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The Real-Time CORBA and minimumCORBA specifica-
tions in the forthcoming CORBA 3.0 standard are important
steps towards defining standard-based middleware which
can satisfy real-time requirements in an embedded system.
This article describes these new specifications and an im-
plementation called ROFES.

ROFES supports different network architectures, for ex-
ample the Scalable Coherent Interface (SCI). Furthermore
this article examines the SCI-network and whether it pos-
sesses real-time characteristics.

1. Introduction

A real-time system is defined as a system whose correct-
ness does not only depend on the logical results of compu-
tation, but also on the time at which these results are pro-
duced [1]. This leads to the question what the implications
of a real-time application — which does not meet the timing
requirements of the environment — are. This should be part
of the specification of a real-time system which consists of
two possibilities:

1. Violation of a particular timing constraint leads to sys-
tem failures. A real-time system with such a property
is classified as a hard real-time system.

2. Failure of meeting a particular timing requirement can
be tolerated and the real-time system continues its op-
eration even though with reduced quality and degraded
performance. A real-time system with such a property
is classified as a soft real-time system.

First generation real-time applications were running on sin-
gle processor environments since the problems to be solved

were relatively simple. Nowadays applications like avion-
ics, telecommunication, process control and distributed
interactive simulation need real-time properties in a dis-
tributed environment [6]. Middlewares like CORBA [13]
and DCOM1 help to improve the flexibility, extensibility,
maintainability and reuseability of distributed applications.
But these middleware architectures cannot be used to build
an avionics mission control application because they do not
support real-time features. Therefore the Object Manage-
ment Group develops a specification for CORBA with a
real-time extension [15]. A first implementation of a Real-
Time CORBA is TAO2 from the Center for Distributed Ob-
ject Computing at Washington University, but the develop-
ment of real-time middleware is still in progress.

Many real-time applications run on embedded systems.
However, CORBA is too complex to meet the exact code
size and performance requirements for such applications.
This scenario requires a cut-down version of CORBA,
which has been specified by the Object Management Group
[14] and is called minimumCORBA. We have implemented
a prototype of Real-Time CORBA which based on the Real-
Time CORBA and minimumCORBA specification, with the
aim to minimize the memory footprint and to support real-
time properties. In particular our version of Real-Time
CORBA is suitable for embedded systems. Therefore our
project is called Real-Time CORBA for embedded Systems3

(ROFES).
Besides Ethernet, ROFES supports other network archi-

tectures. By supporting these new network architectures
we hope to achieve better real-time characteristics. One
of these network architectures is the Scaleable Coherent
Interface (SCI).

A real-time operating system provides ideal support for
real-time applications. However, the cost aspect and the ac-
ceptance of operating systems like Windows NT, Sun So-
laris and Linux have generated a need for real-time func-
tionality in these operating systems. For instance Solaris

1http://www.microsoft.com/com/tech/dcom.asp
2http://www.cs.wustl.edu/̃ schmidt/TAO.html
3http://www.lfbs.rwth-aachen.de/˜stefan/rofes



is compatible with the real-time extension POSIX 1003.1b,
although it is not possible to develop a hard real-time appli-
cation in such an environment. Many companies and uni-
versities are developing real-time extensions for Windows
NT [20] [16] and Linux. A very interesting real-time exten-
sion for Linux is Real-Time Linux [2]. In Real-Time Linux a
small hard-realtime kernel and standard Linux run on one or
more processors, in order to build a system that can be used
for applications like data acquisition, control and robotics
while still serving as a standard Linux workstation. We plan
to implement a version of Real-Time CORBA for embed-
ded systems on Linux, Windows CE/NT, Real-Time Linux,
LynxOS and the QNX Realtime Platform.

This article is organized as follows: Section 2 explains
the new Real-Time CORBA specification. Before the ac-
tual implementation of ROFES is described in the succeed-
ing section 4, the article presents the Scalable Coherent In-
terface in section 3, which is supported by ROFES. Sec-
tion 5 presents and discusses our first results. Finally, some
general assessments of the lessons learned are provided and
some conclusions are drawn in section 6.

