
The Path to MetalSVM:
Shared Virtual Memory for the SCC

Stefan Lankes∗, Pablo Reble∗, Carsten Clauss∗ and Oliver Sinnen†
∗Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
Email: {lankes,reble,clauss}@lfbs.rwth-aachen.de

†Department of Electrical and Computer Engineering, University of Auckland
Private Bag 92019, Auckland 1142, New Zealand

Email: o.sinnen@auckland.ac.nz

Abstract—In this paper, we present first successes with building
an SCC-related shared virtual memory management system,
called MetalSVM, that is implemented using a bare-metal hy-
pervisor, located within a virtualization layer between the SCC’s
hardware and the operating system. The basic concept is based
on a small kernel developed from scratch by the authors: A
separate kernel instance runs on each core and together they
build the virtualization layer. High performance is reached
by the realization of a scalable inter-kernel communication
layer for MetalSVM. In this paper we present the employed
concepts and technologies. We briefly describe the current state
of the developed components and their interactions leading to
the realization of a Shared Virtual Memory system on top of
our kernels. First performance results of the SVM system are
presented in this work.

Index Terms—Many-Core, SCC, SVM, Non-Cache-Coherent
Shared-Memory

I. INTRODUCTION

Since the beginning of the multicore era, parallel processing
has become prevalent across-the-board. A further growth of
the number of cores per system implies an increasing chip
complexity on a traditional multicore system, especially with
respect to hardware-implemented cache coherence protocols.
Therefore, a very attractive alternative for future many-core
systems is to waive the hardware-based cache coherency and
to introduce a software-oriented approach instead: a so-called
Cluster-on-Chip architecture.

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a concept vehicle created by Intel Labs as a
platform for many-core software research, which consists of 48
P54C cores. This architecture is a very recent example for such
a Cluster-on-Chip architecture. The SCC can be configured to
run one operating system instance per core by partitioning the
shared main memory in a strict manner. However, it is possible
to access the shared main memory in an unsplit and concurrent
manner, provided that the cache coherency is then ensured by
software.

A common way to use such an architecture is the utilization
of the message-passing programming model. However, many
applications show a strong benefit when using the shared
memory programming model. The project MetalSVM aims the
realization of a SCC-related shared virtual memory manage-

ment system that is implemented in terms of a bare-metal
hypervisor and located within a virtualization layer between
the SCC’s hardware and the current operating system. This
new hypervisor will undertake the crucial task of coherency
management by the utilization of special SCC-related features
such as its on-die Message-Passing Buffers (MPB). In order
to offer a maximum of flexibility with respect to resource
allocation and to an efficiency-adjusted degree of parallelism
a dynamic partitioning of the SCC’s computing resources into
several coherency domains will be enabled.

This paper focuses on the design of the MetalSVM kernel
and its drivers optimized for the SCC as well as the SVM
system. In Section II we refer to our previous work on the
SCC and summarize related work regarding SVM system.
We present a detailed insight in Section III to the design
of MetalSVM and our small self-developed operating system
kernel that builds the base of MetalSVM. The realization
of an SVM system prototype is presented in Section VI.
Important facts on the SCC supporting the path to MetalSVM
are mentioned in Section IV and V with a focus on the
memory system of the SCC followed by the implementation
of a communication layer for MetalSVM. Section VII contains
the knowledge on the port of a virtual IP interface to the SCC
and presents related benchmark results. In Section VIII we
describe first results for an exemplary parallel program using
the SVM system prototype.

II. PREVIOUS WORK

Referring to our previous work on the SCC we present
further development on the fast inter-kernel communication
layer as well as a closer look at the SVM system in this
paper. The motivation and concept of our MetalSVM has been
introduced at the 3rd MARC Symposium [2]. In addition to a
summary of previous work on cluster-based SVM systems we
first outline the potential of our approach. Other contributions
to this Symposium have also shown that the memory system
of the SCC is special and established methods hold a high
potential for optimization. [3]

In [4], we evaluated different programming models (es-
pecially shared-memory and message-passing) for the SCC
and we have shown how these models can be improved with

respect to the SCC’s many-core architecture. Our experiments
have shown that in particular the shared-memory programming
is very complex and involved if caches are enabled because
of the missing hardware cache coherency.

