A Time-Triggered Ethernet Protocol for Real-Time CORBA

Stefan Lankes, Andreas Jabs
Lehrstuhl fir Betriebssysteme,

RWTH Aachen, Kopernikusstr. 16,

52056 Aachen, Germany

E-mail: {stefan, jabs}@Ifbs.rwth-aachen.de

Abstract

The Real-Time CORBA and minimumCORBA specifica-
tions are important steps towards defining standard-based
middleware which can satisfy real-time reguirements in
an embedded system. These real-time middlewares must
be based on a real-time operating system (RTOS) and
a real-time network. This article presents a new time-
triggered ethernet protocol that has been implemented
under RTLinux. Furthermore it describes a Real-Time
CORBA implementation called ROFES, which is based on
this new real-time network.

1. Introduction

First generation real-time applications were running on
single processor environments since the problems to be
solved were relatively simple. Nowadays, applications
like avionics, telecommunication, process control and dis-
tributed interactive simulation need real-time properties in
a distributed environment [2]. Middlewares like CORBA
[10] and DCOM? help to improve the flexibility, extensibil-
ity, maintainability and reuseability of distributed applica-
tions. Because these middleware architectures were not de-
signed for real-time applications, the Object Management
Group has specified a real-time extension for CORBA [11]
and called it Real-Time CORBA. A first implementation of a
Real-Time CORBA is TAO? from the Center for Distributed
Object Computing at Washington University. We are devel-
oping another version of Real-Time CORBA especially for
embedded systems and call our implementation Real-Time
CORBA for embedded Systems® (ROFES) [8]. In order to
achieve this aim, we are developing a completely new Real-
Time CORBA implemantation.

Lhttp://www.microsoft.com/com/tech/dcom.asp
Zhttp://www.cs.wustl.edu/~schmidt/TAO.html
Shttp://www.Ifhs.rwth-aachen.de/~ stefan/rofes

Michael Reke
VEMAC GmbH & Co. KG
Krantzstr. 7, Halle 33A,
52070 Aachen, Germany
E-mail: reke@vemac.de

To serve deterministic requirements, real-time middle-
wares must at least be based on a real-time operating
system (RTOS). However, the cost aspect and the accep-
tance of operating systems like Windows NT, Sun Solaris
and Linux have generated a need for real-time functionality
in these operating systems. Many companies and univer-
sities are developing real-time extensions for Windows NT
and Linux. A very interesting real-time extension for Linux
is the RTLinux project [1] from the New Mexico Institute
of Mining and Technology. They implemented (see figure
1) a simple real-time kernel underneath the operating sys-
tem, with Linux itself running as just one task within that
real-time kernel. Linux runs at the lowest priority and can
be preempted at any time by real-time tasks with a higher-
priority. The design philosophy of RTLinux was to mini-
mize the changes made to Linux itself, providing only the
necessary essentials for implementing real-time application.

Beside an real-time operating system, real-time mid-
dlewares like ROFES also need a real-time network. [5]
and [6] show that a time-triggered protocol is the better
choice for a hard real-time system than an event-triggered
protocol. For this reason, we decided (see [13]) to use a
time-triggered protocol for our real-time network. RTLinux
exhibits very good real-time characteristics and gives us
a good platform to implement a software-based time-
triggered protocol for existing network adapters. The cost
aspects for an embedded system are very important. There-
fore our real-time network uses ethernet network cards be-
cause ethernet is a very popular, sophisticated and low-cost
technology.

This article is organized as follows: Section 2 summa-
rizes the basic principles of real-time networks. Before the
actual implementation of ROFES is described in the suc-
ceeding section 4, the article presents the new ethernet-
based real-time network in section 3, which is used by RO-
FES. Section 5 presents and discusses our first results. Fi-
nally, some general assessments of the lessons learned are
provided and some conclusions are drawn in section 6.

2. Networking under Real-Time Conditions

Real-time networks have to meet special requirements,
to get a temporal deterministic behavior. While in standard
LANSs bandwidth is most important, under real-time condi-
tions a small jitter in protocol latency is much more desired.
Applications trust in this well repeatable transmission time,
and a bad jitter basically destroys the real-time performance
of the whole system.

