
Connecting the Cloud: Transparent and Flexible
Communication for a Cluster of Intel SCCs

Pablo Reble∗, Carsten Clauss∗, Michael Riepen†, Stefan Lankes∗ and Thomas Bemmerl∗
∗Chair for Operating Systems, RWTH Aachen University, Aachen, Germany

Email:{reble,clauss,lankes,bemmerl}@lfbs.rwth-aachen.de
†Intel Labs Braunschweig, Braunschweig, Germany

Email: michael.riepen@intel.com

Abstract—The focus of this paper is the analysis of Inter-
Processor Communication for future many-core processors. We
present a prototype that connects two Intel Single-chip Cloud
Computer boards via PCI express in a transparent way, which
creates a high flexibility concerning the target of a remote mem-
ory access. This enables message passing based applications using
RCCE as well as MPI to run on a Cluster-of-Clusters consisting
of 96 SCC cores. As a result, it is possible to analyze programming
models for the SCC Many-Core Processors regarding scalability
and hierarchy-aware communication in more detail. Along with
this, we present first performance results and develop alternative
communication and synchronization schemes for optimization.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-
cessor [1] is a concept vehicle created by Intel Labs as a
platform for many-core software research, which consists of
48 cores arranged in a 6 × 4 on-die mesh of tiles with two
cores per tile. As a research prototype, the SCC platform has
two different types of non-coherent shared memory: off-die
memory by four DDR3 memory controllers as well as on-
die memory, called Message Passing Buffers (MPBs). In this
paper we introduce a third type of memory, that is located
on-die at a remote SCC.

Currently, two possibilities exist for the Inter-Board Com-
munication (IBC) of multiple SCC systems. Both are network
based, and use the Ethernet protocol, either via physical ports
(eMAC) or software tunnel (PCIe). Since the presence of
the eMAC ports, the tunneled version via PCIe has become
more or less obsolete for network based communication but
the connection is still used for setup and debugging purpose.
Nevertheless, explicit communication is provided both ways,
including overhead of the network stack.

RCCE as the communication library for the SCC processor
uses the Message Passing Buffers for communication and
synchronization. The approach to transparently map the remote
MPBs arises a third possibility for Inter-Board Communica-
tion. This method allows a reuse of the common RCCE API
for multiple SCCs without any modifications. In this paper we
present first performance results for the use of RCCE in big
flags mode with multiple SCCs and resulting optimizations.
Furthermore, we evaluate the performance of our prototype
with iRCCE and MPI application benchmarks.

The next section covers related work for a connection
of Many-core Processors and draft an alternative approach

for IBC implemented in the System Interface FPGA. The
rest of this paper is structured bottom up concerning the
communication layers. In Section III, we detail the basic
functionality of our prototype and first performance results for
RCCE. Section V includes the use of the MPI implementation
SCC-MPICH for multiple SCCs. In Section VI, we discuss
benchmark results that point out the potential of our prototype.
Section VII summarizes this paper and gives an outlook for
future work.

II. RELATED WORK

A broad variety of options exist for the connection of
computing systems, each consisting of one or more processors.
In the field of High Performance Computing (HPC), mass
market products like Ethernet and Infiniband as well as spe-
cialized products like Bull Coherent Switch (BCS), Dolphin
PCI Express or NumaScale Interconnect are used for the com-
munication between computing nodes. This creates clusters,
huge SMP systems, or hybrid variants out of coherent and
non-coherent interconnects for commodity hardware. Software
applications typically use those interconnects in an implicit
or explicit way of communication, depending on the parallel
programming paradigm.

At the Chair for Operating Systems the performance of
a bare-metal application using the MetalSVM eMAC driver
and the lwIP stack has been analyzed [2]. For the eMAC
driver of sccLinux 2.6.38 a performance issue has been iden-
tified by comparing its throughput to the bare-metal variant.
Meanwhile, a new version of sccLinux is available based on
the 3.1.4 Linux kernel, which we use in this paper for a
comparison with the transparent IBC.

