
Long Paper

Copyright © 2004 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2004 ACM 1-58113-884-9/04/0006 $5.00

Conceptual Design and Implementation of a Pipeline-Based VR-System
Parallelized by CORBA, and Comparison with Existing Approaches

Andreas Gerndt∗, Mark Asbach, Torsten Kuhlen, Christian Bischof
Center for Computing and Communication,

RWTH Aachen University, Aachen, Germany

Stefan Lankes†, Thomas Bemmerl
Chair for Operating Systems,

RWTH Aachen University, Aachen, Germany

Abstract

The object-oriented Virtual Reality toolkit ViSTA developed at
Aachen University utilizes the Visualization Toolkit (VTK) in order
to implement scientific visualization applications. VTK already of-
fers parallelization possibilities. Its parallelization strategy cuts off
the visualization pipeline between nodes and distributes these parts
over several processes. By contrast, ViSTA makes use of an MPI-
based parallelization framework whose parallelization components
are decoupled from the algorithmic layer. Algorithms implemented
here merely use sequential VTK pipelines for the computation.

Our new approach also parallelizes VTK’s pipelines; however, the
parallelization is based on CORBA. The advantages over MPI-
based implementations are a straightforward integration into an
object-oriented framework and the handling of complex data struc-
tures. In this paper, we present our CORBA-based implementation
and compare it to others. We show that CORBA should be pre-
ferred for complex and object-oriented environments and that it has
speed-up properties in parallel environments similar to MPI-based
approaches.

Keywords: Visualization Pipeline, Parallelization, CORBA, MPI,
Virtual Reality

1 Introduction

In general, Virtual Reality toolkits organize their rendering objects
by means of scene graphs. This makes it possible to navigate and to
manipulate virtual objects interactively. However, VR applications
in the field of scientific visualization additionally need data flow
design patterns since the objects actually handled are not graphical
objects. These have to be created first and have to be updated fre-
quently. One of the main approaches to control this visualization
data flow is the pipes and filters pattern. Each node of this pipeline
gets data from source nodes, deals with it, and offers the modified
results as an input for the following neighbor nodes.

ViSTA [van Reimersdahl et al. 2000], the VR toolkit developed at
Aachen University, also makes use of visualization pipelines in or-
der to implement scientific visualization. This functionality is not

∗e-mail: gerndt@rz.rwth-aachen.de
†e-mail: stefan@lfbs.rwth-aachen.de

completely implemented from scratch; rather the essential skeleton
classes are offered by a toolkit called Visualization Toolkit (VTK)
[Schroeder 2001].

The pipeline handling is always similar. First, the pipeline is as-
sembled; thereafter, each node of the pipeline can be modified with
appropriate parameters. Finally, the user can send an update com-
mand to the last node, typically the render node. This triggers off
an execution through the whole pipeline starting with the first node,
which usually contains simulation data. Afterwards, a repeated up-
date command again goes through the pipeline but without exe-
cutions because all nodes are still up-to-date. If in the meantime
changes occurred at one node only the pipeline from this modified
node to the last node is executed.

Actor DataMapper PolyData ContourFilter GridReader

Figure 1: Data flow in a visualization pipeline.

Figure 1 shows a simple pipeline to compute iso-surfaces, in the fol-
lowing used as test case in this paper. The actor is a graphical object
and is updated every time the rendering loop of the VR application
is triggered. Hence, changing iso-values, which are parameters of
the contour filter, displays modified iso-surfaces immediately.

Because VR applications require real time interaction, the achieved
frame rates have to be above a certain frequency. Therefore, update
computations especially of more complex visualization pipelines
must be optimized. An obvious possibility is parallelization.

In this paper, we describe common parallelization schemes first.
Pipeline distribution approaches based on these basic schemes are
explained next, followed by a short introduction to CORBA and an
explanation of our CORBA-based parallelization approach. There-
after, test bed and results that show the usability and effectiveness
of this new approach are presented. Conclusion and a glimpse at
future work close this paper.

2 Parallelization Approaches

In general, all present operating systems offer functionalities to
split a running process into two or more separated threads. Most
system providers develop own solutions, although a common stan-
dard called pthread [Nichols et al. 1998] has been existing for some
years. Because multiple threads spawned by the same process are
executed in the same memory environment, the main disadvantage
is the restriction merely to one computer node. Therefore, the pos-
sible speed-up is limited by the number of local processors. Fur-
thermore, commonly used resources like shared I/O devices are
bottlenecks and restrict the speed-up even more. The main idea
of pthread is enabling concurrency, not parallelism.