The jitter is defined as the maximum deviation in proto-
col latency within a supervised interval of time and N values
for the latency ¢, = 0..(N — 1)

jitter = max(ty;) — min(tr;) @

In a real-time network, the jitter in protocol latency should
remain within given bounds, only depending on the tempo-
ral synchronization of the network members and be inde-
pendent of the network load.

In [5] Kopetz shows that a time-triggered network with
its time division media access strategy (TDMA\) is used best
to keep the jitter small.

2.1. Known Architectures

Today various network architectures for real-time-
systems are in use. For many applications the Control Area
Network (CAN) is deployed, because of its priority-based
access. But under hard real-time conditions, communica-
tion is restricted to periodic data by using Rate Monotonic
Scheduling [17], which was first introduced by Liu and Lay-
land in [9]. The deadline for each send operation is implic-
itly given by its period. The network utilization factor has
to be below its maximum, which can be calculated by

Pmaz = n({75 - 1) (2)

nILH;o Pmaz = ln(?) ~ 0.69 (3)

where n is the number of connections. If there is a need for

deadlines earlier than the next period, this system cannot be
used.

An example of a time-triggered network access is the
Time-Triggered Protocol for SAE Class C Applications
(TTP/C), which was devoleped at the TU Vienna and is now
provided by TTTech. It controls the exchange of messages
between different electronic modules to a TTP/C network.
In a time-triggered architecture, the communication system
decides autonomously (according to a static schedule) when
to transmit a message. Every controller contains its own
control data, which is stored in a personalized message de-
scriptor list (MEDL), that specifies the instant a message
has to be transmitted by the controller. A TTP/C network
consists of electronic modules that are connected by two
replicated channels. One or more electronic modules can

User Space Application

User Space

RT Thread 1

_____________________ IE

‘ PC Hardware ‘

RT Thread 2

Kernel Space

Hardware

Figure 1. Parallel access to the time-triggered
Ethernet driver

be combined to a fault-tolerant unit (FTU). Access to the
bus is controlled according to a cyclic time-division multiple
access (TDMA) scheme derived from a notion of global
time. The sequence of slots in which each electronic mod-
ule sends at most one message forms a TDMA round. After
a TDMA round has completed, the next TDMA round, with
the same temporal access pattern but possibly different mes-
sages, is started[16].

3. Design and I mplementation of the Ethernet-
based Real-Time Networ k

We built up a network, which based on the time division
media access (TDMA), in a PC environment using usual
Ethernet-adapters in combination with a driver for a RTOS.
This pure software realization has to be seen in contrast to
other time-triggered networks, which are based on costly
special hardware solutions [16][5]. For accomplishing the
temporal requirements RTLinux is used as RTOS. The
whole network control is abstracted in one kernel mod-
ule, which can be loaded dynamically into the kernel.
This driver (see figure 1) provides parallel access to the
network for real-time applications, which are also imple-
mented in kernel-modules under RTLinux, and for non real-
time Linux applications. This implementation continues the
design principle of Real-Time-Linux with its parallel real-
time threads and non real-time Linux applications.The non
real-time Linux applications use the usual network APl and
are handeled by the driver like a RTLinux application with
the lowest priority. Therefore every time-slot, that is not
used by the real-time system, is available. The network
communication is done in priority-based order.

The Ethernet protocol (Carrier Sense Multiple Access
/ Collision Detection (CSMA/CD)) is implemented in the
hardware of each Network Interface Card (NIC). In order
to get real-time performance on Ethernet, collisions have to

be avoided. Because of the random retransmission time pe-
riods, CSMA/CD provides a non determined temporal be-
havior. In our network each node has exclusive access to the
network within its scheduled time slot. This guarantees that
no collision occurs and the hardware-based Ethernet proto-
col is de facto transparent.