Intel Labs in Braunschweig developed a concept for a
cluster of eight SCCs, directly connected through the System
Interface FPGAs. This basic idea is based on a re-use of
the SCC silicon router hardware by the FPGA to create a
Cluster-of-Clusters (CoC) with 2 × 4 nodes SCCs, which
allows running 384 cores in parallel. The System Interface
(SIF) FPGA – a Xilinx Virtex 5 device – contains fast general
purpose IO ports (Rocket I/O) that can be used to communicate
between two neighboring SCC systems. By re-mapping the
mesh packets that leave the SCC and routing them through
the SIF FPGA similar to the method that is presented in
Section III, it would be possible to allow message passing

13



SCCSCC

MCPC
PCIe PCIe

Gigabit Ethernet Switch

SIF
PCIeeMAC

S
C

C
Tiles

Fig. 1: Inter-Board Communication (IBC) Prototype

across the SCC nodes. As the mesh interfaces in each SCC
tile are highly optimized, there are no redundant bits in the
packets that can be used to encode the Chip ID in addition to
the Tile ID which is already contained in the packets.

Therefore, it is possible to modify the so called Transaction
ID without an impact on the behavior of the Mesh Interface.
This technique allows the clustering of up to eight SCC
systems. Because of a high utilization of the FPGA resources
it would be necessary to limit the number of parallel memory
transactions to a maximum of eight. Thus, if more than eight
cores would need to access off-chip message passing buffers,
the requests would be serialized, with a maximum of eight
parallel requests per SCC in flight. Due to these restrictions,
Intel Labs decided not to develop a prototype of a SCC
Cluster-of-Clusters that is implemented in the FPGA and uses
Rocket I/O. Indeed, the prototype that is presented in the next
section has similar restrictions but has the advantage of a faster
prototyping to build a Cluster of SCCs.

III. PROTOTYPE

The SCC platform has been developed by Intel Labs as a
concept vehicle for many-core software research. The standard
software framework for the SCC is called sccKit, which
contains a Linux version that provides drivers for network
support as the only option for Inter-Board Communication
(IBC). Provided options are a tunneled network device via PCI
express and a physical Ethernet support through the System
Interface FPGA.

The communication model of the prototype presented in this
section is different. As proposed in the previous section, we
target a transparent access at low level between two SCC nodes
without changing the System Interface FPGA. Figure 1 shows
the setup of the prototype, which is presented in this section.
Therefore, we first detail in this section the needed changes
to the SCC infrastructure for a realization of the prototype.
And second in the next section, we detail needed changes to
the SCC communication library RCCE and and its extension
iRCCE to optimize the performance.

A. Alternative Hardware
The idea is to connect two SCCs via the existing PCIe

communication path between the SCC cores and the System

Interface (SIF) and thereby allow a transparent communication
on low level without any hardware changes to the SCC
systems.

Although, we had to choose alternative Management Con-
sole PC (MCPC) hardware for the realization of a prototype
because the hardware recommended by Intel Labs does not
support the use of a second PCIe expansion card. The use
of alternative hardware for the MCPC has been an active
discussion in the MARC community. Many users reported
bad experiences by using different hardware than the recom-
mended configuration. Our configuration is based on an Intel
Server Board S5000PSL, which works for the operation with
two SCCs.

In addition to that, an extension of the Linux Kernel
driver crbif and the sccKit was needed to support the
use of multiple SCC devices with one MCPC. Additionally,
our crbif extension has to provide routing functionality in
software to enable a transparent Inter-Board Communication.
This functionality is detailed in the next paragraph.

B. MCPC Router Functionality

Because of the 32 bit architecture of the SCC cores and
a larger amount of addressable memory than 4 GByte of the
SCC platform, another indirection between core addresses and
physical system addresses is needed. One Lookup Table (LUT)
per core holds 256 entries, what results in a page frame size
of 16 MByte that is addressable per LUT entry.

Here, for the realization of a transparent interconnect a
single LUT entry can be used to map all MPBs of a remote
SCC. This is possible, because of the crbif driver, which
is extended to serve the generated requests by identifying
incoming requests for a remote SCC and forward them to the
specific destination.

Since the hardware routing of the on-die 2D mesh network
is fixed, it is not possible to encode the destination on a
remote SCC for IBC within the address field of a physical
address. Packages that are intended for a remote SCC have
to be addressed to the System Interface first (cf. Figure 1).
These packages are tagged with a unique key in the address
field, similar to the method of the tunneled Ethernet driver.
Besides this, an IBC package has to contain information about

14



the remote destination and sub-destination, so that the MCPC
can generate a correct request package.