368

mailto:gerndt@rz.rwth-aachen.de
mailto:stefan@lfbs.rwth-aachen.de

A second scheme uses messages to communicate between pro-
cesses that are strictly separated. The most well-known standard
is the Message Passing Interface (MPI) [Gropp et al. 1999]. Each
process runs as a copy of the others and can be distinguished by
a unique ID, which must be used to address communication part-
ners. MPI can be used on shared memory systems as well as on
distributed memory systems like PC clusters. The generalized ver-
sion MPICH also runs on heterogeneous cluster systems.

2.1 VTK

VTK is an open source project and is frequently used in the field of
scientific visualization. However, it is not a Virtual Reality toolkit
but can be integrated into VR systems as a visualization enhance-
ment. Therefore, we first consider the parallelization of VTK as an
approach to speed-up VR applications.

vtkAppendPD

vtkContourFilter vtkStructGridReader

vtkContourFilter vtkStructGridReader

vtkActorvtkPolyDataMapper

Server

Client

vtkOutputPort

vtkInputPort
vtkAppendPolyData

vtkInputPort

Figure 2: Pipeline distribution via ports.

By default, a number of filters can be executed in parallel using
multi-threading. The currently executed filter is split into multi-
ple threads, computes partial results, and joins them to one single
output result. The whole parallelism is encapsulated in one node.
In order to exceed this restricted parallelization possibility, a new
pipelining mechanism was introduced [Ahrens et al. 2000]. Since
then, normally used input and output links can be extended by in-
put and output ports that define the crossings between different pro-
cesses (Figure 2). Thus it allows splitting the pipeline into indepen-
dent parts, which are able to run on distributed processes.

A multi process controller manages connection and propagation
of data flow between distributed pipeline parts. This approach
hides network communication and makes the parallelization aspects
transparent for the user. However, in order to build up communi-
cation links between different processes, process numbers are used.
Additionally, port tags have to be managed. This makes it more
difficult to handle and to avoid errors.

Multi-threading as well as MPI can be used for the communication.
We applied both variants and compared them with the others.

3 Viracocha

Although ViSTA applies VTK functionality in order to implement
visualization pipelines, it follows a different parallelization ap-
proach. Instead of distributing parts of the pipeline, it distinguishes
between separate computation jobs and distributes whole pipelines
to single processes. Only the results are sent back to the visual-
ization client where they can directly be hooked into the rendering
loop. Therefore, ViSTA itself does not know anything about the

creation procedure; and the computing server removes the pipeline
each time an extraction job is finished.

Client Server

Sender
Receiver

Scheduler Worker Worker

VTK VTK

TCP/IP MPI

Figure 3: Viracocha’s communication concept.

The parallelization management is implemented in a separate mod-
ule called Viracocha [Gerndt et al. 2000; Schirski et al. 2003] and
is depicted in Figure 3. Just like ViSTA, it is platform independent.
The computing processes (called worker) communicate via MPI,
while requests and data are sent via TCP/IP between the visualiza-
tion client and the scheduler of the computing server.

Each worker can apply several commands in order to compute re-
quests. These commands are fixed to specific problems; i.e., assem-
bled extraction pipelines cannot be modified by the user anymore.
One can only control the computation by offered command param-
eters, which must be transmitted before the computation. Despite
this, these commands can consider load balances and other dynamic
strategies for an optimum computation. The computed results are
sent back to the visualization client and from then on they are de-
coupled from any pipeline interdependencies.

On the one hand, this asynchronous computation is an advantage
because update events by the rendering loop need not be propagated
through the whole pipeline, which could be a real-time problem due
to network latencies. On the other hand, interactive iso-value mod-
ifications, a usual activity during interactive explorations, cannot
simply apply by means of slightly changed pipelines and triggered
update events.

4 CORBA-based approach

The Common Object Request Broker Architecture (CORBA) is an
industry-defined standard [OMG 2002; Siegel 2000] for distributed
object-based systems. This standard has been specified by the Ob-
ject Management Group (OMG), a nonprofit organization with over
800 members, primarily from industry. The main goal of CORBA is
to implement distributed objects on heterogeneous systems. There-
fore, CORBA is independent of operating system, programming
language, and CPU.