3.1. Temporal Synchronization

In a time-triggered network, each node has to be syn-
chronized to a global time to determine the absolute begin-
ning and end of the time slots. The jitter of the network
communication depends directly on the accuracy and preci-
sion of this global time. Because of this, it is very important
to figure out an useful algorithm for the temporal synchro-
nization. In our case, the local time within a node is based
on the operating system’s clock, which itself is based on the
processor’s clock. In comparison to a perfect clock, typi-
cal maximum drift rates of these physical PC oscillators are
between 102 and 10*7% [5]. For this reason, clock syn-
chronization has to be done during the whole runtime, even
if there is no misfunction of the oscillator.

With this work a kind of continuous, precise and simple
software-based synchronization is introduced. In our net-
work, one periodic thread does the send and receive oper-
ations on the NIC. The synchronization algorithm controls
the period of that thread to compensate offset and drift-rate
of the node in comparison to the global time. The global
time is detected by evaluating the arrival times of the incom-
ing data packets. Ramanathan classified in [12] the known
synchronization algorithms into three different categories:
software, hardware and hybrid synchronization. Our algo-
rithm realizes a software synchronization but uses the prin-
ciples of the hardware synchronization (PLL). It does a con-
tinuous internal synchronization of each nodes clock to the
global time, which is provided by a master. An external
synchronization as described in [7] should be done in future
work, i.e. by deploying the NTP-Protocol. In the following
a detailed explanation on the implementation of our syn-
chronization strategy is given.

In terms of electrical engineering, the corresponding
representations for offset and drift rate are frequency and
phase. The synchronization task can be interpreted as
phase-locked coupling of an oscillator (in our case this is
the periodic send and receive thread) to a master-oscillator
(in our case this is the global time). The standard solution
to this problem is the well known phase-locked-loop (PLL).
Such a system is based on a controllable oscillator with vari-
able frequency, which is controlled by a feedback controller,
i.e. with PID-characteristic. The basic structure is shown in
figure 2. The frequency of the variable oscillator is defined
as

frt = f()+kAf7‘t (4)

var. oscillator phase detector fg

—>] I —
(RT-thread) Ko master frequency
(global frequency)
¢
Af phase-shift

controller

Aol desired value

Figure 2. Structure of a PLL system

where the period of the real-time thread for sending and
receiving is given by T, = ﬁ while T, = % is the
base-period at the start of network operation. So the con-
troller does a differential variation of the thread-frequency
Afr+. The phase detector does a delay measurement be-
tween the start of the receive-timeslot and the arrival of
the data-packet. This can be interpreted as the phase-shift
between the local (thread-)frequency f,: and the global
(communication-) frequency f, on the network. The phase-
shift o is compared with the desired value ¢ and serves as
Ap = @y — ¢ the input value for the controller with the
transfer function A...;. The output value of the controller
represents the differential variation of the threads period.
Thus, a closed loop is formed.

For realization of the transfer function, a digital recursive
PID-controller is used. The algorithm is derived from the
time-domain function.

t
’u,p[D(t) = Kg |:€(t) + i / G(T)d’r + Tpie(t)}
TI 0 dt
Q)
The approximation of the integral and the derivative yields
the discrete function as

k—1
UP[D(IC) = KRe(k)+KRT£IZe(T)
=0
b Kp e —er 1] ®)

A recursive version of equation 6 can be found by compu-
tation of u(k) — u(k — 1):

uP[D<k‘) = UPID<k_1)+QOe<k)

e e(t) input value (in our case this is Ay)
e u(t) output value (in our case thisis A f)
e K g proportional constant

e T integration constant

e T'p derivative constant

e T sampling rate

+ @e(k—1) +ge(k - 2) (7)

with go = Kr(1 + %2), qn = ~Kg(1 +2%2 — L) and
q2 = KRTTD. This algorithm represents a very simple way
of software synchronization with high effiency and allows a
good characterization of its behaviour in terms of controller
technology.

