
Integration of a CAN-based Connection-oriented
Communication Model into Real-Time CORBA

Stefan Lankes, Andreas Jabs, Thomas Bemmerl
Lehrstuhl für Betriebssysteme,

RWTH Aachen, Kopernikusstr. 16,
52056 Aachen, Germany

E-mail: {stefan, jabs, thomas}@lfbs.rwth-aachen.de

Abstract

The Real-Time CORBA and minimumCORBA specifica-
tions are important steps towards defining standard-based
middleware which can satisfy real-time requirements in
an embedded system. These requirements can only be
fulfilled if the middleware utilizes the features of a real-time
network. The Controller Area Network (CAN) is one of the
most important networks in the field of real-time embedded
systems. Consequently, this paper presents a CAN-based
connection-oriented point-to-point communication model
and its integration into Real-Time CORBA. In order to
make efficient use of the advantages of CAN, we present an
inter-ORB protocol, which uses smaller message headers
for CAN and maps the CAN priorities to a band of CORBA
priorities. We also present design and implementation
details with some preliminary performance results.

Keywords: Real-Time CORBA, Controller Area Net-
work (CAN), distributed real-time embedded (DRE) appli-
cations, real-time communication systems

1. Introduction

Previously generation real-time applications were run-
ning on single processor environments, since the problems
to be solved were relatively simple. Nowadays, distributed
applications like avionics, telecommunication and process
control need real-time properties in a distributed environ-
ment. In these systems, intelligent sensors, actuators and
distributed control structures replace the centralized com-
puter. This leads to a modular system architecture in which
smart autonomous objects cooperate to control a physical
process.

Middlewares like CORBA [14] and DCOM1 help to

1http://www.microsoft.com/com/tech/dcom.asp

improve the flexibility, extensibility, maintainability and
reusability of distributed applications. Because these mid-
dleware architectures were not designed for real-time appli-
cations, the Object Management Group2 (OMG) has spec-
ified a real-time extension for CORBA [16] and called it
Real-Time CORBA. However, Real-Time CORBA is not im-
mediately applicable to embedded real-time control systems
for several reasons.

• Real-Time CORBA implementations have excessive
resource demands. A first step to solve this problem
is the minimumCORBA [15] specification, which is a
cut-down version of CORBA specified by the OMG.
In [8] Schmidt presents an alternative solution using a
highly configurable real-time object request broker.

• Often Real-Time CORBA implementations are built
on the top of unpredictable off-the-shelf soft- and hard-
ware and do not support typical real-time networks for
embedded systems like the Controller Area Network
(CAN) [19].

To solve these problems we have developed a new Real-
Time CORBA implementation, which is especially de-
signed for embedded systems and supports the Controller
Area Network. Therefore we called our implementa-
tion Real-Time CORBA for embedded Systems3 (ROFES)
[10][11].

An application example for ROFES is a passenger vehi-
cle in an intelligent transportation system. Such a vehicle
is equipped with numerous microprocessors and uses the
CAN bus as network architecture. It is connected to the
internet via a wireless network which makes it possible for
driver to receive road traffic conditions. ROFES can be used
to develop distributed real-time applications inside the vehi-
cle, which use the CAN bus, and these applications can also

2http://www.omg.org
3http://www.lfbs.rwth-aachen.de/users/stefan/rofes

http://www.microsoft.com/com/tech/dcom.asp
http://www.omg.org
http://www.lfbs.rwth-aachen.de/users/stefan/rofes


communicate via the wireless network with other CORBA
applications outside the vehicle. Real-Time CORBA is the
easiest way to integrate traditional distributed real-time ap-
plications into normal distributed applications. Therefore
these new possibilities open new areas of applications to
automotive industry.