CORBA uses the remote object model described in
[Tanenbaum and van Stean 2002]. The interface for these ob-
jects is specified in CORBA’s Interface Definition Language (IDL).
An interface definition with IDL provides syntax for expressing
methods and their parameters; however, IDL has not the ability to
describe the semantics of CORBA objects.

To implement a CORBA object, the interface definition must be
compiled by a special IDL compiler. This compiler creates a skele-
ton for the server and a proxy for the client in a specific program-
ming language (such as C++ or Java). Afterwards, the concrete
class has to be implemented by deriving from the skeleton.

Figure 4 describes a remote object invocation. If a client invokes
a method of the CORBA object, which is specified by the IDL,
the proxy automatically marshals the method invocation into small

369

messages, which the client process sends to the server process.
This is done in cooperation with the Object Request Broker (ORB),
which is a core component of CORBA. On the server-side, the
skeleton receives incoming messages, unmarshals them, and in-
vokes the right method of the CORBA object. In a similar way,
the result of the invocation has to be sent back from the server to
the client.

Client Process

Proxy Skeleton

Server Process

Object Request Broker (ORB)

Application

Object

Interface*Interface*

Network

Application

Code

* Identical Interface

Figure 4: Scheme of CORBA’s remote object model.

In order to invoke a method, the client has to know the location and
the supported protocol of the CORBA object. All these information
are encoded in the Interoperable Object Reference (IOR), which the
OMG defines as address mechanism to an object.

CORBA’s standard protocol is based on TCP/IP, which is called In-
ternet Inter-ORB Protocol (IIOP). But every CORBA implementa-
tion can define its own inter-ORB protocols. For instance, a shared
memory based protocol achieves better performance values than a
TCP/IP-based protocol and is an attractive alternative for VR sys-
tems. The ORB hides these protocols and the developer does not
need to know, which protocol is used by his application.

The description of the object invocation shows that the developer
has no direct contact to the underlying network. All messages are
automatically generated by the proxy and skeleton. Therefore, the
developer can concentrate on solving the intrinsic problem and does
not need to design the underlying communication architecture. This
reduces the error rate and increases the stability of distributed ap-
plications.

4.1 CORBA-Based Visualization Pipeline

Our new parallelization approach takes the design of VTK in or-
der to parallelize pipelines, even though it implements the selected
schemes slightly more consistent. Instead of using specialized port
objects with adapted methods, we just derived CORBA classes
from VTK filter and data objects and implemented input and output
methods in order to enable inter-process pipelining. Therefore, it
is now possible to link these CORBA-based nodes simply into the
pipeline like other native VTK pipeline nodes.

At first we implemented two classes in our prototype: a poly data
mapper and a poly data source that work as a poly data bridge

between two pipeline pieces. The implementation equivalent to
VTK’s distributed pipeline is depicted in Figure 5.

vtkAppendPD

vtkContourFilter vtkStructGridReader

vtkContourFilter vtkStructGridReader

vtkActorvtkPolyDataMapper

Server

Client

vtkAppendPolyData

PolyDataMapper

PolyDataSource

PolyDataSource

Figure 5: CORBA-based poly data objects control server / client
pipeline.

Multiple identical server processes exist in parallel and offer their
VTK visualization pipeline via CORBA. A client process controls
the servers, demands different parts of the data set from each server
and conjoins the results. Even in our approach, some additional
code must be invoked at start-up, which initializes the CORBA
environment. Furthermore, the application programmer is still re-
sponsible to distribute the load of the pipeline to several processes.
The following code extract shows the connection of an already ex-
isting server pipeline to the CORBA-based poly data mapper object:

PolyDataMapper_Impl * pPDM = NULL;
pPDM = PolyDataMapper_Impl::New();
pPDM->SetInput(pMyVtkPipeline->GetOutput());
PolyDataMapper_var pPDM_var = pPDM->_this();

// hand over the control to the ORB
pOrb->run();

Listing 1: Object activation on a server process.

In contrast to already described solutions, CORBA does not dictate
any process IDs or similar by the program code. A CORBA client
just needs to de-reference the correct IOR of a server object instance
in order to bind it to the client process. It is important to emphasize
that this is an object-based identification independent of running
processes, which can additionally be simplified by special name
services. The listing 2 depicts the needed steps at the client side.

