
Recent Advances and Future Prospects in iRCCE and SCC-MPICH
— Poster Abstract —

Carsten Clauss, Stefan Lankes, Pablo Reble, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
{clauss,lankes,reble,bemmerl}@lfbs.rwth-aachen.de

Abstract—The Single-Chip Cloud Computer (SCC) experi-
mental processor [4] is a 48-core concept vehicle created by
Intel Labs as a platform for many-core software research.
Intel provides a customized programming library for the SCC,
called RCCE [5], that allows for fast message-passing between
the cores. For that purpose, RCCE offers an application
programming interface (API) with a semantics that is derived
from the well-established MPI standard [7]. However, while the
MPI standard offers a very broad range of functions, the RCCE
API is consciously kept small [6] and far from implementing
all the features of the MPI standard. So, for example, RCCE
only provides blocking (often also referred to as synchronous)
send and receive functions, whereas the MPI standard also
defines the semantics of non-blocking communication functions.
For this reason, we have started to extend RCCE by new
communication capabilities, as for example by the ability to
pass messages asynchronously. In doing so, we aim to avoid
interfering with the original RCCE library and therefore
we have placed our extensions and improvements into an
additional library called iRCCE [2]. Moreover, this additional
library in turn serves us as low-level communication layer
for SCC-MPICH, that is an SCC-customized and full MPI-1
compliant MPI library. In this contribution, we present the
recent advances and future prospects for both these SCC-
related communication libraries: iRCCE and SCC-MPICH.

Keywords—Many-core, Message-Passing, SCC, RCCE, MPI

I. iRCCE: A NON-BLOCKING COMMUNICATION
EXTENSION TO THE RCCE COMMUNICATION LIBRARY

Due to the lack of non-blocking communication functions
within the current RCCE library, we have started to extend
RCCE by such asynchronous communication capabilities
(iRCCE_isend/iRCCE_irecv). In doing so, we aim to
avoid interfering with the original RCCE functions and
therefore we have placed our extensions into an additional
library with a separated namespace called iRCCE. An ob-
vious way to realize non-blocking communication functions
would be to use an additional thread that processes the com-
munication in background. Although this approach seems
to be quite convenient, it is not applicable in bare-metal
environments where a program runs without any operating
system and thread support. And since RCCE has been
designed to support also such bare-metal environments, we
had to waive this thread-based approach for realizing non-
blocking functions. Therefore, we have followed another

approach where the application must drive on the com-
munication progress by itself. For this purpose, the non-
blocking communication functions return request handles
which can then be used by the application to trigger the
progress by means of additional push, test or wait functions
(iRCCE_push, iRCCE_test, iRCCE_wait). [2]

A recent improvement of iRCCE is the feature that one
can use a wildcard (iRCCE_ANY_SOURCE) instead of a
definite source rank when calling the receive function. That
means that this wildcard can be used to receive any incoming
message regardless from its actual sender. However, the
application programmer still has to ensure that at least the
stated message length matches between receiver and sender.

Currently, we are developing a mailbox system on top of
iRCCE that can be used to exchange small (cache-line-sized)
datagrams between the cores. Since this mailbox system
works without interference with the common send and
receive functions, it can be used to pass additional signaling
information alongside with normal RCCE/iRCCE messages.
Therefore, such a mailbox datagram is well structured in
terms of data items that are quite similar to that of message
headers: source, size, tag and embedded payload.

Our aim is to use this mailbox system to extend the current
semantics of the send and receive functions. So, for example,
we plan to introduce a further wildcard mechanism also for
the message length (iRCCE_ANY_LENGTH). That means
that the information about the actual message size has then
just to be provided by the sender, while the receiver merely
has to ensure that the receive buffer is large enough to store
the message. Moreover, by introducing additional message
tags, as known from the MPI standard, even a message
prioritization and reordering by means of these tags would
become possible.

For this purpose, a sender would initially post a mailbox
datagram to the respective receiver, indicating that a payload
message of a certain size and with a certain tag will follow.
Therefore, the local mailbox on the receiver side needs to
be checked frequently in order to detect such incoming
messages. However, it is entirely possible that the receiver
detects a message that is yet still unexpected. This is for
example the case when the message tags on sender and
receiver side do not yet match and thus a message reordering



becomes necessary. In such a case, the receiver can either
copy the incoming message into a temporary buffer or
the receiving of the actual payload must be delayed by
sending a corresponding response datagram. The choice
for one of these two approaches depends on the message
size: for short and midsize messages, a temporary buffering
seems to be acceptable, whereas long messages should be
delayed because the additional copy procedure would impact
the communication performance. Besides this, very small
messages could be embedded into a datagram, so that there
is no need for an additional payload message in such a case.

