of this approach is, that an Event Ser-
vice has to be started on each node, which leads to slightly
higher resource requirements, because of the extra function-
ality present on each node.

Figure 7 depicts the components present on every node in
the distributed Event Service setup for the CAN bus (Event
Channel Factory, CAN Bus Handler and CAN Gateway,
Event Channel, and consumers and suppliers). These com-
ponents interact in the following way:

When starting the Event Service on this node, the Event
Channel Factory and the CAN Bus Handler are created and
the Event Channel Factory is ready to serve requests. The
CAN Bus Handler is the component which is responsible
for sending and receiving data over the CAN bus and for
binding an Event Channel to an Event Channel ID (ECID)
– see section 4.1 for further detail.

Node

create_channel()

transfer()

transfer()

push()

pu
sh

()

pull()

send()

canSend()canRead()

CAN Bus

PushSupplier
PushSupplier

PushSupplier

PullSupplier
PullSupplierPullSupplier

PushConsumer
PushConsumer

PushConsumer

PullConsumer
PullConsumer

PullConsumer

Can Gateway

Can Bus Handler

pull()
EC

create Event

Channel
Factory

Event

Figure 7. Components of Distributed CAN
Event Service and their Interactions

With help of the factory, a specific Event Channel and
a corresponding CAN Gateway are created. Each Event
Channel has exactly one CAN Gateway attached to it, which
is responsible for transferring event data via the CAN Bus
Handler to any other Event Service listening on the CAN
bus. After having created channel and gateway, any num-
ber of consumers and suppliers can connect to the channel
locally and send or receive event data. Still, Events have to
be exchanged between Event Channels over the CAN bus.
Therefore, a protocol is necessary, which defines the com-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

munication between these Event Channels.

4 CAN Event Broadcast Protocol

The CAN Event Broadcast Protocol (CEBP) is a protocol
defining communication between Event Channels, which
are located on different nodes connected by a CAN bus.
Like e.g. our CANIOP [7], DeviceNet [8], and other higher
level protocols, the CEBP resides on top of the CAN Proto-
col (as defined in the Bosch standard [12]). It makes exten-
sive use of the CAN identifier, which is described in section
4.1 and imposes a particular format on the data bytes car-
ried by each CAN message (see section 4.2). The protocol
is completely implemented in the CAN Bus Handler (see
figure 7).

4.1 Structure of the CAN Message Identifier

Protocol (2) Priority(2) Node(4) ECID(3)

11 Bit Identifier

(x) Bitlength

Data (0−8 Byte)

Figure 8. Identifier of a CAN Message (Version
2.0A)

Figure 8 depicts the CAN message identifier for version
2.0A of the CAN bus protocol. The 11 bits are divided into
the following four fields (from left to right):

1. The protocol field comprises two bits and selects one
of the four upper-layer protocols:

002 is the top priority protocol, reserved for system
designers to implement their own functionality. CAN
messages sent with this protocol have a higher prior-
ity than those of other protocols, thus giving system
designers the highest flexibility.

012 selects the CAN Event Broadcast Protocol, which
is described in this article. It is used to send Events to
all listening receivers at once.

102 selects the point-to-point protocol CANIOP, which
is used for standard CORBA communication over the
CAN bus. This protocol is described in [7].

112 will be used for a network management protocol.
Connections between client and server or between the
distributed Event Services will use this protocol.

2. The priority field offers four possible priority levels:
002 being the highest and 112 the lowest priority. The
message with the highest priority wins the bus arbitra-
tion cycle (as described in section 2.1) and is sent first.

3. The node field contains the node number of the sending
node. Four bits support a maximum of 24 = 16 differ-
ent nodes. The node number serves two purposes:

(1) It guarantees that the same Event sent from differ-
ent nodes never has the same identifier. As mentioned
in section 2.1, this is a prerequisite for the correct op-
eration of the CAN bus.

(2) It allows the CAN Bus Handler to determine where
a received Event comes from. This could later be used
for filtering at the CAN bus interface card level.

4. The Event Channel ID (ECID) field allows to distin-
guish the subject of an Event. At the moment, system
designers have to decide at setup time, which subject
(e.g. oil temperature, or the amount of petrol in the
tank) corresponds to which ECID. Later this binding
of subjects should be performed by a binding daemon.

The size of a system designed with CAN 2.0A identi-
fiers is limited to four priority levels, 16 connected nodes
and eight different Event Channels. Therefore, only small
systems can be satisfied effectively with this setup. If more
nodes, priorities or Event Channels need to be differenti-
ated, version 2.0B of the CAN bus protocol can be used.
In that case, the CEBP supports 256 priority levels, 128
connected nodes, and 4096 different events. This extended
flexibility certainly comes at the cost of higher latency and
a decrease in network performance in general.