As mentioned in the last section, the reserved bits of a sys-
tem address are useless for this purpose because of the highly
optimized mesh of the SCC, which does not transfer these
bits. A workaround, which we applied to the prototype that is
presented in this section is to encode the remote destination
within the remaining address offset. This obviously shrinks
the maximum amount of memory which can be addressed by
one LUT entry that targets a remote SCC. For the completion
of an outstanding read request, the MCPC has to identify
the returning package and forward it to the specific core. If
the outstanding request is a write request and the automatic
acknowledges of the SIF are disabled, the MCPC has to
generate a specific package.

C. Optimization
Due to the reused Pentium R© architecture, each SCC core

can only have one outstanding memory request. The SIF
handles the communication between SCC chip and MCPC and
has the option to generate automatic write acknowledges.

For the prototype of a transparent Inter-Board Communi-
cation for the SCC, enabling automatic write acknowledges
significantly decreases the latency for a remote write access.
Moreover, write accesses to a remote SCC can be interleaved,
which makes the remote write operation preferable for the
communication of multiple SCCs. Therefore, we analyze in the
next paragraph the possibility to change the communication
protocol of RCCE to obtain an optimal performance for the
inter-processor communication.

Besides the significantly lower latency of a write access, this
option to generate automatic write acknowledges turned out to
be problematic. Especially situations with a high load can lead
to lost packages and even to a complete system crash. As a
result, the higher performance mode of our prototype limits a
stable operation to situations with a moderate load.

Similar issues that arise from a high load for the on-die
mesh network resulting from a central communication point
have been discovered in [3]. Here, more than 24 cores can
generate a high contention through busy waiting to the mesh,
which leads to a starvation of cores. This effect can be be
reacted, by introducing a back-off. Such a workaround in
software would break the transparency of the Inter-Board
Communication. To build a transparent setup with an increased
stability and optimal performance it would be necessary to
change the behavior of the SIF and serialize a certain amount
of outstanding requests, as proposed in Section II.

Further optimization includes the behavior of the crbif
driver. Communication with the FPGA is handled by DMA
transfers. If no communication is pending the driver saves CPU
cycles on the MCPC. Turning-off this mode, decreases the
latency of a remote communication by polling for incoming
data instead.

IV. RCCE COMMUNICATION LIBRARY

RCCE [4] is limited to blocking communication using
the MPBs to transfer messages. The communication protocol

is based on a local-put/remote-get (LPRG) communication
scheme (cf. 2a). A communication with RCCE_send() and
RCCE_recv() works as follows. First, the sender puts the
message to its local MPB. Second, the sender toggles a flag
at the receiver side for the indication of this event and finally
waits at a synchronization point for indication that the receiver
has copied the message to its private memory.

For On-Die Communication (ODC), which RCCE has been
developed for, this scheme has several advantages. Here, it is
guaranteed that each core writes to its local MPB only, which
simplifies the flag based synchronization method.

The transparent Inter-Board Communication, as proposed
in the previous section, generates the possibility to provide an
access to the MPB of a remote SCC. As a result, RCCE can be
used for On-Die and Inter-Board Communication on the SCC
platform, by extending the communication ranks in a linear
way (rck00 . . . rck95). However, a throughput of maximum
1 MByte/s can be achieved for the pingpong application using
the default communication scheme (cf. Figure 3). The reason
is that the communication with LPRG is based on remote read
requests to transfer data.

For our prototype, the Inter-Board Communication path is
routed through the MCPC, which increases the latency for a
remote access significantly (cf. Table I). In fact, a read access
takes approximately two timer longer than a write access.
Obviously, the option where the FPGA generates automatic
write acknowledges, even magnifies this effect by accelerat-
ing only write accesses. For the performance evaluation of
our transparent IBC prototype we decided to implement an
alternative communication scheme for RCCE called remote-
put/local-get (RPLG), where the sender puts the message to
the Message Passing Buffer of the receiver.