CAN is an industrial real-time network which is widely
used in the automotive industry. Since its maximum net-
work bandwidth is only 1 Mbps and the maximum pay-
load per message is only 8 bytes, it is very challenging to
run Real-Time CORBA applications on a CAN-based dis-
tributed platform. To exploit the advantages of CAN for
ROFES, we have designed a new inter-ORB protocol with
smaller message headers. This inter-ORB protocol is an
extension of Kim’s embedded inter-ORB protocol (EIOP)
[7] [5] [6] for a CAN-based CORBA. EIOP was however
not developed for Real-Time CORBA and therefore it pro-
vides no translation between the priority handling of CAN
and Real-Time CORBA. This paper presents a mapping be-
tween CAN priorities and a band of Real-Time CORBA pri-
orities and evaluates its performance.

This article is organized as follows: Section 2 summa-
rizes the technical backgrounds of this work and describes
basic principles of Real-Time CORBA and the Controller
Area Network. Before the special inter-ORB protocol for
the CAN bus is described in section 4, the article presents
the realization of a point-to-point protocol for the CAN bus
and the mapping between CAN priorities and bands of Real-
Time CORBA priorities in section 3. Section 5 evaluates
and discusses the performance of our implementation. Fi-
nally, some general assessments of the lessons learned are
provided and some conclusions are drawn in section 6.

2. Technical Backgrounds

2.1. Basic CAN Features

The Controller Area Network (CAN) [19] is an ISO de-
fined serial communication bus. It was originally developed
during the 80’s by the Robert Bosch GmbH4 for the au-
tomotive industry. The CAN bus works according to the
Producer-Consumer-Principle: messages are not sent to a
specific destination address, but rather as a broadcast (aimed
at all receivers) or a multicast (aimed at a group of re-
ceivers). A CAN message has a unique identifier, which
is used by devices connected to the CAN bus to decide
whether to process or ignore the incoming message.

Two variants of the CAN protocol exist. The main dif-
ference between the first (CAN 2.0A) and second variant
(CAN 2.0B) is that the former uses 11 bits to uniquely iden-
tify each message, while the latter uses 29 bit identifiers.

4http://www.can.bosch.com

For correct operation of the CAN bus, the identifiers of two
messages sent at the same time must never be the same, con-
sequently CAN 2.0B offers a greater variety and scope for
concurrent message Id’s.

The CAN bus is based on the arbitration scheme Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA)
[9]. During arbitration process, any node willing to send
a CAN message starts sending bit by bit the 11 or (in case
of CAN 2.0B) 29 identifier bits. Each time a bit is applied
to the bus, the sending node checks whether the bus really
is at the corresponding voltage level — high for an applied
logical 1 and low for an applied logical 0.

If any of the attached nodes apply a logical 0, the whole
voltage level of the bus is drawn to low. The bus thus of-
fers the behavior of a ”Wired-And”. The CAN Specification
therefore calls the logical 0 – corresponding to the low volt-
age level – the dominant bit and the logical 1 the recessive
bit.

In case the sending node detects a difference between
the bit it sent and the voltage level on the bus, it backs
off, losing this arbitration cycle. As soon as the bus is free
again, the node retries to send its message. If it was possible
to have two messages with the same identifier at the same
time, this arbitration process would fail and the system state
would be undefined. As a consequence of this arbitration
scheme, messages with a low identifier (i.e. starting with
many leading zeros) have a high priority and are sent before
any messages with a lower priority.

The addressing scheme of the CAN-Bus is particularly
suited for a publisher/subscriber communication model.
Since the publisher/subscriber model is extremely attractive
for the structuring of object-oriented control applications,
the OMG specified a CORBA event service [13] according
to this model. For the real-time domain, several implemen-
tations [2][18] of the event service exist, which are often
based on TCP/IP. Kaiser in [4] and Kim in [7] present pos-
sibilities to integrate the CAN-Bus into the event service.
To use the CAN-Bus in Real-Time CORBA, a CAN-based
connection-oriented communication model has also to be
developed. Kim presents in [7] the embedded inter-ORB
protocol (EIOP) for a CAN-based CORBA. But EIOP was
not especially developed for Real-Time CORBA. There-
fore, EIOP currently offers no translation between the pri-
ority handling of CAN and Real-Time CORBA. We extend
this protocol to map CAN priorities to a band of Real-Time
CORBA priorities.