4.2 Structure of the CAN Message Body

Data (0−6 Byte)Data Length/Byte 7
0567

FP = First Packet
LE = Little Endian

FP LE TypeCodeIdentifier (11/29 Bit)

Byte 1 Byte 2 Byte 3−8

Figure 9. Usage of Data Bytes in a CAN Mes-
sage

Figure 9 shows the CAN message identifier on the left,
and the 8 data bytes each CAN message can transport, on
the right. Of particular interest is the left-most of the 8 data
bytes. It contains the 2 bits FP and LE, and the TypeCode
of the sent CORBA data type:

• FP means First Packet and indicates whether this mes-
sage is the first in a series of CAN messages. When-
ever a message is received, in which this bit is set, a
new buffer is allocated on the receiver for concatenat-
ing the following messages, in order to reassemble the
CORBA data type (see section 4.3). This field is also
used in the detection of corrupted data, as explained in
section 4.4.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

• LE stands for Little-Endian. This bit is set, when the
sender’s processor architecture is little-endian. It is
used by the receiver to decide whether the reassembled
data has to be converted.

• The TypeCode is a unique identifier defined in the
CORBA Specification [10]. Up to version 2.6 of the
CORBA Specification there are 34 different CORBA
TypeCodes defined. This implementation of the CEBP
provides a 6 bit field, supporting up to 26 = 64 differ-
ent TypeCodes.

For most of the CORBA data types, the TypeCode al-
ready is information enough to determine the length of the
data type (i.e. a CORBA::Long is 4 bytes long). Having
received the first CAN message, the receiver knows the to-
tal length of the data type and can calculate the number of
CAN messages needed to reassemble the original CORBA
data type.

An exception to this rule are the string data types
(CORBA::String and CORBA::WString): A string can have
an arbitrary length. The TypeCode does not provide any in-
formation about the data length, in this case. Hence, for
strings, the second byte in the first CAN message is used to
store the data length. In subsequent messages this informa-
tion is not needed anymore and the second byte is used to
carry part of the actual data, again.

As only one byte is used to store the length of a string,
in this implementation the length of string data types is lim-
ited to 255 bytes. This does not comply with the CORBA
standard. It has nevertheless been implemented this way for
two reasons: (1) The CEBP loses complexity, and (2) this
implementation of CORBA and the implementation of the
Event Service is aimed at embedded systems, to which this
should constitute a minor problem.

Should it prove necessary to transfer strings longer than
255 bytes, in the future, this scheme could easily be ex-
tended to allow for unlimited string lengths.

4.3 Fragmentation and Reassembly

In this section the CEBP’s handling of data types exceed-
ing the length of 7 bytes is described.

The CAN bus protocol allows a maximum of 8 data bytes
in a single CAN message. In order to be able to send larger
types, a higher layer protocol has to split them into a series
of CAN messages at the sender and rejoin these messages
on the receiving side. Splitting is called Fragmentation in
network terminology and rejoining is called Reassembly.

Figure 10 sketches this process for the CEBP. The sender
passes the large data type to the CAN Bus Handler, which
splits the data into 7 byte long units. Each of these units is
accompanied by an information byte and then sent over the
CAN bus. The information byte is described in section 4.2.

CORBA::Any (35 Byte)

CAN Packet (8 Byte) 8 Byte 8 Byte 8 Byte 8 Byte

CAN Bus

7 Byte

7 Byte

Sender

Figure 10. Fragmentation of CORBA::Anys
longer than 7 Bytes

At the side of the receiver, the whole process is inverted.
The CAN message, which is marked as the first of a series,
is received and joined with the following messages, which
belong to the same data type. The reassembled data is then
passed to the Event Channel.

A scenario which is still to be described, is what happens
if one (or more) of those CAN messages is lost somehow.
Although this is extremely unlikely, as explained in section
2.1, provisions for detecting this have been made (see next
section).

4.4 Detection of Corrupted Data

This section describes the CEBP’s abilities to detect cor-
ruption of data due to message loss on the CAN bus. It will
furthermore show the protocol’s reaction to such a loss.

During development of the protocol, there were prob-
lems with corrupted data at the side of the receiver. Reasons
for this were: (1) lost CAN messages, probably because of
a broken CAN interface card, and (2) the simple fact that
a node, which connects to the CAN bus during the trans-
fer of a long data type, receives only subsequent messages
(missing the first one(s)).

The solution for synchronising the sending and receiving
of Events, which is implemented in the CEBP, is based on
the FP-bit described in section 4.2. When a long CORBA
data type (i.e. spanning multiple CAN messages) is split
into several CAN messages, the FP-bit of the first message
is set to 1; for the subsequent messages belonging to that
same data type, it is set to 0.