The main advantage is the transparency of the location of running
server objects. The references stored as IOR strings can point to
an object in the same process, in a second process on the same
machine, or on a remote host anywhere on the internet. Further-
more, the CORBA application is capable to append and to remove
additional computing processes during run-time. This is usually a
restriction of MPI-based applications, where the applied processes
are determined at start-up.

The next advantage is that we can apply object-oriented methods to
extend the functionality of our interface classes. For instance, one
could derive new specialized classes from poly data mapper.

Our implementation, however, uses a kind of class factory to enable
client access to the sever pipeline. The poly data mapper only en-
ables pipeline communication and data propagation. But the factory
creates all needed objects of the server controlled pipeline includ-
ing mapper objects. Therefore, two classes have to be known on
the client side: the factory and the mapper class. In our prototype,
the factory defines iso-surface computation. The appropriate IDL
interface looks like the code in listing 3.

370

vtkAppendPolyData * pAPD = NULL;
pAPD = vtkAppendPolyData::New();

for (int i=0; i<entries; ++i)
{

CORBA::Object_var obj;

// create proxy for server object
obj = pOrb->string_to_object

((const char *) iorString[i]);
PolyDataMapper_var pPolyDataMapper =

PolyDataMapper::_narrow (obj.in());

// connect to remaining pipeline
PolyDataSource * pPDS =

PolyDataSource::New();
pPDS->SetInput(pPolyDataMapper);
pAPD->AddInput(pPDS->GetOutput());

// decreases vtk reference counter only!
pPDS->Delete();

}

Listing 2: De-referencing remote objects.

interface IsoSurface
{

PolyDataMapper GetOutput();
oneway void SetData(in string DataFileName,
in string ScalarName);

attribute float FirstValue;
attribute float SecondValue;

};

Listing 3: Iso-surface IDL description.

Instead of poly data mapper IORs, our client process now uses IOR
references of created iso-surface objects in order to modify server
pipelines. These iso-surface objects are also used to receive re-
spective poly data mapper proxies, which allow access to the end
points of established server pipelines. These proxies are connected
via poly data sources to the remaining client pipeline. A released
update event is now propagated via the CORBA managed poly data
bridge to the end of the merged pipeline, which thereafter computes
data in reverse order and finally returns the wanted results for the
rendering. Once defined, for instance iso-values can be modified
and read like attributes of any locally defined class:

oldValue = pIsosurface_var->FirstValue();
pIsosurface_var->FirstValue (newValue);

Listing 4: Access to remote object attributes.

In addition to this convenient handling, it is possible to verify the
correct type of an object. This is not available in the other ap-
proaches. Based on the IDL description, this matching test is al-
ready applied if a downcast of a reference to a certain class is car-
ried out. The validity of a reference is checked explicitly. If an
invalid reference is utilized, an exception will be thrown.

5 Test bed

A newly implemented approach should be compared to already ex-
isting approaches and tested under several conditions. We executed
our CORBA implementation on different computer systems in or-
der to extract iso-surfaces of a computational fluid dynamics (CFD)
simulation. The run-time results are compared to the results of the
three other described implementations: Viracocha, VTK with MPI
(VTK-MPI), and VTK with multi-threading (VTK-MT).

5.1 Multi-Block Data Sets

Figure 6: Interactive exploration of a multi-block engine data set at
a Holobench.

We pursue data parallelism, for it can easily be mapped to multi-
ple pipeline threads. Therefore, we applied multi-block data sets,
which are already stored in a number of single structured grid data
files. Each of these can now be directly assigned to one grid reader,
the source node of our parallelized pipeline. Additional data sub-
dividing schemes are possible but not considered here.

Our example data set describes the inflow of a 4 valves combustion
engine (Figure 6) [Abdelfattah 1998]. The domain is decomposed
into 23 single blocks, which all have different data sizes1; and the
inflow simulation is divided into 63 time steps. We arbitrarily used
time level 20 for our test case and distributed its single blocks to
the available processes. There, two velocity scalar values were set
to compute iso-surfaces.

5.2 Hardware and Software

In order to prove the new CORBA approach to be efficient in par-
allel VR environments, we applied different tests on hardware in-
stalled at the computing center of Aachen University. A Sun Fire
6800, a shared-memory system (24 GByte) with 24 processors (Ul-
tra Sparc III, 800 MHz), came into operation. Because of our 23
block example data set, that multi-processor system was perfectly
suitable for the applied tests. In this case, each processor is dedi-
cated to one of the 23 server pipelines or to the client pipeline.