The Chair for Operating Systems (LfBS) at the RWTH
Aachen University developed since 1996 the Shared Memory
Interface (SMI) [5] as a programming interface that provides
a large function set such as allocation and management of
cluster-wide shared memory regions and its distribution and
synchronization services. SMI provides no virtual common
address space in contrast to an SVM system. However, shared
memory regions can be explicitly allocated and managed.
A small subset of its capabilities is used in this paper to
benchmark our prototype of MetalSVM.

Existing SVM solutions are mainly based on traditional
message-passing oriented networks. However, the SCC has the
capability to directly access memory. From a programmer’s
perspective this is comparable to the Scalable Coherent Inter-
face (SCI) standard [6] that belongs to the memory-mapped
networks. In addition to the offer of a transparent read/write
access to remote memory, SCI also defines a cache coherency
protocol. But, PCI-SCI adapter cards that are available on the
market do not support this feature. Several research projects
used SCI-based PC clusters, which possessed a similar char-
acteristic like SCC. Both systems consist of several processing
units which are able to communicate transparently over shared
memory regions without the support of cache-coherency.

At the LfBS, we have developed an SVM system for Intel
architecture based compute clusters, called SVMlib [7], [8],
which stores write notices and related changes in the global
memory to realize a Lazy Release Consistency [9] model.
Experiments have shown that the implementation of SVMlib
at user level decreases the usability.

Furthermore, SVM systems can be integrated into virtual
machines providing a simpler and more transparent access to
the shared memory for an easy application of common oper-
ating systems and development environments. The vSMP ar-
chitecture by ScaleMP1 enables a cluster-wide cache-coherent
memory sharing by implementing a virtualization layer un-
derneath the OS that handles distributed memory accesses
via InfiniBand-based communication on x86-based compute
clusters. A similar project is vNUMA [10], which used Eth-
ernet as interconnect. This project shares characteristics with
our hypervisor approach such that the implementation of the
SVM system takes an additional virtualization layer between
the hardware and the operating system.

In fact, we want to exploit the SVM system with SCC’s
distinguishing capabilities of transparent read/write access to
the global off-die shared memory.

III. DESIGN OF METALSVM

The concept of MetalSVM is to run a common Linux version
without SVM-related patches on the SCC in a multicore

1http://www.scalemp.com

manner. For a better understanding, the structured diagram of
Figure 1 illustrates the design approach of MetalSVM.

A major advantage of our approach, as introduced in [2],
is no binding of MetalSVM to a certain version of Linux,
because integrating would for example mean patching the
kernel. The light weight hypervisor is based upon the idea
of a small virtualization layer based on a monolithic-kernel
developed from the scratch by the authors. A well-established
interface to run Linux as para-virtualizated guest which is part
of the standard Linux kernel is used to realize our hypervisor.
Consequently, no modifications to the Linux kernel are needed.

Application

Para-virtualized Standard Linux

Hypervisor

Kernel Kernel

Core 0 Core n

Communication

Layer

SCC Hardware
M

et
al

S
V

M

Fig. 1: Concept and Design of MetalSVM

The aim of common processor virtualization is to provide
multiple virtual machines for separated OS instances. We want
to use processor virtualization that provides one logical but
parallel and cache coherent virtual machine for a single OS
instance, for instance Linux, on the SCC. Hence, the main
goal of this project is to develop a bare-metal hypervisor, that
implements the required SVM system (and thus the memory
coherency by applying appropriate consistency models) within
this hardware virtualization layer in such a way that an
operating system can run almost transparently across the entire
SCC system.

IV. MEMORY SYSTEM

In this section we first briefly recap the memory system of
the SCC and second outline the effects on the realization of
an SVM system.

The SCC possesses four memory controllers providing a
maximum capacity of 64 GByte of DDR3 memory. Each
core has logically assigned 8 kByte of a tile’s local memory
buffer, called message passing buffer (MPB). To close the gap
between register and main memory access time, the SCC cores
have a classical memory hierarchy consisting of a local Level 1
and Level 2 cache. In addition to a Level 1 data and instruction
cache size of each 8 kByte, all cores have a local Level 2 cache
size of 256 kByte. Caches are organized with a cache-line size
of 32 Byte in a non cache-coherent manner.

Intel Labs extended the P54C instruction set architecture
(ISA) by a new instruction CL1INVMB that is closely con-
nected to a new memory type (MPBT) indicated by a flag on

http://www.scalemp.com

page granularity to support the use of the MPB. Accesses to
this new memory type bypass the Level 2 cache and by default
message-passing buffer entries are tagged.