2.2. Basic Real-Time CORBA Features

To understand the integration of our CAN protocol into
Real-Time CORBA, this section explains the necessary fea-
tures of the Real-Time CORBA specification. A more de-
tailed description of the Real-Time CORBA specification is

http://www.can.bosch.com


given in [16] and [20].

The original CORBA specification supports only im-
plicit bindings, establishing resources on demand. For
real-time applications with deterministic Quality of Service
(QoS) requirements these implicit bindings are inadequate.
Real-Time CORBA defines explicit binding mechanisms
which improve the performance and predictability of invo-
cations. One of the explicit binding mechanisms is the pri-
ority banded connection model. This facility allows a client
to communicate with the server via multiple transport con-
nections — each dedicated for carrying invocations with a
different CORBA priority or a range of priorities, as shown
in Figure 1. In such a model the server specifies the range of
priorities that a connection will be used for. This allows the
server to allocate all necessary resources. The selection of
the appropriate connection for each invocation is transpar-
ent to the application and is done by the ORB based on the
priority model. For instance, if the target object supports the
client propagated model as priority model, the client selects
the connection by its current priority and transmits this pri-
ority with the invocation. The server processes the incom-
ing request at the priority of the client thread, which orig-
inally invoked the operation. Another model is the server
declared model, which allows a server to dictate the priority
at which an invocation made on a particular object will be
executed. In such a model, the priority is specified a priori
by the server. The server encodes the priority of the object
in its reference, which is then published to the clients.

Priority 16001−24000

Client

real−time ORB real−time ORB

Server

Priority

Priority

6001−16000

Priority

0−6000

24001−32767

Figure 1. Example of a Priority Banded Con-
nection

Client and server can run on different operating systems
and use different native thread priority schemes. For the
client-propagated and the server-declared priority model,
Real-Time CORBA needs a priority model independent of
the operating system. The OMG defines a logical prior-
ity which has a system-wide uniform representation called
CORBA Priority. A real-time ORB provides a priority map-
ping between CORBA priorities and native priorities for
each supported platform.

3. Connection-Oriented Protocol for ROFES

There are different application-layer protocols available
for the CAN bus[1][12]. In these protocols it is difficult to
implement a mapping between the priority of a CAN mes-
sage and the importance of a Real-Time CORBA method
invocation. For this reason we decided to design a new pro-
tocol.

3.1. Selection of the CAN Identifier

Because the CAN identifier specifies the priority of the
messages, the identifier is the main component of the con-
troller area network and must be selected carefully. Our
protocol is based on CAN 2.0A and thus only uses 11-bit
CAN identifiers, because the arbitration process of CAN
2.0A is simpler and has better real-time characteristics than
the arbitration process of CAN 2.0B. Thus, our Real-Time
CORBA implementation must make efficient use of the bits
of the identifier and take care of minimum execution over-
head.

Figure 2 presents the structure of the CAN identifier.
This CAN identifier is divided in four sub fields:

• The proto field denotes an upper layer protocol identi-
fier and possesses four possible values:

– 002 is representing the top priority protocol and
is reserved for a potential user-defined protocol.

– 012 is reserved for a publisher/subscriber proto-
col, which we are currently developing for RO-
FES.

– 102 is representing the connection oriented-
protocol, which is discussed in this paper.

– 112 is used for the network management proto-
col. A connection between client and server or
publisher and subscriber will be established over
this protocol. As a result they both get a valid
CAN identifier with the proto field 012 or 102

which they can use to exchange messages.

• The next field priority represents the priority of the
message.

• The field node identifier specifies the transmitting
node. Therefore, the identifier serves as a domain
name which is globally identifiable all across the net-
work.

• The last field represents a port number that is local to
a particular transmitting node.