II. SCC-MPICH: YET ANOTHER MPI-COMPLIANT
MESSAGE-PASSING LIBRARY FOR THE INTEL SCC

Although the semantics of RCCE’s communication func-
tions are obviously derived from the MPI standard, the
RCCE API is far from implementing all MPI-related fea-
tures. And even though iRCCE extends the range of sup-
ported functions (and thus the provided communication
semantics), a lot of users are familiar with MPI and hence
want to use its well-known functions also on the SCC.
A very simple way to use MPI functions on the SCC is
just to port an existing TCP/IP-capable MPI library to this
new target platform. However, since the TCP/IP driver of
the Linux operating system image for the SCC does not
utilize the fast on-die message-passing buffers (MPBs), the
achievable communication performance of such a ported
TCP/IP-based MPI library lags far behind the MPB-based
communication performance of RCCE and iRCCE.

For this reason, we have started in the last year to
implement an SCC-optimized MPI library, called SCC-
MPICH, which in turn is based upon our iRCCE ex-
tensions of the original RCCE communication library. At
about the same time, Intel also started to implement an
SCC-customized MPI library, called RCKMPI [8]. While
RCKMPI has already been released by Intel, we have not
yet published SCC-MPICH despite the fact that it is already
fully operational, too. The reason for this is that we think
that our human resources are too limited to provide sufficient
user support for this project in case of an official software
release. However, we use SCC-MPICH as basis for our
future message-passing related research on the SCC and we
have launched several student projects that in turn are also
based on SCC-MPICH.

A major advantage of SCC-MPICH compared to
RCKMPI is that it can be installed and used as easy as
RCCE. That means that one can use the mpirun script
just instead of the known rccerun directly from the
Management Console PC (MCPC) without installing any
additional libraries or startup environments on the SCC
cores. Moreover, even the cores of the MCPC can easily be
involved into an SCC-MPICH session. That means that one
can start x MPI processes on the SCC cores and additionally
y MPI processes on the cores of the MCPC.

In doing so, SCC-MPICH does not use just TCP/IP (as
the lowest common dominator) for all the communication,
but rather offers hierarchy-awareness in such a way that
always the fastest communication mode is being used. That
means that MPI processes running on the SCC cores use
the message-passing buffers (MPBs) to communicate among
each other, while processes running on the MCPC commu-
nicate via shared memory. The communication between the
MCPC processes and the SCC cores is then eventually con-
ducted via TCP/IP. In order to start such a mixed MPI ses-
sion, one just needs to issue mpirun -nue x -mcpc y
in a console on the MCPC.

A further advantage of SCC-MPICH is that it offers
SCC-optimized collective communication routines. This is
because SCC-MPICH is directly based upon RCCE (with
iRCCE extensions) and due to the fact that RCCE can in
turn be extended by the customized collective functions of
the so-called RCCE comm library [1]. That way, an easy
mapping of MPI collective function calls onto the optimized
RCCE comm functions becomes possible

A more detailed description of SCC-MPICH together with
some performance results can be found in [3].

REFERENCES

[1] Ernie Chan. RCCE comm: a Collective Library for the Intel
Single-chip Cloud Computer. Intel Corporation, September
2010.

[2] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl. iRCCE:
A Non-blocking Communication Extension to the RCCE Com-
munication Library for the Intel Single-Chip Cloud Computer.
Chair for Operating Systems, RWTH Aachen University, De-
cember 2010. Users’ Guide and API Manual.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation
and Improvements of Programming Models for the Intel SCC
Many-core Processor (accepted for publication). In Proceed-
ings of the International Conference on High Performance
Computing and Simulation (HPCS2011) – to appear, Istanbul,
Turkey, July 2011. accepted for publication.

[4] Intel Corporation. SCC External Architecture Specification
(EAS), July 2010. Revision 0.98.

[5] T. Mattson and R. van der Wijngaart. RCCE: a Small Library
for Many-Core Communication. Intel Corporation, May 2010.
Software 1.0-release.

[6] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar,
G. Ruhl, and S. Dighe. The 48-core SCC Processor: The
Programmer’s View. In Proceedings of the 2010 ACM/IEEE
Conference on Supercomputing (SC10), New Orleans, LA,
USA, November 2010.

[7] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. High-Performance Computing Center
Stuttgart (HLRS), September 2009. Version 2.2.

[8] Isaias A. Compres Urena. RCKMPI User Manual. Intel
Braunschweig, January 2011.


	I iRCCE: A Non-blocking Communication Extension to the RCCE Communication Library
	II SCC-MPICH: Yet Another MPI-compliant Message-Passing Library for the Intel SCC
	References