We show that the phase-detector provides the only mea-
sured value for the control-loop and — because of that —
is most important for the accuracy of the temporal behavior.
In our implementation, the phase-detector is replaced by a
time-delay-detector, that supplies the time-delay from the
beginning of the receive-time-slot to the arrival of the data
packet. This time delay is used as input of the controller, in-
stead of the phase. For measuring the Time Stamp Counter
of Pentium processor [15] is used, which is the most gran-
ular timer within a PC. The error of this counter caused by
the quartz oscillators drift rate can be neglected for mea-
suring these small time periods, but the main problems of
every software based synchronization are the errors caused
by reading the internal clock [7]. In our case the reading
of the Time Stamp Counter lasts much longer than one tick
of this counter, consequently that its usable precision is re-
duced. To meet in this problem and for fault-tolerance the
measured time-delays are averaged over time. The maxi-
mum and minimum value within the consideration-window
are not used for average [13]. This is similar to the FTA
algorithm presented in [7].

The main task for the controller is to synchronize a new
node to an existing network. Furthermore, the clocks drift
rate has to be compensated. Every node has to know the
propagation delay of a packet on the network. This time
can be different for each node depending on the internal
processing time and has to be measured before a new node
participates in the network (see figure 3). For this reason,
a new node first listens to the network traffic and its period
of the send/receive-thread is adjusted by the controller to a
desired time-delay ¢, of 20us. This means that the expected
arrival of a data-packet is 20us after the start of a timeslot,
which is an averaged value for the propagation delay on the
investigated network. Now, the new node sends a resync-
packet as an answer to a sync-packet. The master detects the
arrival of this packet and measures the propagation delay for
the new node. This operation is shown in figure 3. With the
next sync-packet, this delay is sent to the new node using
this time as the new desired value. After the controller has
adjusted this new desired value, the client takes part in the
network.

Figure 4 illustrates the network with the new participat-
ing client. The propagation delay is 20 + x, where x can
have a positive or negative value. After this first synchro-
nization, the controller continues work with the measured
propagation delay until the network is stopped.

send receive
o} T ofs=ty+2x
1]
17} i !
© '
£ sync 0 1 resync

receive send

client

't
«2»{ sync 0

: N

o+ X

Figure 3. Measurement of the propagation de-
lay by a sync/resync-operation

send receive
o} . T .
: ————————»
o : \
R
E data k—m
t
- receive ' send
e i
g o+ X
© 0 data data
T

Figure 4. Network timing after synchroniza-
tion

3.2. Media Access Protocol

The protocol provides time-triggered media access
and dynamic network configuration in master/client-
architecture. The whole time is shared equally between all
network members. So the same bandwidth is assigned to
each node. In each cycle, a pair of sync and resync pack-
ets is used for the dynamic network configuration. New
members are anounced by this mechanism or nodes will be
ignored, that are not available any longer.

If there are no bytes to be sent within a time slot, a
dummy packet is sent. This is necessary for fault-tolerance
and for accurate temporal synchronization. The implemen-
tation of the different phases of communication is done by a
state machine. In figure 5, the subdivision of the time slots
is given in example for three nodes.

The protocol provides a dynamic network configuration
in contrast to other protocols like TTP/C (see 2.1), which
are based on a static schedule. It offers a closed concept for
handling non real-time (Linux TCP/IP) packets. It provides
a guaranteed latency and jitter, but has to be seen only as a
base protocol for future work. A lot of work has to be done

o 1 2 3 4 5

S| R|S|R|R /S
SY‘RSV‘l‘Z‘S‘SY‘R
node 1 (master)

R R/ R|S | R|R|S|R|S|R|R|R|R|S R R

SY‘RSV‘l‘Z‘S‘SY‘RSY‘l‘Q‘S‘SY‘RSY‘l‘Z‘S‘SV"
node 2

6 7 8 9 10 11 12 13 14
R[S |R|R R|S |R|R
SV‘l‘Q‘S‘V‘RSY‘l‘Z‘S‘

R| R/ R|R|S|R|RIR|R|S|R|S|R|R|S R
SV‘RSY‘l ‘2 ‘3 ‘sv‘nsv‘l ‘2 ‘3 ‘SY‘RSV‘l ‘2 ‘3 ‘sv‘
node 3
T
]
T *
SSY send SYNC n=3
RSY receive SYNC
SRSY send RESYNC T =n+2=5
RRSY receive RESYNC T,=m+2n=15
Sn send node n

Rn receive node n

Figure 5. Subdivision of time slots in example
for three nodes

for fault-tolerance, i.e. a strategy for a master-fault has to be
implemented. The protocol will be elaborated concerning
its future use in middlewares.