The FP-bit is used as follows in the two error scenarios:

• When a node is connected to the CAN bus in the mid-
dle of a data transfer, it receives only CAN messages
with FP = 0. The node discards all messages with FP =
0 and waits until a new transfer is initiated (indicated
by FP = 1). Normal operation starts then.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

• In case of message loss during transmission of a
longer data type, the receiver does not get the expected
number of CAN messages needed to reassemble the
CORBA data type. At transmission of the next mes-
sage from the same sender, the receiver gets a message
with FP = 1, while still expecting a subsequent mes-
sage with FP = 0. The receiver handles this scenario
by resetting the receive buffer (thereby discarding the
corrupted CORBA data type) and starts to reassemble
the new CORBA data type.

Summarising, corrupted data is detected as soon as a
next first message of a data type is transmitted by the same
sender and it is then simply discarded.

4.5 Response-Time Guarantees with the CEBP

The CAN bus is an event driven bus and time guarantees
for events are therefore not inherent. The system designer
has to associate messages with priorities, so that with rate
monotonic scheduling [5], the system becomes plannable.
Due to the priority mechanisms, which the CAN bus pro-
vides (described in section 2.1), the in-time delivery of
events can then be guaranteed up to the maximum allowed
load.

5 Conclusions and Future Work

Within the work described in this article, a light-weight
implementation of the CORBA Event Service has been de-
veloped. It provides real-time extensions and is largely con-
figurable.

A protocol for the effective distribution of event data
over the CAN bus has been developed and implemented.
Event multiplexing, conventionally done by Event Channels
only, is complemented with multiplexing of Events by the
CAN bus. This has the advantage that Events directed to
any number of consumers on other nodes have to be sent
only once over the bus, thus reducing bus load and allowing
other Events to be sent during the gained idle time.

This CAN Event Broadcast Protocol (CEBP) makes ex-
tensive use of the CAN bus features for multiplexing and
prioritisation of Events. Using two bits of the CAN message
identifier to distinguish it from other higher level protocols
on the CAN bus, the CEBP cooperates flawlessly with on-
going efforts to develop a version of IOP for the CAN bus.

Together with ROFES[6], a real-time ORB for embed-
ded systems developed at the Chair of Operating Systems at
the University of Technology Aachen, this implementation
of the Event Service provides a platform for the growing
market of so called Distributed Real-time Embedded (DRE)
systems. Small code size and fine-grained control of many
real-time parameters are prominent features.

To make the Real-time Event Service for the CAN bus
even more flexible and to make systems developed on top
of it easier to maintain, a binding daemon should be imple-
mented, which dynamically maps logical node and channel
names to physical ones, as proposed in [3]. Definition of the
CEBP already assigns two bits of the CAN message identi-
fier to such a binding protocol, which is proposed in [4].

References

[1] R. Finocchiaro. Design and Implementation of a Real-
time CORBA Event Service with Support for a Realtime
Network. Master’s thesis, Lehrstuhl für Betriebssysteme,
RWTH Aachen, October 2002.

[2] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The Design
and Performance of a Real-Time CORBA Event Service. In
Proceedings of OOPSLA ’97. ACM, 1997.

[3] J. Kaiser and M. Mock. Implementing the Real-Time Pub-
lisher/Subscriber Model on the Controller Area Network
(CAN). In 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 1999),
Saint-Malo. France, May 1999.

[4] T. Kim, K. Kim, G. Jeon, and S. Hong. Resource-Conscious
Customization of CORBA for CAN-Based Distributed Em-
bedded Systems. In IEEE International Symposium on
Object-Oriented Real-Time Computing, Newport Beach,
CA, USA, March 2000.

[5] H. Kopetz. Real-Time Systems – Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997.

[6] S. Lankes. Konzeption und Umsetzung einer echtzeitfähigen
Verteilungsplattform für eingebettete Systeme. Shaker Ver-
lag, Aachen, Germany, 2003. ISBN 3-8322-2205-7.

[7] S. Lankes, A. Jabs, and T. Bemmerl. Integration of
a CAN-based Connection-oriented Communication Model
into Real-Time CORBA. In Proceedings of the IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS 2003), 11th Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS 2003), Nice, France, April
2003.

[8] D. Noonen, S. Siegel, and P. Malony. DeviceNet Application
Protocol. In 1st International CAN Conference, Erlangen,
Germany, 1994.

[9] OMG Technical Document formal/01-03-01. Event Service
Specification, 1.1 edition, 2001.

[10] OMG Technical Document formal/02-05-08. The Com-
mon Object Request Broker – Architecture and Specification,
2.6.1 edition, 2002.

[11] OMG Technical Document orbos/98-10-05. Realtime
CORBA – Joint Submission, 1998.

[12] ROBERT BOSCH GmbH. CAN Specification Version 2.0,
1991.

[13] D. C. Schmidt and F. Kuhns. An Overview of the Real-Time
CORBA Specification. IEEE Computer, 33(6):56–63, 2000.

[14] D. C. Schmidt and C. O’Ryan. Patterns and Performance of
Distributed Real-time and Embedded Publisher/Subscriber
Architectures. Journal of Systems and Software, 2002.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