The small priority field reduces the granularity of priority
supported by CAN and the small node identifier supports



2 bits 2 bits

priorityproto

3 bits4 bits

node identifier port number

proto =




00 reserved
01 publisher/subscriber communication
10 point-to-point communication
11 binding

Figure 2. Structure of the CAN Identifier

only 16 distinguishable nodes. If more nodes or priorities
need to be differentiated, then the protocol can be extended
to CAN 2.0B. This supports a larger CAN identifier, but
the complexity of the arbitration process in CAN 2.0B is
much higher than in CAN 2.0A and leads to a decrease in
the network performance.

The node identifier, port number and priority form a
global connection identifier. This allows to use the same
port in distinct nodes with four different priorities. The
header does not include any form of destination addresses.
The receiving CAN nodes can select and accept messages
sent from a specific subset of ports, using the message fil-
tering mechanism of the CAN bus adapter.

3.2. Structure of the Bidirectional Connections

To realize bidirectional connections within Real-Time
CORBA, our solution establishes pairs of unidirectional
pipes. The connections use two local ports and each port
belongs to the source node of each pipe. Four priority ranks
exist for each port, which are specified by the priority field
of the identifier. A pair of unidirectional pipes for one pri-
ority rank is shown in figure 3.

� � � � � � � � � � � � � 	 � 
 � � 
 
 � � � � � � � � � 
 � � � � � � 
 � � �

� � � � � � � � � � � � � 	 � 
 � � 
 � � � � � � � � � � � � � � � � � 
 � � �

	 � 
 � � 


� � � � 


	 � 
 � � �

� � � � �

� � � � � �

� � � � � �

Figure 3. Point-to-point Communication via
two Unidirectional Pipes

To accept a message, the destination node must know
the node identifier and port number of the source. There-
fore, the connection requires two communication endpoints
and the nodes must exchange information about the port ad-
dress of each endpoint. To exchange between the endpoints,
a special listening port exists on the server-side. The server
publishes its node identifier and port number of the listening

port via an IOR profile [3]. In this profile, the node identi-
fier replaces the host name. Therefore, the creation of an
IOR profile for our CAN protocol is similar to IIOP5 and
the changes to the code of ROFES are minimal. With use of
this profile, the client can evaluate the listening port num-
ber and the node identifier. To establish a connection, the
client sends its local port number and node identifier to the
listening port of the server. This information is sent by the
client via the valid CAN identifier, which is made up of the
listening port number, the node identifier of the server and
the protocol type 112 of the network management protocol.
The server answers with the port number on which it awaits
incoming requests. During connection establishment, the
priority field of the CAN-identifier is ignored and can take
any value.

3.3. Integration into Real-Time CORBA

In order to achieve optimal real-time characteristics, the
priority of a CORBA message, which is either inherited
from the calling thread (client propagated model) or dic-
tated by the server (server declared model), must be mapped
to a priority of the CAN message, which is described by the
priority field in the CAN identifier and shown in figure 2. A
direct mapping between the priority of the CORBA message
and the CAN message is not advisable, because the priority
field is only two bits long and CORBA knows 32768 differ-
ent priority ranks. If a distributed real-time application uses
Real-Time CORBA’s priority banded connections, our pro-
tocol determines the importance of a connection by its band
of priorities. Therefore, our protocol can map four different
bands of priorities into the priority of the CAN message,
which is specified by the priority field in the CAN identi-
fier.

The CAN bus allows a maximum of 8 bytes data in a sin-
gle CAN message. In order to be able to send large CORBA
messages, our protocol has to split them into a series of
CAN messages with the same CAN identifier on the side
of the sender, which is shown in figure 4, and rejoin these
messages on the receiving side. This splitting is necessary
because the basic header of a GIOP message6 is 12 bytes
long.

4. Size Reduction of the Inter-ORB Protocol

The GIOP protocol is designed and optimized for het-
erogenous systems and creates large messages. This is not
suitable for the CAN bus, because a CAN message con-
tains only 8 bytes of data and the bandwidth is very small

5Internet Inter-ORB Protocol
6The OMG defines General Inter-ORB Protocol (GIOP) as basic com-

munication protocol between a client and a server.