The CORBA performance measured on the Sun Fire was compared
with results on a dual processor (500 MHz) Linux PC with 880

1The data blocks are composed of 1600 to 13000 grid points and sum-
mation of all block sizes are 22 MByte.

371

MByte main memory, and a single processor (1 GHz) Linux PC
with 256 MByte RAM. All systems were connected to an SGI Onyx
2 visualization host with 4 processors (195 MHz) and 2 GByte
shared main memory.

All tested applications were based on VTK version 4.2. As com-
munication software, we applied a frequently used CORBA imple-
mentation called The ACE ORB (TAO). It is freely available and
open source as well. The applied version 1.3a fulfills our require-
ment of platform independency. On all platforms, only the IIOP
protocol was used. In comparison, MPI was already installed on all
considered systems. The Sun Fire makes use of an optimized im-
plementation that uses shared memory for communication and data
exchange. On the Linux PCs, we used MPICH, which communi-
cates via TCP/IP.

6 Results

We carried out a variety of tests. Our first series was executed on the
Sun Fire only. Here, each approach had to show its strengths and
shortcomings. The second series exclusively examined the CORBA
approach in order to depict its behavior in a distributed network-
based environment.

6.1 Parallelization Characteristics

To get a measure of effectiveness, we built up a non parallelized
VTK pipeline with 23 data set readers, one per data set file. The
determined update time was the minimal time needed to process
the iso-surface computation. A parallel version that uses the client
and only one server process would always be slower because of
communication overhead. Furthermore, because of distributing the
block data files evenly on all processes, we supposed that those that
have most of the blocks would restrict the possible speed-up. These
assumptions lead to a line called ”Minimum” in Figure 7 describing
the theoretically achievable processing time, with no data transmis-
sion overhead and equal block processing times.

The next step was to start the same test application for each ap-
proach on the Sun cluster varying the number of parallel process-
ing pipelines from 1 up to 23. Figure 7 shows the time consumed to
load 23 structured grid data sets into memory, to extract iso-surfaces
for two iso-values, to send partial results to the client application,
and to assemble the final polygon data set there. The client process,
incidentally, is not considered in the figure. Additionally, Viracocha
needed a further scheduler process, which was also not counted
here.

Obviously, the CORBA approach performs nearly as good as
VTK’s MPI approach. The VTK version based on pthread performs
rather badly - probably because a multi-threaded application holds
data structures that are concurrently accessed by multiple proces-
sors in a combined address space, which can lead to cache thrash-
ing.

In order to handle arbitrary file formats, Viracocha uses the generic
data set reader of VTK. This flexibility is achieved at the expense
of performance how one can see clearly in the figure. However,
using the specific structured grid reader, the performance is similar
to VTK-MPI or CORBA respectively.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Parallel Processing Pipelines

Minimum

Viracocha

VTK-MPI

VTK-MT

CORBA

U
p

d
a

te
 (

s
e

c
)

Figure 7: Time needed to update the complete pipeline.

6.2 Real Time Aspects

The first tests have shown that CORBA as well as MPI can be
used for parallelization approaches without considerable restric-
tions. The next test should inspect the capability to work reliably in
time critical applications.

The most time consuming portion of the previous measurement was
the time needed to load data files. However, a data set is often
loaded once and then used for multiple subsequent extraction exe-
cutions. Therefore, not only the time needed to update the whole
pipeline including data loading but also the update time of an al-
ready initialized and later on modified pipeline, for instance to show
iso-surfaces for changed iso-values, can be of particular interest. In-
teractive data exploration makes permanently use of the latter one.

Since the sole iso-surface extraction is much faster than the process
of loading and data pre-processing, parallelization overhead is more
significant now.

The time line of a theoretical minimum in Figure 8 was determined
in the same way we estimated the minimum that includes data load-
ing. Viracocha was not considered here, because it does not provide
update features for already computed iso-surfaces yet. The remain-
ing approaches showed parallelization gain, but it was less impres-
sive with the CORBA variant. Slight differences in the inter-process
interface design probably result in fewer time lags for VTK’s MPI
approach.

Note that we do not make use of TAO’s real-time CORBA possi-
bilities yet. A significant speed gain is expected to result from re-
placing parts of the VTK update mechanism by the CORBA event
service.