2. Real-Time CORBA

It is not possible to describe the whole Real-Time
CORBA specification in this paper, but it explains the most
important components. A detailed description of the Real-
Time CORBA specification is given in [15] and [18].

A standard ORB handles all requests of clients in a
unique way. This way of processing is of course not suit-
able for real-time ORBs. Generally, different clients which
operate with different priorities send several requests to the
server. A multithreaded server possesses a pool of threads
that process the incoming requests. At which priority does
the server process the individual requests? This question be-
comes even more complicated, if several threads operate in
one client and have different priorities. In order to solve this
problem, the OMG defines two models in the Real-Time
CORBA specification. One model allows a server to dic-
tate the priority at which an invocation made on a particular
object will be executed. In such a model the priority is spec-
ified a priori by the server. The server encodes the priority
of the object in its reference, which is then published to the
clients. The OMG calls this model server declared. It is
useful for certain real-time applications, but some applica-
tions require a dynamic priority specification. For such ap-
plications the OMG specifies a second model called client
propagated. If the target object supports the client propa-
gated model, the priority is carried with the invocation and
the server processes the incoming request at the priority of
the client thread, which originally invoked the operation.

Client and server can run on different operating systems
and use different native thread priority schemes. For in-
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Figure 1. Priority Banded Connection

stance, Linux uses 100 and LynxOS 256 different priority
classes. For the client propagated and the server declared
priority model Real-Time CORBA needs a priority model
independent from the operating system. The OMG defines a
logical priority which has a system-wide uniform represen-
tation called CORBA Priority. A real-time ORB provides a
priority mapping between CORBA priorities and native pri-
orities for each supported platform. Furthermore a real-time
ORB shall provide a mechanism to allow users to overwrite
this default priority mapping.

The original CORBA specification supports only
implicit bindings. This model establishes resources on
demand. For real-time applications with deterministic QoS
(Quality of Service) requirements these implicit bindings
are inadequate. Real-Time CORBA defines an explicit
binding mechanism which improves the performance
and predictability of the invocations. One of the explicit
binding mechanisms is the priority banded connection
model. This facility allows a client to communicate with
the server via multiple transport connections — each
dedicated for carrying invocations with different CORBA
priority or range of priorities, as shown in Figure 1. A
client establishes a priority banded connection by sending
the bind priority band request to the server which specifies
the range of priorities the connection will be used for. This
allows the server to allocate the necessary resources. The
selection of the appropriate connection for each invocation
is transparent to the application and is done by the ORB
based on the value of the priority model (server declared or
client propagated).



3. The Scalable Coherent Interface

3.1. Description of the Interconnect

Besides Ethernet ROFES supports the Scaleable
Coherent Interface (SCI) [8]. SCI is a point-to-point,
ring-based interconnect that can be configured in various
switched-ring topologies such as rings and tori and falls
into the class of the so-called SANs (System Area Networks)
[12]: a high performance network for cluster systems. In
distinction to other SANs (e.g. Myrinet or ServerNet)
which only allow message-passing style communication,
SCI offers transparent read and write remote memory ac-
cess. Memory segments of each compute node can be
mapped into the virtual address space of all cluster compute
nodes and be used to assemble globally shared data struc-
tures. Accesses to segments of memory that are physically
located on remote compute nodes are transparently mapped
to the address range of the SCI adapter and served via a
respective network transaction. Figure 2 illustrates the SCI-
network. One vendor of SCI adapter cards is the Norwegian
company Dolphin Interconnect Solutions 4. Dolphin wants
to place its adapter cards in the real-time market. There-
fore, Dolphin is developing drivers for the real-time oper-
ating systems LynxOS and VxWorks. Dolphin’s PMC-SCI
adapter card provides a high reliable throughput, low la-
tency, transparent memory-mapped link between PCI/PMC
based workstations and embedded systems like VMEbus
computers. Thus SCI can be used in an embedded system
environment.