CORBA message (40 byte)8 byte 8 byte 8 byte 8 byte

CAN Bus

8 byte

Sender

11 bit identifier

CAN messages8 byte 8 byte 8 byte

Figure 4. Fragmentation of a Real-Time
CORBA Message

(1 Mbps). Therefore, we designed a smaller inter-ORB pro-
tocol for the CAN bus, which we called CANIOP, and used
Kim’s Compact Common Data Representation (CCDR) [7]
to encode integers.

4.1. Smaller Data Representation of Integers

The Compact Common Data Representation (CCDR) is
a integer codec with variable length. Unlike the CDR7,
which the OMG defined as data representation, the packed
data encoding scheme of CCDR does not require integer in-
stances to be aligned on 32-bit boundaries. Accordingly,
CCDR creates no paddings between the various data types.
In the variable length integer encoding of CCDR, an integer
occupies one to five bytes depending on the actual value it
represents, as summarized in table 1. While an integer is
always stored in four bytes in CDR, most integer instances
are smaller than 232 − 1. For instance, in CDR, integers are
very frequently used to represent the sizes of string and
sequence data types and are small values in the major-
ity of cases. This encoding scheme increases the processing
overhead of message encoding and decoding, but the advan-
tages of smaller messages outweigh this factor for the CAN
bus.

two size max. value
MSBs (in bytes) (unsigned)

00 1 26 − 1
01 2 214 − 1
10 3 222 − 1
11 5 232 − 1

Table 1. Variable Length of the Integer Codec

7Common Data Representation

struct GIOPMessageHeader_1_2 {
char magic[4];
octet major;
octet minor;
octet flags;
octet message_type;
unsigned long message_size;

};

struct CANIOPMessageHeader {
octet type_and_flags;
octet message_size[2];

};

Figure 5. Structure of the GIOP- and CANIOP
Message Header

4.2. Design of the CAN-based Inter-ORB Protocol

In this section we present a smaller protocol called CAN-
IOP between server and client, which based on Kim’s
EIOP[7]. Kim’s protocol is a smaller protocol than CAN-
IOP. For instance, Kim’s protocol does not support the
service context list of GIOP. But to implement the client
propagated protocol [16] of Real-Time CORBA this list is
needed. Therefore, we analyzed all necessary components
and integrated this into our protocol.

To explain our protocol the paper compares this with the
standard protocol GIOP 1.2. A complete description of all
message types is too long for this paper. Therefore, it con-
centrates on request- and reply-messages as they are the
most important message types. Every GIOP message be-
gins with the same 12 byte long header, which is shown in
figure 5. To clearly identify a message as GIOP message
the header begins with an array of octets, which contains
the value GIOP. This array is not necessary for CANIOP,
because the protocol is clearly identified by the first two
bits of the CAN message identifier (see figure 2). Addition-
ally, the GIOP header contains the version number of the
protocol, a flag to identify the sender’s processor architec-
ture, the message type and the message length. In CANIOP
the version number of the protocol, the flag to identify the
sender’s processor architecture and the message type are en-
coded in one byte, which is called type_and_flags in
figure 5. This is possible because CORBA uses only eight
different message types and thus the type can be encoded in
3 bits of the octet type_and_flags. Additionally, the
message length is only encoded in two bytes because the
CAN bus is designed for small messages. This steps re-
duce the message size from 12 bytes in GIOP to 3 bytes
in CANIOP. Consequently, the first CAN message contains



the complete message header and indicates the length of the
incoming message to the receiver.