3.3. Performance Evaluation of the Ether net-based
Real-Time Networ k

For performance evaluation, latency and jitter are the ba-
sic criterions to focus on. Two different times have to be
distinguished:

1. The time between the call of the network-driver by the
application on the one side and the arrival of the data
packet on the other side. We denote this time protocol
latency.

2. The time the drivers need to transmit a message to an-
other node. We denote this time network latency.

Protocol latency and jitter are mainly determined by the
base-period Ty of the send/receive-thread and the used pro-
tocol®. In our implementation 7, = 1ms was used. The
protocol latency depends on the cycle time and is calculated
by

tr, :To(n+2)+To (8)

where n is the number of the network members (see also
figure 5, ”T77). In our implementation, a waiting applica-
tion is signaled to put the data to the driver one time-slot
before the next send-operation of the driver. This is taken in
consideration by adding one base-period T’y to ¢, (see (8)).
The receive-operation is synchronized and causes no addi-
tional latency. The jitter of the protocol latency is mainly
determined by the way the application is calling, i.e. low
priority of the calling thread causes a higher jitter. A de-
tailed analysis of this jitter is presented in section 4.2.

5Concerning to the protocol latency the propagation delay can be ne-

glected, because it amounts only to microseconds.

K 01
999.0 T 1s
T, 1ms

threads period [us]

: ‘ Change in desired value
20 from 20 ps to 27.9 us

time-delay [us]
N
b

T u
16 18 20 22 24
time [s]

Figure 6. Reference reaction of the control
loop

The network latency determines the performance of the
network without taking the protocol in consideration. It rep-
resents the minimum in latency and jitter that can be at-
tained with this system. The network latency is equal to
the propagation delay of a data packet on the network. It is
measured at start time of each node (see figure 3). In the
investigated set of three PCs (PIl, 400Mhz, 128MB), this
time has been evaluated to be about 27,.s by our time-delay
detector as described above. The jitter is determined by the
controlling behavior of the used algorithm for synchroniz-
ing. It has been evaluated to be about 3u.s. In the following
an overview to the temporal behavior of the controller is
given.

Two different reactions of control loops are of interest:

1. Referencereaction. This describes the controllers’ be-
havior concerning a change of the desired value.

2. Disturbance reaction. This describes the controllers’
behavior to disturbing external impacts.

The reference reaction is important for a fast synchroniza-
tion after a new node has got his individual propagation de-
lay by the master at start of its network participating. In
opposite to that a good disturbing reaction is important for
accurate compensation of the clocks’ drift rate during the
network operation. Each adjustment of the controllers’ pa-
rameters is a compromise between these two reactions. We
found the best adjustment for our controller at X' = 0.1,
Tr =1sand Tp = 1ms.

The controller should react within a small period to a
change in the desired value. In our case, changes are com-
pleted in less than 0.5s. Figure 6 shows the reaction of
the controller after it has received the new desired value of
27.9us from the master, which represents the propagation
delay for this example.

The jitter of the network latency is mainly determined by
the disturbance reaction of the controller. The jitter of the

1000.2

1000.1

- W
999.9

threads period [us]

K 01
T 1s
T, 1ms

999.8 {
23

22

21
20
19

time-delay [us]

18

17

5 6 7 8 9 10

Figure 7. Disturbance reaction of the control
loop

investigated set of PCs had a value of 3us. Figure 7 shows
the disturbance reaction of the controller for 5s. In an exper-
iment with a desired value of 2045 the measured time-delay
and the adjusted period of the send/receive-thread have been
recorded over a period of 5s. By this, the average of time-
delay has been measured to be 20.0717us with a standard
deviation of 0.3808us. In another experiment the drift-rate
of the PC-oscillator has been measured to be p = 7.31us.
Because of that the controller had to adjust the send/receive-
threads period to 7' = 999.99269us. The average during
the recorded period has been measured to 999.99270us,
which means a very small standard deviation of 0.0360.s.
So the controller provides a very precise synchronization to
the global time.