The basic performance characteristics of the SCI net-
work was evaluated on our test platform5. The mem-
ory bandwidth amounts to 1.9 MByte/s for read and 83.6
MByte/s for write access. For a real-time system the av-
erage latency and its delay jitter6 are substantially more
interesting. These results are summarized in table 1. To
increase remote memory access throughput, the Dolphin
PCI-SCI adapter cards possess so-called stream buffers for
reading and writing. Each stream buffer, which is 64 byte
wide, can manage a separate pending transaction. Write
stream buffers may delay the network transaction to allow
to combine several write accesses into larger transaction
as long as they are consecutive in memory. If a write ac-
cess aligns to 64 byte, the write access does not delay in
a stream buffer. Therefore, the average latency is smaller
than for an unaligned write access. For read operations, the

4http://www.dolphinics.no
5The test platform is described in section 5.1.
6A delay jitter is the difference between the maximum and minimum

values of the delay.

Table 1. Characteristics of the SCI-Network

message operation average delay
type latency jitter
char writea 2.1 µs 6 µs
char writeb 2.1 µs 6 µs
char read 4.6 µs 8 µs
int writea 27.1 µs 13 µs
int writeb 2.1 µs 6 µs
int read 4.6 µs 12 µs

double writea 27.4 µs 12 µs
double writeb 2.5 µs 10 µs
double read 5.0 µs 9 µs

aunaligned write operations
b64 byte aligned write operations

stream buffers can exploit prefetching, i.e. the whole 64-
byte memory range is fetched on a read access not just the
requested datum. The small average latency and delay jit-
ter promise, that SCI is an ideal network for soft real-time
systems. However, is SCI suitable for hard real-time appli-
cations?

3.2. SCI as a real-time network

The real-time network is the core of a real-time cluster
and has to provide the following services to the nodes in the
cluster [11]:

• Reliable and temporally predictable message transmis-
sion with low latency and minimal latency jitter,

• support of fault-tolerance to handle replicated nodes
and replicated communication channels,

• clock synchronization in the range of microseconds
and

• membership service with low latency for detecting
node failures.

This implicates that a hard real-time application cannot use
TCP/IP over Ethernet because the communication over Eth-
ernet is nondeterministic. However, the Ethernet network
has a high acceptance in the industry and the costs are very
low. So for cost reasons soft real-time applications often
use the Ethernet technology.

But the question is if SCI is suitable for hard real-time
applications. To answer this, the structure of a SCI inter-
connect must be examined (see also [17]). The simplest
configuration of an SCI interconnect is a ring traversing all
nodes. The ring is based on the architecture of a SCI adapter
card illustrated in figure 3. Incoming packets to the SCI
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Figure 3. Model of a SCI Adapter Card

adapter card pass through an address decoder. If the packet
is destined for the local node, the decoder places it into the
request or response input queue. If the packet is destined
for another downstream node, it is forwarded to the bypass
FIFO. To output a packet, the SCI node must have sufficient
free space in its bypass FIFO to hold all incoming packets.
When there are no packets waiting in the output queue or
there is insufficient free space in the bypass FIFO for the
output queue data to be sent, data from the bypass FIFO
is transmitted on the node’s output link. If the bypass and
output queue are empty, idle symbols are transmitted.

SCI does not know prioritized transactions. Thus it has a
weakness when applied to real-time applications, for which
prioritized transactions require priority-dependent minimal
bandwith and maximum latency guarantees. Hence a prior-
ity inversion can occur in the FIFOs and queues of the SCI
adapter. In [9] the SCI/RT Working Group defines a solu-

tion for this problem called Scalable Coherent Interface for
Real-Time Applications (SCI/RT). SCI/RT has the following
features:

• a priority-based preemptive arbitration and queueing
discipline protocol

• support for both priority-based shared memory and
message passing architectures

• a standard global clock synchronization method

• a standard event notification method

• single-bit hard error detection and correction capabil-
ity

• hardware subaction fault-retry protocol support

In order to realize these features all FIFOs and queues in
figure 3 must be replaced by priority queues. Unfortunately
a vendor of SCI/RT adapter cards does not exist.