6.3 Network Application

The last test should emphasize CORBA’s capability to distribute
applications across boundaries of local computer systems. An ad-
visable installation makes use of a visualization host optimized for
real time rendering. On the other side, a high performance cluster
computes time consuming jobs. Our test bed made use of an SGI
Onyx 2 as visualization client and applied the Sun Fire and Linux
PCs with one and two processors as server for the parallel compu-
tation.

372

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Minimum

VTK-MPI

VTK-MT

CORBA

C
o

m
p

u
ta

ti
o

n
 (

s
e
c
)

Parallel Processing Pipelines

Figure 8: Update time for frequently modified iso-values.

As depicted in Figure 9, without pipeline parallelization, the Onyx
needed 42 seconds. By running a parallel version directly on the
Onyx, we already received a gain by including 2 processors. A
mentionable result, however, is that we obtained a maximum speed-
up employing 23 processes even though it is just a 4 processor
Onyx. Probably, in that situation, the operation system is capable
to schedule the available resources a little better.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Onyx

Onyx + SunFire

Onyx + Linux-2p

Onyx + Linux-1p

Non Parallelism

U
p

d
a

te
 (

s
e

c
)

Processes

Figure 9: Update time for network connected components.

The same effect could be considered using the Linux PCs. Here,
we could measure a slightly higher speed-up when using more pro-
cesses than available processors. The last measurement, the com-
bination of Onyx and Sun presented the expected efficiency. The
achieved speed-up is similar to the one shown in Figure 7 slightly
reduced by network latencies.

The importance of latencies can be demonstrated when needed
computing time is low and communication cost increases. The re-
sults are shown in Figure 10. On the one hand, it is obvious that the
Onyx had problems to manage parallel extraction updates. It was
many times slower than the sequential version.

On the other hand, the heterogeneous platform combinations con-
nected via Ethernet could not achieve a considerable speed-up as
well. Despite this, it is remarkable that already off-the-shelf PCs

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Processes

Onyx

Onyx + SunFire

Onyx + Linux-2p

Onyx + Linux-1p

Non Parallelism

C
o

m
p

u
ta

ti
o

n
 (

s
e
c
)

Figure 10: Network in-between and update without loading data
sets.

could shorten the computing time, in contrast to the non parallel ex-
ecution. Summarizing the results, also in this last test case, CORBA
could be implemented successfully without measurable disadvan-
tages.

7 Conclusion

In this paper, we described the necessity to parallelize a pipeline-
based VR system. Our presented approach, which is based on
CORBA, can be integrated seamlessly into object-oriented frame-
works. Main advantages are type safety, maintainability and exten-
sibility. It can easily be integrated into parallelized VR systems and
offers possibilities to distribute any parts of this system to arbitrary
nodes of a heterogeneous environment.

We also showed that our solution achieves sufficient performance
values. In comparison to approaches with MPI or multi threading,
the described CORBA solution had similar acceleration qualities.
A slightly higher speed-up could be considered for MPI solutions
when computation time was already short. However, the differences
are tolerable because the advantages of our software design clearly
outweigh the disadvantages.

8 Future Work

Changing implementation details might remove noticed differ-
ences. Furthermore, a different CORBA implementation could
also lead to higher performance. Therefore, we will compare the
currently used CORBA implementation TAO with several other
non commercial (like ROFES [Lankes 2003; Lankes et al. 2003])
as well as commercial CORBA versions (like ORBIX or VisiBro-
ker).

Up to now, we only use IIOP, the standard communication proto-
col of CORBA. However, CORBA is not restricted to this protocol
but offers a variety of optimized communication possibilities, for
instance by means of shared memory. This is obviously the pre-
ferred communication interface for the SMP Sun Fire. MPI for Sun
makes already use of it. Therefore, we will evaluate and integrate
these more progressive solutions also for our CORBA approach.

373

A really important aspect for Virtual Reality is a CORBA extension
called Real Time CORBA (RT-CORBA). This extension, which is
explained in [OMG 1998; Schmidt and Kuhns 2000], makes it pos-
sible to develop distributed real-time applications. For instance,
RT-CORBA can assign higher priorities to processes that demand
really strong real-time constrains. For such processes, RT-CORBA
tries to fall short of dictated maximum latencies. A variety of mech-
anisms, like multiple connection channels, can be made available.