4. Design of ROFES based on a time-triggered
ethernet protocol

4.1. Requirements of RTLinux

Our time-triggered ethernet protocol is based on
RTLinux, which runs in the kernel space of Linux as well as
any ROFES application. Only a small subset of POSIX is
implemented in Real-Time Linux kernel. For instance the
system calls brk, malloc and free are not implemented in
RTLinux. But these system calls manage the memory allo-
cation and deallocation of a process. Instead of these system
calls, RTLinux uses the Linux kernel functions kmalloc and
kfree. ROFES is implemented in C++ and the standard C++
operators new and delete base on the system calls malloc
and free. Therefore, these C++ operators had to be over-
loaded and replaced by operators which are only based on
the kernel functions kmalloc and kfree.

The most C++-Compilers support the exception han-
dling and the run-time type information (RTTI) of the
C++ standard. Unfortunately these features are also based

Linux RTLinux
with RTTI
and exception | 428 KByte —
handling
without RTTI
and exception | 170 KByte 143 KByte
handling

Table 1. Code size of various ROFES imple-
mentations

on system calls, which are not implemented in RTLinux.
Therefore ROFES cannot use these features.

On standard operating system, ROFES supports the
CORBA exception handling, which is based on the standard
exception handling of C++. Unfortunately, on RTLinux this
is not suitable and ROFES had to renounce the support of
the CORBA exception handling. In near future, we want to
implement a exception handling for ROFES, which is not
based on C++ exception handling. Consequently this new
exception handling will be implemented even on RTLinux.

But the renouncement of exception handling also ex-
hibits some advantages. The code size of a CORBA im-
plementation, which supports exceptions handling, is much
larger than the code size of a CORBA implementation,
which does not support exception handling. This was evalu-
ated on Linux. The code size of ROFES, which supports ex-
ception handling and the run-time type information, is about
200 KByte larger than the same implementation, with these
features disabled. Table 1 presents the exact code size of
various ROFES implementations.

4.2. Requirements of the time-triggered ethernet
protocol

Section 3.3 presented an analysis of the protocol latency.
The average latency and delay jitter of Real-Time CORBA
requests depend on the time of sending a message. In best
case, the sender can directly send its message and does not
have to wait for its time-slot, while in worst case the sender
has to wait a whole period to transmit its message. Conse-
quently, the delay jitter of sending a message is equal to the
period of the protocol and is calculated by

Tiitter = To(n +2) 9)

where n is the number of the network members and Ty the
base-period of the send/receive-thread. This dependency is
not ideal for real-time applications.

But most distributed real-time applications base on spon-
taneous methods. These methods send their requests to a
server when the real-time clock reaches specific values de-
termined at design time. On the assumption that the period

of the spontaneous methods is a multiple of the network pe-
riod, the average latency and delay jitter can be optimized.
The driver of the time-triggered network provides a func-
tion, which synchronizes the period of spontaneous meth-
ods with the period of the time-triggered network. This
synchronization guarantees that the system spawns a spon-
taneous method when it reaches the exclusive time-slot to
transmit a message. Thus the application must not wait for
its time-slot and can directly send its message.

5. Perfor mance Evaluation of ROFES

The benchmark in this section evaluates the performance
of ROFES. On the client side, a single high-priority thread
and a variable number of low-priority threads run concur-
rently. The high-priority threads spawn spontaneous meth-
ods and the low-priority threads invoke permanent requests.
The requests of the low- and high-priority threads have no
arguments. On the server-side, a servant is created and
configured to process the client requests at the same pri-
ority at which the operation were originally invoked on the
client side. This means that the benchmark uses the client
propagated priority model. The low-priority threads use
the CORBA priorities 8192, 8446, 8704, 8960, 9216 and
9472, while the high-priority thread uses the CORBA prior-
ity 16384. In order to receive the optimal results, the bench-
mark uses a priority banded connection. A priority banded
connection is a new facility of Real-Time CORBA and al-
lows a client to communicate with the server via multiple
transport connections — each dedicated for carrying invo-
cations with different CORBA priority or range of priorities.
A client establishes a priority banded connection by sending
the _bind_priority band request to the server which specifies
the range of priorities the connection will be used for. This
allows the server to allocate the necessary resources. The
selection of the appropriate connection for each invocation
is transparent to the application and is done by the ORB
based on the value of the priority model (server declared or
client propagated).