TCP/IP over Ethernet has nearly the same problems. By
sending messages over Ethernet, the driver builds a list of
Ethernet-packets. The Ethernet adapter card gets the first
element of the list via DMA-Transfer and sends it to the
receiver. Therefore the packets are dispatched in FIFO or-
der and a priority inversion can occur. In order to obtain
a high bandwidth, the driver builds very large Ethernet-
packets. In a SCI network the packets are built by the SCI
adapter card. The SCI adapter card produces the packet sub-
stantially faster. This is one reason why SCI uses smaller
packet sizes. Since SCI-packets are substantially smaller
than Ethernet-packets, a priority inversion does not have
such negative effects. Therefore SCI is more suitable for
soft real-time applications than Ethernet.



4. Design of a SCI-based Real-Time CORBA

The SCI-based communication architecture is based on
the General Inter-ORB Protocol (GIOP) 1.2. In order to
obtain optimum performance it must be guaranteed that a
process only writes to a remote SCI segment because read
accesses are extremely expensive.

When for instance, a client creates a connection to a
server, then the client and the server create a local SCI seg-
ment and map it into their address spaces. These local seg-
ments are the receive buffers of server and client and they
expect messages from the other process in these buffers.
Then they map the receive buffers of the other process and
use them as their send buffers. Therefore the send buffer is a
remote SCI segment (see figure 4). Now the client transmits
a request message to the server by writing this message to
its send buffer. The send buffer is the receive buffer of the
server. Therefore the client writes the request message into
the receive buffer of the server. Afterwards, the client has
to signalize the server that there is a valid message in its re-
ceive buffer. In order to signalize this, the client sends a SCI
interrupt to the server. This procedure wakes up the server,
copies the message from the SCI segment to a local buffer
and signalizes the client that the server got the message.
Now the client can send other messages to the server, while
the server can analyze the message and send an answer to
the client’s request message.

In ROFES the size of the send and receive buffer can be
adjusted. Thereby the user can adapt ROFES to his individ-
ual requests. The default size of the send and receive buffer
is 64 KByte.

For priority banded connections the server and the clients
build several connections (see figure 4). The client chooses
the connection according to the actual priority. If a message
is larger than the buffer size, the message is divided into
several smaller messages. This is specified in GIOP 1.2.

5. Performance Evaluation

5.1. Performance Evaluation of a Priority Banded
Connection

The benchmark in this section compares the performance
of a normal and a priority banded connection. On the
client side, a single high-priority thread and a variable num-
ber of low-priority threads run concurrently. The high-
priority threads invoke several requests with variable argu-
ment sizes. The low-priority threads invoke permanent re-
quests, which have no arguments. On the side of the server,
a servant is created and configured to process the client
requests at the same priority at which were originally in-
voked the operation on the client side. This means that the
benchmark uses the client propagated priority model. The
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low-priority threads use the CORBA priorities 8192, 8446,
8704, 8960, 9216 and 9472, while the high-priority thread
uses the CORBA priority 16384. The test platform con-
sists of two 400 MHz Pentium II systems with 128 MBytes
RAM. As operating system LynxOS 3.0.17 is used for these
computers. The systems are connected with 100 Mbps Eth-
ernet devices and Dolphin’s PCI-SCI adapter cards based
on LC2 SCI Link Controller and PSB-32 PCI-SCI Bridge.
The test platform is not an embedded system. However the
memory footprints of the benchmarks are very low, the re-
sults should also be meaningful to the results on an embed-
ded system.

To get high bandwidth over Ethernet the TCP service
layer buffers several outgoing messages internally and then
passes these messages as one large message to the next
lower layer for transmission. This mechanism – often called
Nagel algorithm – increases the average latency and the jit-
ter of a transmission. In order to achieve a jitter as small as
possible, the Nagel algorithm is turned off in our CORBA
implementation. This means that packets are always sent as
soon as possible and no unnecessary delays are introduced.