If the client invokes a server method, the client sends a
message header followed by the request message, which is
shown in figure 6, and the parameters of the method to the
server. The main difference between the GIOP and CAN-
IOP request message is the representation of the method
name. In GIOP the complete name is sent to the server as a
string. In CORBA, a string is encoded as an array of charac-
ters and its length as 32-bit integer. In CANIOP, the method
name is represented by a hash number. This hash number
is calculated by a collision-free hash function, which is cre-
ated by the idl compiler for each interface.

struct GIOPRequestHeader_1_2 {
unsigned long request_id;
octet response_flag;
octet reserved[3];
TargetAddress target;
string operation;
ServiceContextList svc_ctxt;

};

struct CANIOPRequestHeader {
unsigned long request_id;
octet response_flag;
TargetAddress target;
unsigned long operation;
ServiceContextList svc_ctxt;

};

Figure 6. Structure of the Request Message
in GIOP and CANIOP

In conjunction with a request, the client sends additional
information to the server in the service context list. For in-
stance, if the server supports the client propagated model,
the clients send their current priority in the service context
list to the server. With the reply message, which is shown
in figure 7, the server answers the request of the clients and
sends the priority which the server internally used to serve
the request back in the service context list. With this in-
formation, the client compares this priority with its current
priority and verifies if the server has used the correct pri-
ority internally. Over the CAN bus, ROFES only sends the
priority as additional information and the clients renounce
the priority checking. Therefore the reply message of RO-
FES, which is shown in figure 7, lacks the service context
list.

All integers in this messages are encoded in CCDR for-
mat. Therefore the size of the request and reply message
depends on their contents. In the best case, a reply message

struct GIOPReplyHeader_1_2 {
unsigned long request_id;
unsigned long reply_status;
ServiceContextList svc_ctxt;

};

struct CANIOPReplyHeader {
unsigned long request_id;
unsigned long reply_status;

};

Figure 7. Structure of the Reply Message in
GIOP and CANIOP

can be encoded in 5 bytes and can consequently be sent with
its header in a single CAN message.

5. Performance Evaluation

The benchmark in this section is based on a benchmark
which is described in [17]. In this benchmark the client has
three rate-based threads running at different priority levels.
The high-priority thread runs at 50 Hertz, the medium pri-
ority thread at 25 Hertz and the low priority thread at 12.5
Hertz. All these threads invoke the following method on the
server:

void method(in unsigned long work)

The work parameter specifies the amount of CPU intensive
work the server will perform to service this invocation. In
our case, the method checks if the number 4591 is a prime
number and the parameter work specifies how often the
method checks this.

The client has also one best-effort thread making contin-
uous invocations. The best-effort thread has a lower priority
than the rated-based threads and invokes the same method
with work = 0 as parameter.

The test platform consists of two 400 MHz Pentium II
systems with 128 MBytes RAM. LynxOS 3.0.18 is used
as operating system for these computers. The systems are
connected with the PCI-CAN interface from ESD GmbH 9,
which based on Philips CAN controller SJA1000. The test
platform is clearly not an embedded system. However, hav-
ing very low memory footprints, the results should be com-
parable to the results on an embedded system.

All experiments in this section use the client propagated
model as priority model. The first experiment uses a clas-
sic CORBA configuration with no priority banded connec-
tions and only one threadpool with three threads to process

8http://www.lynx.com
9http://www.esd-electronics.de

http://www.lynx.com
http://www.esd-electronics.de


the incoming requests. Therefore this benchmark can not
benefit from the additional priority information in the CAN
messages. Figure 8 shows the throughput for each of three
client threads as the workload increases. The combined ca-
pacity desired by the three client threads is 87.5 invocations
per second (50 + 25 + 12.5). The maximum workload to
achieve all desired frequencies can be calculated as follows:

(workload ∗ tprime + tinvocation) ∗ 87.5
1

sec
≤ 1

In this equation tprime represents the average time to
evaluate that 4591 is a prime number, and t invocation the
average time to invoke the method, which directly returns
to the calling process. On the test system, their values were
found to be tprime = 232µsec and tinvocation = 945µsec.
Therefore, the maximum workload to achieve all desired
frequencies is 45. Figure 8 shows that each of the three
client threads achieves its desired frequency for lower work-
loads. After the workload is increased beyond 45, deadlines
start being missed. The expected behavior of distributed
real-time applications is to drop requests from client threads
with lower priority before dropping requests from those
with higher priority. Unfortunately, this solution can not
realize this expected behavior.