The test platform consists of two 400 MHz Pentium
Il systems with 128 MBytes RAM. As operating systems
Linux, RTLinux and LynxOS 3.0.1 are used for these com-
puters. The systems are connected with 100 Mbps Ether-
net devices and SCI adapter cards. The Scalable Coherent
Interface (SCI) [3] is a high performance network and of-
fers transparent read and write access to remote memory.
Memory segments of each compute node can be mapped
into the virtual address space of all cluster compute nodes
and be used to assemble globally shared data structures. Ac-
cesses to segments of memory that are physically located on
remote compute nodes are transparently mapped to the ad-
dress range of the SCI adapter and served via a respective
network transaction. Figure 8 illustrates the SCI-network

1/0 bus 10 bus main memory

Xporte scl- scl-
ent adapter adapter
read/write
L | buffer

SCl-network

Figure 8. The system architecture of a SCI-Cluster

\l 0 Threads M6 Threads\

2500

2000-

1500-

1000+

jitter / us

500+

RT Linux Linux LynxOS LynxOS
(TT- (Ethernet) (Ethernet) (SCly
Ethernet)

Figure 9. Jitter of the high-priority thread on
various architectures

and [8] declares in detail the design and the performance of
our SCl-based Real-Time CORBA.

The test platform is not an embedded system. However
the memory footprints of the benchmarks are very low, the
results should also be meaningful to the results on an em-
bedded system.

Figure 9 shows the delay jitter of the high-priority thread
on various architectures. The solution using Linux as op-
erating system and TCP/IP as network protocol shows that
Linux is not suitable for distributed real-time applications.
By using six low-priority threads, the delay jitter of the
high-priority thread increases dramatically. On a real-time
operating system like LynxOS the delay jitter is clearly bet-
ter.

The difference between the delay jitters of the SCI- and
Ethernet-based solution on LynxOS is minimal. SCI has a
higher bandwidth and a smaller latency than Ethernet. Fig-
ure 9 shows that these advantages has no positive effect for
CORBA requests with a small number of arguments. But
[8] shows that for CORBA requests with larger arguments,
the SCl-based solution has a smaller delay jitter than the
Ethernet-based solution.

On RTLinux, the benchmark uses the time-triggered eth-
ernet protocol. To get the optimal performance of this pro-
tocol, the high-priority thread synchronizes its period with

W0 Threads B 6 Threads

4500
4000
3500
3000
2500
2000
1500
1000

500

average latency / ps

RTLinux Linux LynxOS LynxOS
(TT- (Ethernet) (Ethernet) (SCi)
Ethernet)

Figure 10. Average latency of the high-priority
thread on various architectures

the period of the network. This optimization strategy is dis-
cussed in section 4.2. This solution has the smallest delay
jitter and it ranges between 60u.s and 80us.

Figure 10 shows the average latency of the high-priority
thread on various archtitectures. Expectedly, RTLinux has
the largest average latency but is independent to the number
of threads. The test platform consists only of two nodes.
From figure 5 follows that the network period of the time-
triggered protocol is 4ms and this matches to the average
latency of the protocol. The high-priority thread runs on the
client node and sends a request at the begin of the time-slot
before the node gets its sending time-slot. Therefore, one
millisecond passes before the message is transmitted. The
server on the master node receives the message and builds a
reply to the client. But before the server can send its reply, it
must wait three milliseconds for its next sending time-slot.
The summation of these waiting times explains the average
latency of 4ms. A more exact synchronization of the spon-
taneous methods with the network period would reduce the
average latency.

6. Conclusions and Future Work

This paper describes a new ethernet-based time-triggered
protocol. The protocol represents an economical alternative
to existing solutions for certain time-triggered real-time ap-
plications. The second part of this paper presents one of
the first Real-Time CORBA implementations for RTLinux.
This implementation called ROFES uses the new ethernet-
based time-triggered protocol and shows its potential.