The priority banded and the normal solution are bench-
marked with different numbers of low-priority client
threads. The experiment was repeated 100.000 times for
each solution, each number of client threads and each ar-
gument size of the high-priority requests. Figure 5 shows
the results of the normal solution using the TCP/IP protocol
over a 100 Mbps Ethernet device. The figure shows clearly
that the jitter of this solution becomes very large. This con-

7http://www.lynuxworks.com
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Figure 6. Jitter of a high-priority thread in the
priority banded solution using Fast Ethernet

firms the assumption that a priority inversion occurs dur-
ing the invocations. This problem is solved with a priority
banded connection. Therefore an individual connection ex-
ists in this solution for each high-priority request. Figure 6
illustrates the results of the priority banded solution using
the 100 Mbps Ethernet device and shows clearly that the
jitter of this solution is definitely smaller. Additionally the
average latency (see figure 7) of the priority banded solution
is nearly equal to the average latency of the normal solution.

The results are nearly the same if the benchmark uses
a SCI network. Figure 8 shows the results of the normal
connection using the SCI network. In comparison to the
solution using the Ethernet device (see figure 5), the jitter
appears smaller. However, in real-time systems mainly the
priority banded connection is used. If the priority banded
connection uses the SCI interconnect, the results (see figure
9) are similar to the results of the priority banded connec-
tion using the Ethernet network (see figure 6). Figure 10
shows that for large messages the average latency of SCI-
based solutions is clearly smaller than the average latency
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Figure 7. Average Latency of the high-priority
thread using Fast Ethernet
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Figure 8. Jitter of high-priority thread in the
normal solution using SCI

of the Ethernet-based solutions (see figure 7). But for small
messages the average latency of SCI-based solutions is not
smaller because the costs for signalizing incomming mes-
sages via SCI interrupts are nearly the same as in an Eth-
ernet network. However in a SCI-based environment the
average latency and the jitter are very small. This property
is ideal for real-time systems.

5.2. Performance Evaluation with High Network
Load

The benchmark in this section is based on the benchmark
from section 5.1 and examines the performance of ROFES
under high network load. On the client side, a single high-
priority thread and six low-priority threads run concurrently.
The high-priority and the low-priority threads invoke sev-
eral requests with variable argument sizes. On the server
side, a servant is created and configured to process the client
requests at the same priority at which they were originally
invoked the operation on the client side. This means that the
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benchmark uses the client propagated priority model.

Figure 11 shows the results of the normal solution us-
ing the 100 Mbps Ethernet device. The delay jitter grows
if the requests’ message sizes of the low-priority threads
become larger. Figure 12 shows that this problem is not
completely solved by the priority banded connection. This
acknowledges the assumptions described in section 3.2 that
the probability of a priority inversion is very high. The re-
sults of the normal solution using the SCI interconnection
(see figure 13) is clearly better than the results in the normal
solution using Fast Ethernet (see figure 11). But figure 13
shows clearly that the jitter becomes worse by using several
threads because in this solution the probability of a priority
inversion is very high. Figure 14 proves that this problem
does not occur when using the priority banded solution with
the SCI interconnect. Hence the SCI interconnect is more
suitable than Fast Ethernet for soft real-time systems.
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6. Conclusions and Future Work

Real-Time CORBA helps to improve the flexibility, ex-
tensibility, maintainability and reuseability of distributed
real-time applications. This article shows that ROFES pos-
sesses very good real-time characteristics. Additionally this
article shows that SCI is suitable for soft real-time dis-
tributed applications.

In order to develop hard distributed real-time applica-
tions, ROFES needs a hard real-time network. For this rea-
son ROFES will support other network types besides Eth-
ernet and SCI. For instance ROFES will support CAN and
ATM in the next few months. Subsequently, we will com-
pare SCI and CAN, in order to determine whether SCI pos-
sesses as good real-time characteristics as CAN.

Real-Time Linux is a very popular real-time extension to
Linux. Therfore in the near future ROFES will support Real-
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Time Linux. We are developing a time-triggered real-time
protocol for Ethernet under Real-Time Linux that ROFES
will support. We expect a smaller jitter by using this new
protocol.
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