We have not made use of real-time facilities of TAO in order to
parallelize the visualization pipeline yet. It might enable a more
continuous data throughput. Moreover, RT-CORBA appears to be
very interesting in order to distribute further components of Vir-
tual Environments that need short response time. For instance, the
tracking system could be decoupled from the visualization system
and shift to one or more separated computer nodes. One area of ap-
plication could be physically-based modeling, which requires quite
a lot of hardware resources in order to reach high sampling rates.
The range of use seems to be manifold, which is why we will inves-
tigate the possibilities to develop a distributed VR system by means
of RT-CORBA.

Acknowledgements

The authors are grateful to the Institute of Aerodynamics, Aachen
University, for the combustion engine data set kindly made avail-
able.

References

ABDELFATTAH, A. 1998. Numerische Simulation von Strömungen
in 2- und 4-Ventil-Motoren. Shaker Verlag, Aachen. PhD thesis,
RWTH Aachen University.

AHRENS, J., LAW, C., SCHROEDER, W., MARTIN, K., AND
PAPKA, M. 2000. A Parallel Approach for Efficiently Visu-
alizing Extremely Large, Time-Varying Datasets. Los Alamos
National Laboratory. Technical Report #LAUR-00-1620.

GERNDT, A., VAN REIMERSDAHL, T., KUHLEN, T., HENRICHS,
J., AND BISCHOF, C. 2000. A Parallel Approach for VR-based
Visualization of CFD Data with PC Clusters. In Proceedings of
the 16th IMACS World Congress.

GROPP, W., LUSK, E., AND SKJELLUM, A. 1999. Using MPI:
Portable Parallel Programming with the Message Passing Inter-
face, 2nd ed. MIT Press.

LANKES, S., JABS, A., AND BEMMERL, T. 2003. Integration of
a CAN-based Connection-oriented Communication Model into
Real-Time CORBA. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2003),
11th Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS 2003).

LANKES, S. 2003. Konzeption und Umsetzung einer echtzeit-
fähigen Verteilungsplattform für eingebettete Systeme. Shaker
Verlag. PhD thesis, RWTH Aachen University.

NICHOLS, B., BUTTLAR, D., AND FARRELL, J. 1998. Pthread
Programming. O’Reilly & Associates.

OMG TECHNICAL DOCUMENT ORBOS/98-10-05. 1998. Real-
time CORBA – Joint Submission.

OMG TECHNICAL DOCUMENT FORMAL/02-06-01. 2002. The
Common Object Request Broker – Architecture and Specifica-
tion, 3.0 ed.

SCHIRSKI, M., GERNDT, A., VAN REIMERSDAHL, T., KUHLEN,
T., ADOMEIT, P., LANG, O., PISCHINGER, S., AND BISCHOF,
C. 2003. ViSTA FlowLib - A Framework for Interactive Visu-
alization and Exploration of Unsteady Flows in Virtual Environ-
ments. In Proceedings of the 7th International Immersive Pro-
jection Technologies Workshop, and 9th Eurographics Workshop
on Virtual Environments, 77–85.

SCHMIDT, D. C., AND KUHNS, F. 2000. An Overview of the Real-
Time CORBA Specification. IEEE Computer 33, 6, 56–63.

SCHROEDER, W. 2001. The VTK User’s Guide. Kitware Inc.

SIEGEL, J. 2000. CORBA 3 – Fundamentals and Programming,
Second Edition. OMG Press.

TANENBAUM, A. S., AND VAN STEAN, M. 2002. Distributed
Systems – Principles and Paradigms. Prentice Hall.

VAN REIMERSDAHL, T., KUHLEN, T., GERNDT, A., HENRICHS,
J., AND BISCHOF, C. 2000. ViSTA: a Multimodal, Platform-
Independent VR-Toolkit Based on WTK, VTK, and MPI. In
Proceedings of the 4th International Immersive Projection Tech-
nology Workshop.

374

	1 Introduction
	2 Parallelization Approaches
	2.1 VTK

	3 Viracocha
	4 CORBA-based approach
	4.1 CORBA-Based Visualization Pipeline

	5 Test bed
	5.1 Multi-Block Data Sets
	5.2 Hardware and Software

	6 Results
	6.1 Parallelization Characteristics
	6.2 Real Time Aspects
	6.3 Network Application

	7 Conclusion
	8 Future Work