0

10

20

30

40

50

60

30 40 50 60 70 80 90 100 110

In
vo

ca
tio

ns
 / 

se
c

Work

50 Hertz (high priority)
25 Hertz (medium priority)

12.5 Hertz (low priority)

Figure 8. Throughput using CAN and no Pri-
ority Banded Connections

The second experiment creates an own priority banded
connection for each thread. For each connection, the server
possesses a threadpool with lanes for high, medium and
low priorities to handle incoming requests and an additional
threadpool for the continuous thread. Therefore this bench-
mark can benefit from the additional priority information in
the CAN messages.

Figure 9 shows the throughput achieved for each of the
three threads as the workload increases. Each of the three
client threads achieves its desired frequency for workloads
lower or equal 45. After the workload increases beyond 45,
deadlines start being missed. Unlike the first experiment,

the requests of the low priority thread are dropped and the
medium and high priority thread can achieve their desired
frequency. If the low priority thread dropped all requests,
the medium priority thread starts to drop its requests and
the high priority thread can achieve its desired frequency.
Until the execution time of the method is larger than the
period of the high priority thread, the high priority thread
achieves its desired frequency. The theoretical maximum
workload at which the high-priority thread can achieve its
desired frequency is in our implementation 82.

0

10

20

30

40

50

60

30 40 50 60 70 80 90 100 110

In
vo

ca
tio

ns
 / 

se
c

Work

50 Hertz (high priority)
25 Hertz (medium priority)

12.5 Hertz (low priority)

Figure 9. Throughput using Priority Banded
Connections over CAN

The last experiment, whose results are shown in figure
10, uses the same configuration as the second experiment,
but instead of CAN this experiment uses fast ethernet as
network interface. In contrast to the CAN experiment re-
quests from the lower and medium threads are dropped at
the same time to achieve the desired frequency of the high
priority thread. Only the CAN-based solution can fulfill the
expected behavior and drops at first the request from the
low priority thread and then the requests from the medium
thread to achieve the desired frequency of the high priority
thread. Therefore, the CAN-based solution is the better one
for distributed real-time applications.

The main advantage of ethernet is its high band-
width. Therefore the average time to invocate a method,
which directly returns to the calling process, is lower at
tinvocation = 416µsec and the maximum workload to
achieve the desired frequency of the high priority thread is
with 85 higher than CAN-based solution.

6. Conclusions and Future Work

With the work described herein, the CAN bus has been
rendered more usable in the field of distributed real-time
systems. To realize this the importance of a priority banded
connection has been mapped to the priority of CAN mes-
sage specified by its identifier. The overhead in the GIOP



0

10

20

30

40

50

60

30 40 50 60 70 80 90 100 110

In
vo

ca
tio

ns
 / 

se
c

Work

50 Hertz (high priority)
25 Hertz (medium priority)

12.5 Hertz (low priority)

Figure 10. Throughput by using Priority
Banded Connections over Ethernet

protocol has been reduced by utilizing the features of the
CAN-Network, especially the compact message header, the
using of hash numbers as operation names and the omis-
sion of mostly unneeded features, considering the fact that
this implementation is targeted at embedded systems. A
significant reduction of occupied bandwidth and fragmen-
tation has been achieved by porting the CCDR encoding
scheme to ROFES. Our benchmarks prove that Real-Time
CORBA over CAN represents a good solution to implement
distributed real-time applications. Also, the availability and
preemptiveness of the network has been enhanced as a re-
sult of the shorter message length.

Further research could be targeted at enlarging the num-
ber of possible nodes on a network, e.g. through the usage
of CAN2.0B message headers. The achieved decrease in
message length should help alleviate eventual problems of
increased network latency for greater numbers of nodes on
a multicast/broadcast network. The arbitration scheme of
the Controller Area Network is an ideal fundament for an
event service. For that reason we are currently developing
such a CAN-based event service for Real-Time CORBA.

References

[1] CAN in Automation (CiA) Draft standard 301 version 3.0.
CANopen – Communication Profile for Industrial Systems
based on CAL, 1996.