Moreover, the flag that indicates MPBT can be used in a
more generic way. Generally speaking, information about a
special data type is tagged in hardware. However, this mapping
is not fixed and can be adapted to use the hardware support
that facilitates a coherent view on the MPB also for an SVM
system.

Another extension of the SCC cores to the P54C architecture
is a write combine buffer that holds one cache-line of 32 Byte.
In write through mode accesses touching the same cache-line
are wrapped together and written back en block from the
Level 1 cache to the next level in memory hierarchy. This
behavior may turn out to be useful for the SVM system. The
intention for adding this feature was to accelerate the message
transfer between the cores [1].

The P54C architecture uses an external Level 2 cache with-
out the possibility to flush contents using hardware support. A
flush routine has been developed that replaces all L2 contents
by reading invalid data but this turned out to be costly. [11]
We limit our first experiments to an SVM system prototype
that only enables L1 caching for a shared memory region.
To control write strategy of cached data a page table entry
contains a bit, that the memory management of MetalSVM
sets for shared pages to uses a write through strategy.

Obviously, a drawback of this solution is a significantly
smaller amount of cache in use for shared regions. But to
waive the use of Level 2 cache for shared memory regions
a major advantage arises that is the possibility to tag SVM
related data. Thus, a selective invalidate of cached data via
CL1INVMB is possible. Due to the fact that our current SVM
system uses write through, a method called fool write combine
buffer is sufficient to flush cached data. The method simply
touches an MPBT tagged cache-line that is only used for this
purpose. Thus, the off-die memory holds current data.

V. COMMUNICATION LAYER

The realization of the hypervisor needs a fast inter-core
communication layer, which will be used to manage resources
between the kernels. An important requirement to this commu-
nication layer is the support of asynchronous message-passing
because it is not predictable when a kernel needs an exclusive
access to a resource that is owned or managed by another
kernel instance. As a result, the synchronous communication
library RCCE [12] is not suitable for MetalSVM. An alternative
approach is to copy the message to the message-passing buffer
of the receiving core and afterwards to signalize the incoming
message with a remote interrupt.

Interrupt Handling

Realization of event based communication between the
SCC-cores needs either interrupts or events have to be checked
at defined points in time. We followed an interrupt driven
approach for our communication layer to enable a fast com-
munication. On the one hand the latency of signal passing is

important. On the other hand the time to process signals and its
scalability influences the performance of our communication
layer.

Previous versions of sccKit only supported the generation
of an Inter-Processor Interrupt (IPI) by writing directly to the
receiving core’s configuration register. Hence, the receiving
core can be interrupted this way but no information can
be obtained about the sender of a specific interrupt. Since
sccKit 1.4.0 the system FPGA holds a Global Interrupt Con-
troller (GIC) [13]. In addition to the direct method to generate
an IPI the possibility arises to indirectly generate an IPI using
the GIC. Consequently, this IPI can be used to obtain the
information by which core it has been raised.

Event processing of the mailbox system, described in the
following, is realized in the interrupt handler of MetalSVM.
With the focus on scalability the information on the sender
of an interrupt creates the option for a mailbox system to
selectively check mailboxes.

Mailbox System

A mailbox system has become part of MetalSVM’s com-
munication layer and extends iRCCE [14] to enable an event
driven and fast asynchronous communication path between
the SCC cores. For each communication path between two
cores a mailbox of one cache-line size is reserved at each
local MPB. Thus, the mailbox system takes 1.5 kByte of MPB
space per core assuming a maximum number of 48 cores.
RCCE provides a memory allocation scheme to manage the
remaining MPB space of 6.5 kByte.

Accesses to a specific mailbox of a target core are restricted
by only allowing the receiver to read data and toggle a send
flag that the mailbox contains. A sender with the intention to
pass a signal is allowed, in addition to toggle the send flag, to
write data to the mailbox. Whenever a receiver toggles the send
flag a signal has been processed and when a sender toggles
the send flag a new signal has been placed. As a result of
this communication method the generation of a single reader
single writer problem leads to a simplified synchronization
scheme that is enabled by the restriction of accesses to the
mailboxes.

Signals between the cores are passed in a remote write and
local read approach in contrast to the local write and remote
read approach of the RCCE library. The mailbox system
reverses the data flow compared to the RCCE send respective
receive methods because event processing is realized in the
interrupt handler.