The paper shows that the average latency and delay jit-
ter of the time-triggered network would be optimized, when
the period of spontaneous methods is synchronized with the
period of the network. This synchronization guarantees that
the system spawns a spontaneous method when it gets the
exclusive time-slot to transmit a message. Thus the appli-
cation must not wait for its time-slot and can directly send

its message. To get an intuitive programming scheme for
this synchronization, we want to implement a CORBA ser-
vice, which automatically synchronizes the period of spon-
taneous methods with the period of the underlaying time-
triggered network. Kim presents in [4] a important funda-
ment for such a programming scheme.

References

[1] M. Barabarnov. A Linux-based Real-Time Operating Sys-
tems. Master’s thesis, New Mexico Institution of Mining
and Technology, 1997.

[2] T.H.Harrison, D. L. Levine, and D. C. Schmidt. The Design
and Performance of a Real-Time CORBA Event Service. In
Proceedings of OOPSLA’97. ACM, 1997.

[3] IEEE. ANS//IEEE Sd. 1596-1992, Scalable Coherent Inter-
face (SCl), 1992.

[4] K. H. Kim and E. H. Shokri. Two CORBA Services En-
abling TMO Network Programming. In |EEE CS4th Int'|
Workshop on Object-Oriented Real-Time Dependable Sys-

tems (WORDS 1999), Santa Barbara, USA, January 1999.
[5] H. Kopetz. Real-Time Systems — Design Principles for Dis-

tributed Embedded Applications. Kluwer Academic Pub-

lishers, 1997.
[6] H. Kopetz. A Comparison of CAN and TTP. In Proc. of

the IFAC Distributed Computer Systems Workshop, Como,

Italy, September 1998.

[7]1 H. Kopetz and W. Ochsenreiter. Clock Synchronization in
Distributed Real-Time Systems. |EEE Trans. on Computer,
Vol. 36(No. 8):933-940, August 1987.

[8] S. Lankes, M. Pfeiffer, and T. Bemmerl. Design and Im-
plementation of a SCl-based Real-Time CORBA. In 4th
|IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2001), Magdeburg,
Germany, May 2001.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Jour-
nal of the ACM, \ol. 20:pp. 46-61, 1997.

[10] OMG Technical Document formal/98-07-01. The Common
Object Request Broker — Architecture and Specification, 2.2
edition, 1998.

[11] OMG Technical Document orbos/98-10-05.
CORBA — Joint Submission, 1998.

[12] P. Ramanathan, K. Shin, and R. Butler. Fault-Tolerant Clock
Synchrnization in Distributed Systems. |IEEE Computer,
\ol. 23(No. 10):33-42, October 1990.

[13] M. Reke. Entwicklung und Implementierung eines
Netzwerkkarten-Treibers sowohl unter Linux als auch
RTLinux zur Realisierung eines echtzeitfahigen Netzw-
erkprotokolls. Master’s thesis, Lehrstuhl fiir Betriebssys-
teme, RWTH Aachen, February 2001.

[14] D.C. Schmidtand F. Kuhns. An Overview of the Real-Time
CORBA Specification. IEEE Computer, 33(6):56-63, 2000.

[15] T. Shanley. Pentium Pro and Pentium Il Architecture.
Addison-Wesley, 1998.

[16] TTTech Computertechnik. Specification of the TTP/C Pro-
tocol, 1999.

[17] U. Wenkebach. CAN in der Medizintechnik. Elektronik,
16Q97 Issue, 1997.

Realtime

	1 . Introduction
	2 . Networking under Real-Time Conditions
	2.1 . Known Architectures

	3 . Design and Implementation of the Ethernet-based Real-Time Network
	3.1 . Temporal Synchronization
	3.2 . Media Access Protocol
	3.3 . Performance Evaluation of the Ethernet-based Real-Time Network

	4 . Design of ROFES based on a time-triggered ethernet protocol
	4.1 . Requirements of RTLinux
	4.2 . Requirements of the time-triggered ethernet protocol

	5 . Performance Evaluation of ROFES
	6 . Conclusions and Future Work