[2] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The Design
and Performance of a Real-Time CORBA Event Service. In
Proceedings of OOPSLA ’97. ACM, 1997.

[3] M. Henning and S. Vinoski. Advanced CORBA Program-
ming with C++. Addison-Wesley, 1999.

[4] J. Kaiser and M. Mock. Implementing the Real-Time Pub-
lisher/Subscriber Model on the Controller Area Network
(CAN). In 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 1999),
Saint-Malo. France, May 1999.

[5] T. Kim, G. Jeon, and S. Hong. Seamless Integration of Real-
Time Communications into CAN-CORBA with Extended
IDL and Fast-Track Messages. In IFAC Workshop on Dis-
tributed Computer Control Systems (DCCS), Sydney, Aus-
tralia, December 2000.

[6] T. Kim, K. Kim, G. Jeon, and S. Hong. Resource-Conscious
Customization of CORBA for CAN-Based Distributed Em-
bedded Systems. In IEEE International Symposium on
Object-Oriented Real-Time Computing, Newport Beach,
CA, USA, March 2000.

[7] T. Kim, K. Kim, G. Jeon, S. Hong, and S. Kim. Inte-
grating Subscription-based and Connection-oriented Com-
munications into the Embedded CORBA for the CAN Bus.
In IEEE Real-time Technology and Application Symposium,
Washington D.C., USA, May 2000.

[8] R. Klefstad, D. C. Schmidt, and C. O’Ryan. Towards Highly
Configurable Real-Time Object Request Broker. In 5th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2002), Washington
DC, USA, April 2002.

[9] H. Kopetz. Real-Time Systems – Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Pub-
lishers, 1997.

[10] S. Lankes, M. Pfeiffer, and T. Bemmerl. Design and Im-
plementation of a SCI-based Real-Time CORBA. In 4th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2001), Magdeburg,
Germany, May 2001.

[11] S. Lankes, M. Reke, and A. Jabs. A Time-Triggered Eth-
ernet Protocol for Real-Time CORBA. In 5th IEEE In-
ternational Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC 2002), Washington DC, USA,
April 2002.

[12] D. Noonen, S. Siegel, and P. Malony. DeviceNet Application
Protocol. In 1st International CAN Conference, Erlangen,
Germany, 1994.

[13] OMG Technical Document formal/01-03-01. Event Service
Specification, 1.1 edition, 2001.

[14] OMG Technical Document formal/98-07-01. The Common
Object Request Broker – Architecture and Specification, 2.2
edition, 1998.

[15] OMG Technical Document orbos/98-08-04. minimum-
CORBA – Joint Submission, 1998.

[16] OMG Technical Document orbos/98-10-05. Realtime
CORBA – Joint Submission, 1998.

[17] I. Pyarali, D. C. Schmidt, and R. K. Cytron. Techniques for
Enhancing Real-time CORBA Quality of Service. Submitted
to the IEEE Proceedings, 2002.

[18] R. Rajkumar, M. Gagliardi, and L. Sha. The Real-Time Pub-
lisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementa-
tion. In Proceedings of the IEEE Real-time Technology and
Applications Symposium, June 1995.

[19] ROBERT BOSCH GmbH. CAN Specification Version 2.0,
1991.

[20] D. C. Schmidt and F. Kuhns. An Overview of the Real-Time
CORBA Specification. IEEE Computer, 33(6):56–63, 2000.


	1 . Introduction
	2 . Technical Backgrounds
	2.1 . Basic CAN Features
	2.2 . Basic Real-Time CORBA Features

	3 . Connection-Oriented Protocol for ROFES
	3.1 . Selection of the CAN Identifier
	3.2 . Structure of the Bidirectional Connections
	3.3 . Integration into Real-Time CORBA

	4 . Size Reduction of the Inter-ORB Protocol
	4.1 . Smaller Data Representation of Integers
	4.2 . Design of the CAN-based Inter-ORB Protocol

	5 . Performance Evaluation
	6 . Conclusions and Future Work