VI. SVM SYSTEM

The SVM system manages pages located in shared memory.
A coherent view on the virtual common address space is
enabled by flushing cached data at defined points in time. For
a first prototype three functions are sufficient to enable the use
of the SVM system and thereby explore the capabilities of the
SCC for a software managed coherence scheme. Following
SMI like functions are provided under MetalSVM to a kernel
task of the current SVM version:

• svm_alloc
• svm_flush
• svm_invalidate

The function svm_alloc is used to allocate an amount
of bytes in a cached shared memory region. The function
svm_flush is used to implicitly write back modified data2,
and svm_invalidate to remove possibly outdated data
from the cache. This is either done within the interrupt handler
of the current page owner or within the page fault handler on
the core where the access violation occurs.

The SVM system of MetalSVM uses the mailbox system for
the crucial task to change access permissions of shared pages.
Therefore, a signal is sent to the page owner which can be
identified because the information of ownership is located in
a shared memory region and therefore accessible by all cores.
If the ownership has changed in the meantime, e. g. another
core has requested the page, the receiver of the signal has to
forward the message to its new destination. As a result, the
first sender of a signal in addition to the address of the target
shared page is necessarily encoded by a signal, so that the
owner vector entry can be updated.

. . .

page frames

Shared off-chip DRAM

. . . 47 . . .

owner vector

Private off-chip DRAM

Core 0 Core 47

entry

page tables

entry

page tables

Message Passing Buffer
2

1

3

4

Fig. 2: Concept and design of the SVM subsystem

A strong consistency model is supported by the prototype
implementation of our SVM system. At each point in time only
one owner of a page exists which is allowed to read or write to
it. This ownership is registered in an ownership vector, which
is also located in the off-die memory as exemplarily illustrated
by Figure 2. Each core possesses its private page tables.

Whenever a page is accessed without permission a kernel
enters the page fault handler and sends a request to the current

2In this scenario, flushing of the write combining buffers.

owner via the mailbox system. Regarding the strong consis-
tency model no parallel access to shared pages is allowed and
the ownership has to be exchanged. First, the current owner
of the page clears its access permission. Second, it flushes the
cache and third sets the new owner id to the ownership vector
as an acknowledgment. As a result the core that requested
access is registered as the new owner. After this procedure the
requesting core can continue its calculation. Obviously, the
performance of the mailbox system has a direct impact to the
performance of the SVM system.

Figure 2 shows an example where an SVM related page fault
occurs at Core 0 involving Core 47. Following steps have to
be performed:

1) A page fault occurs at Core 0
2) After sending a message to Core 47 requesting the page,

Core 0 is polling on the owner vector entry
3) Core 47 flushes its cache and changes the page table

entry
4) Core 47 changes the ownership

After this procedure Core 0 is the new owner and hereby has
full access permissions.

VII. IP STACK

In this section we present the realization of two IP devices,
one memory mapped virtual device for the realization of on-
die communication and one eMAC device for the off-die
communication. For this purpose the light-weight IP (lwIP)
stack [15] has been integrated into the MetalSVM kernel. As a
result, established BSD sockets are supported to enable an easy
integration of standard application. In addition, we analyze a
variant that interacts with the IP driver using an overloaded
socket that bypasses the full IP stack. For further performance
optimizations the developed devices are fully configurable
having options to choose the MPB or off-chip DRAM for
communication and to enable L1 caching. Applications for
the described devices can be a monitoring the SVM system or
providing an IP service to the guest operating system. Here,
the guest can use a tunnel device to hand down IP packets to
MetalSVM.

In principle, the first driver is a porting of Linux’s eMAC
device driver to lwIP and builds an interface to the Ethernet
ports that are connected to the SCC. We used the driver
of SCC Linux from sccKit 1.4.1 within the scope of Linux
kernel 2.6.38.3-jbrummer as a reference, which uses
non-cachable memory for the communication between kernel
and hardware device. Again, the SCC offers the possibility
to invalidate in one cycle the cache entries for MPBT tagged
pages. The option to enable the L1 cache for the receive buffers
of the eMAC device generates the possibility to visualize the
benefit of this hardware support for communication. Here,
specific cache entries have to be invalidated before the receiver
reads data from its receiver buffer. When compared to the
Linux driver that holds the L1 cache disabled for the receive
buffers, a positive impact on performance is expected for
the MetalSVM driver that reads a whole cache-line from the
memory.

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux eMAC device
MetalSVM eMAC device
MetalSVM eMAC device L1 cache

(a) SCC→MCPC

1 4 16 64 256 1 k 4 k 16 k
0

10

20

30

40

Packet Size [Byte]

(b) MCPC→SCC

Fig. 3: Transfer Throughput between MCPC and SCC via eMAC

Obviously this method reduces the number of memory
accesses up to a factor of:

8 · tCM

tCM + 7 · tCH

Where, tCM is the time for a cache miss and tCH is the time
for a L1 cache hit.

The second driver uses an established standard and enables
a virtual IP interface to realize inter-kernel communication.
The support of standard interfaces for communication is not
in the focus of MetalSVM. However, a driver has been written
that realizes communication via memory mapped regions. For
this driver a configuration exists to use either the off-die or
the on-die memory (MPB).

The first configuration uses the off-die shared memory for
communication and therefore generates no load to the MPB.
An application might be to monitor the SVM system. The
use of the second configuration is preferred to reach a higher
performance. However, using the MPB can generate noise to
the SVM system that runs in parallel.

In principle, each receiver optionally creates its own receive
buffer either in on-die or off-die memory. The senders copy
their data directly into the receive buffer and wake up the
receiver via an inter processor interrupt. To allow parallel
access between the receiver and senders, the receive buffer
is managed as heap. The maximum transfer size is:

1

2
· sizeof(buffer)− sizeof(cacheline)

The result of the split of larger messages into smaller sub-
messages is that the receiver is able to process sub-messages
that are present during the next transfer operation of the sender.

The data structure to manage the heap is located at the
off-die memory to increase the size of the receiver buffer. In
contrast to the presented mailbox system the lwIP drivers use

only one receive buffer per core. This is because the incoming
messages are clearly larger than a mail of the mailbox system.
Accesses to the receive buffers have to be synchronized.
Therefore, the current version uses RCCE locks which enable
an access to the hardware implemented Test-And-Set registers.
Many features of the IP stack are needless for the inter-core
communication. For instance, on the SCC it is not possible
to receive corrupt data. To benefit from this behavior, we
have developed a prototype, which emulates the BSD socket
interface, bypasses the IP stack and forwards the messages
directly to the receivers. In our approach, a parallel using of
the IP stack and the bypassing approach is possible.

A. Benchmark Results

All diagrams of this section show the throughput average
by different package size from small packages of 1 Byte up
to large packages of 32 kByte. The test platform has been
configured with a core frequency of 533MHz, a memory and
mesh frequency of 800MHz. The driver uses as receive buffer
size either 8 kByte for the off-die or 7 kByte for the on-die
memory. For the evaluation of the performance of MetalSVM’s
IP stack the established benchmark netio3 has been used.

First of all, we present the results of our eMAC driver in
comparison to the driver of SCC Linux. We used a standard
configured SCC and MCPC from the MARC Data Center.
Figure 3b shows the throughput from MCPC to SCC and Fig-
ure 3a illustrates the inverse direction. By enabling the cache
for the receiving buffer of the SCC, the sending throughput of
MCPC is increased by factor 5. These results document the
huge impact of the MBPT flag.

Figure 4a shows the performance of the inter-core commu-
nication using the full IP stack. The performance of the current
Linux driver is added as a reference.

3http://www.ars.de/ars/ars.nsf/docs/netio

http://www.ars.de/ars/ars.nsf/docs/netio

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

T
hr

ou
gh

pu
t
[M

B
y
te
/
s]

Linux MPB device
MetalSVM MM device
MetalSVM MM device L1 cache
MetalSVM MM device via MPB

(a) Full lwIP version

1 4 16 64 256 1 k 4 k 16 k
0

20

40

60

80

Packet Size [Byte]

(b) Bypassing version

Fig. 4: Sending Throughput from Tile 0 to Tile 1

It can be noticed that the current Linux driver shows a
poor performance and should be improved. All versions of
our driver, which optionally use the off-die memory , the
off-die memory with enabled L1 cache or the message
passing buffers perform clearly better than the standard
Linux driver, which also uses the message passing buffer as
transport medium.

Figure 4b shows the results of bypassing the IP stack. When
the throughput of the bypassing version is compared with
the throughput of the lwIP versions it can be noticed that
bypassing the IP stack results in a higher peak performance.
However, regarding small packets below a size of 256 Bytes
the lwIP version benefits from the usage of Nagle’s algorithm
that combines small packages. [16] The maximum of the
throughput is reached at a package size of 2 kByte.
Here, the package size is the largest size to the power of two
that fits twice into the message passing buffer regarding the
requirements of the RCCE library.

VIII. APPLICATION

For the demonstration of our SVM system we have chosen
a classical synchronous iteration program example. The heat
distribution of square metal sheet with known temperatures
at its edges represents a two-dimensional Laplace problem.
Figure 5 illustrates the further described method.

The resulting partial differential equation can be solved
with the common Jacobi Over Relaxation (JOR) algorithm
standing for a simple parallel program example using a shared
memory approach. The Jacobi iterations can be described by
the following formula:

uk+1
i,j =

1

4
· [uk

i−1,j + uk
i+1,j + uk

i,j−1 + uk
i,j+1]

An analysis of the capabilities offered by the MetalSVM
layer is reached by executing kernel threads in the MetalSVM

kernel. Therefore, the function svm_alloc is used in a
collective way to allocate a shared memory region with Level
1 cache enabled.

Allocated memory is used as follows: The simulation data
of 1024×512 double values are stored in two arrays namely
old and new. After each iteration the values from new are
moved to old by exchanging the references. A barrier follows
to ensure that iterations are processed synchronously. We used
the linear barrier implementation of the RCCE library. A static
distribution to n cores of the squared problem size is used.
Each core iterates over N/n lines. The shared memory ap-
plication assumes a synchronous behavior after each iteration
which creates the requirements for an SVM system to provide
correct data. Enabled caches have to be flushed and invalidated
implicitly, regarding a strong release consistency model, or
explicitly, regarding a lazy release consistency. The current
version of MetalSVM supports both as described in Section VI.

ui−1,j

ui+1,j

ui,j−1

ui,j+1

N

N

Fig. 5: Heat Distribution Problem

Figure 6 shows benchmark results of the previously de-
scribed application with a different core count on the SCC plat-
form 4. Curve depicts terms of a message passing laplace
variant based on iRCCE [14], which uses a non-blocking
behavior to exchange rows after each iteration. Curves
and represent the performance measurements of a strong
consistency model. The first setup is the usage of only one
memory controller (MC) holding the entire matrix. Here, the
well known memory wall problem occurs. The consequence is
a reduction of the scalability. As a second setup the matrix is
statically partitioned to all four MC’s to distribute the memory
load. The result is a better scalability up to 8 cores. The
scalability has to be improved for the use of more than 8 cores.
As a third setup a lazy release memory model has been applied
to the given problem. Here, the caches are flushed after each
iteration without the generation of an interrupt or an exception.
Measurements of this setup show a nearly optimal result.

1 2 4 8 16 32 48
0

100

200

300

400

Cores

Ti
m

e
[s
]

strong consistency
strong and all MC’s
lazy release
message passing via iRCCE

Fig. 6: Laplace Runtimes

Nevertheless, it has to be considered that the JOR algorithm
is an extremely stressful example for an SVM system. Here,
the barrier after each iteration leads to a synchronized access
of all cores to their neighbors’ data. In the case of a lazy
consistency, the majority of cores send a request mail and IPI
to its neighbor just after the synchronization point. Certainly,
for such an extremely stressful example the results are ex-
cellent. The linear runtime of the shared memory application
is approximately half of the linear runtime of the message
passing application. What shows the impact of the write
combining buffer. In this experiment the message passing
application reaches a super-linear speedup in a region of 32 to
48 cores by using the L2 Cache. Here, the problem size fits
into the L2 Cache.

4core/mesh/memory frequency of 533/800/800 MHz

IX. CONCLUSIONS AND OUTLOOK

In this paper, we have presented our first steps to design
and implement a strong memory model for the SVM system
that has been integrated into MetalSVM. The basic concept
is based on a mailbox system with a low-latency inter-
kernel communication layer. First benchmark results of our
SVM system prototype are promising. In fact, the overhead
of the Strong Release Consistency compared to the Lazy
Release Consistency Model is tolerable. Moreover, this paper
shows that the current drivers of SCC Linux’s IP stack have
potential for improvement. In the majority of the presented
benchmarks the IP stack of MetalSVM reaches a significantly
better performance.

In the future, we will investigate other, weaker memory
models, to achieve the best performance for our bare-metal
hypervisor. We plan to use experiences [17] from the design of
kernel extensions for NUMA systems to reach a more dynamic
memory distribution strategy like Affinity-on-Next-Touch [18].
In addition, improvements regarding the scalability of our
synchronization layer and the collective operations ,provided
by MetalSVM, are in progress.

We aim for the nearer future to increase of the usability
of MetalSVM to address a broader audience. Besides, we
recommend an integration of our improved IP solution back
to SCC Linux so that all MARC members can benefit from
this work.

ACKNOWLEDGMENT

The research and development is funded by Intel Corpo-
ration. The authors would like to thank especially Ulrich
Hoffmann, Michael Konow and Michael Riepen of Intel
Braunschweig for their help and guidance.

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1.

[2] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,” in
Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[3] M. van Tol, R. Bakker, M. Verstraaten, C. Grelck, and C. Jesshope, “Ef-
ficient Memory Copy Operations on the 48-core Intel SCC Processor,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific Publishing,
Ettlingen, Germany, July 2011.

[4] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
Improvements of Programming Models for the Intel SCC Many-core
Processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011), Workshop on New
Algorithms and Programming Models for the Manycore Era (APMM),
Istanbul, Turkey, July 2011.

[5] M. Dormanns, K. Scholtyssik, and T. Bemmerl, “A Shared-Memory
Programming Interface for SCI Clusters,” in SCI: Scalable Coherent
Interface, H. Hellwagner and A. Reinefeld, Eds. Springer Verlag, 1999,
pp. 281–290.

[6] IEEE, Ed., Standard for Scalable Coherent Interface (SCI), ser. IEEE
Standards. The Institute of Electrical and Electronics Engineers, Inc.,
1992, no. 1596.

[7] S. Paas, T. Bemmerl, and K. Scholtyssik, “Win32 API Emulation on
UNIX for Software DSM,” in Proceedings of the 2nd USENIX Windows
NT Symposium, Seattle, Washington, USA, August 1998, pp. 39–46.

[8] K. Scholtyssik and M. Dormanns, “Simplifying the use of SCI shared
memory by using software SVM techniques,” in Proceedings of 2.
Workshop Cluster Computing, Karlsruhe, Germany, March 1999.

[9] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy Release Consistency
for Software Distributed Shared Memory,” in Proceedings of the 19th
Annual International Symposium on Computer Architecture, 1992, pp.
13–21.

[10] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory
multiprocessor,” in Proceedings of the 2009 USENIX Annual Technical
Conference, San Diego, CA, USA, Jun 2009, pp. 349–362.

[11] M. van Tol, “SCC L2 flush routine,” http://marcbug.scc-dc.com/
bugzilla3/show bug.cgi?id=195.

[12] T. Mattson and R. van der Wijngaart, RCCE: a Small Library for
Many-Core Communication, Intel Corporation, May 2010, Software 1.0-
release.

[13] The sccKit 1.4.x User’s Guide, Intel Labs, October 2011.
[14] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz, iRCCE:

A Non-blocking Communication Extension to the RCCE Communication
Library for the Intel Single-Chip Cloud Computer, Chair for Operating
Systems, RWTH Aachen University, July 2011, Users’ Guide and API
Manual.

[15] A. Dunkels, Design and Implementation of the lwIP TCP/IP Stack,
Swedish Institute of Computer Science, 2001.

[16] J. Nagle, “Congestion control in IP/TCP internetworks,” SIGCOMM
Computer Communication Review, vol. 14, no. 4, pp. 11–17, 1984.

[17] S. Lankes, B. Bierbaum, and T. Bemmerl, “Affinity-On-Next-Touch: An
Extension to the Linux Kernel for NUMA Architectures,” in Proceedings
of the 8th International Conference on Parallel Processing and Applied
Mathematics (PPAM 2009), Workshop on Memory Issues on Multi- and
Manycore Platforms, Springer Berlin / Heidelberg, Volume 6067/2010
of LNCS, Wroclaw, Poland, 2010, pp. 576–585.

[18] L. Noordergraaf and R. van der Pas, “Performance Experiences on Sun’s
WildFire Prototype,” in Proceedings of the 1999 ACM/IEEE conference
on Supercomputing, Portland, Oregon, USA, November 1999.

http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=195
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=195

	I Introduction
	II Previous Work
	III Design of MetalSVM
	IV Memory System
	V Communication Layer
	VI SVM System
	VII IP Stack
	VII-A Benchmark Results

	VIII Application
	IX Conclusions and Outlook
	References