A. Communication Schemes

Figure 2 illustrates the two alternative communication
schemes for RCCE. In Figure 2a and 2b, its basic communi-
cation scheme local-put/remote-get (LPRG) is shown besides
the alternative communication scheme remote-put/local-get
(RPLG). For the ODC, the LPRG communication scheme per-
forms slightly better than the RPLG because of the simplified
synchronization.

core core

MPB MPB

put get

(a) local-put/remote-get (LPRG)

core core

MPB MPB

put get

(b) remote-put/local-get (RPLG)

Fig. 2: Communication Schemes

15



1 4 16 64 256 1 k 4 k 16 k 64 k 256 k
0

20

40

60

80

100

120

140

Size [B]

Th
ro

ug
hp

ut
[M

B
/s

]

local-put/remote-get ODC
remote-put/local-get ODC
remote-put/local-get IBC
local-put/remote-get IBC
TCP (netio)

Fig. 3: Throughput for iRCCE Ping-Pong and TCP netio

The protocol of the RPLG communication scheme has the
disadvantage that multiple cores can concurrently write to
the same MPB, which requires additional synchronization
(cf. Section V). Here, the throughput for IBC raises up
to 16 MByte/s for a larger message size, because the write
accesses to a remote memory location such as the MPBs
can be pipelined. Our measurements have shown that the
bisection throughput for this configuration is 47 MByte/s. For
all these measurements, the automatic write acknowledges
were enabled. Compared to the On-Die Communication, an
exchange of the communication scheme creates a maximum
throughput for the Inter-Board Communication that ranges
from 5 to 10 percent. This is in the same order of magnitude
than the communication via TCP/IP using the eMAC ports.

B. iRCCE Communication Extension

The iRCCE library [5] has been developed at the RWTH
Aachen University as an extension to the common RCCE
library in order to support a light weight non-blocking
communication for the SCC. Additionally, iRCCE offers
new inquiring functions for the Inter-Board Communication.
Quite similar to the common functions RCCE_ue() and
RCCE_num_ues(), these new functions iRCCE_dev()
and iRCCE_num_devs() return the ID and the count of
SCC boards involved. Furthermore, by means of the new func-
tion RCCE_num_ues_dev(), the number of active cores
per board can be inquired. All together, these five functions
provide enough information so that each core can determine
its position within the hierarchical setup of a coupled iRCCE
session. That way, future iRCCE applications may take the
hierarchical nature of such a cluster of SCCs into account.

V. SCC-MPICH

SCC-MPICH is based on MP-MPICH, a multi-platform
message-passing library that in turn is derived from the
original MPICH and that particularly offers some features
for building Cluster-of-Clusters [6]. This part of MP-MPICH,
called MetaMPICH, provides hierarchy-awareness and allows
for using different communication facilities (in terms of mul-
tiple communication devices) at the same time.

The SCC-related part of SCC-MPICH is a new commu-
nication device that makes use of the on-die MPB for the
core-to-core communication [7]. This device, which in turn is
based iRCCE, is highly optimized for providing low latencies
and therefore offers three different communication protocols
(Short, Eager, Rendezvous), which are chosen according to the
message length. In addition to these, a fourth communication
protocol (SHM-Eager) can make use of the off-die shared-
memory for passing messages between the cores. However,
since this detour via the DDR3 memory badly impacts la-
tency and throughput, this protocol is usually only used for
comparison purpose.

As a hierarchy-aware Message Passing Interface (MPI)
library, SCC-MPICH allows the user to spawn one single
MPI session across multiple SCC boards. In doing so, SCC-
MPICH uses TCP/IP for the inter-board communication while
the on-die communication is still handled via iRCCE and
thus via the MPBs [8]. As the IBC obviously constitutes a
bottleneck in terms of lower throughput and higher latencies,
SCC-MPICH offers some features to make such hierarchical
topologies queryable and thus visible even at application level.
Therefore, at least likewise hierarchical algorithms, as for
example coupled codes, can be partitioned to circumvent this
bottleneck.

16



On-Die Communication (ODC) vs. Normal flags Tagged flags
Inter-Board Communication (IBC): ODC IBC ODC IBC

iRCCE in remote-put/local-get mode: 2.4µs 32.2µs 1.3µs 26.4µs
iRCCE with additional probe flags: 2.9µs 72.4µs 2.1µs 26.5µs
SCC-MPICH with common Short Protocol: 3.4µs — 3.1µs —
SCC-MPICH in Coupled Mode: 7.3µs 46.1µs 3.5µs 29.8µs

TABLE I: Latency Comparison regarding Tagged Flags

Although, the TCP/IP-based coupling of multiple SCC
boards works quite well, a transparent inter-chip communi-
cation as presented in the prior sections promises much lower
latencies due to the omission of a higher-level network stack.
Because SCC-MPICH is based on iRCCE, the application of
a transparent coupling in terms of an iRCCE session spawned
transparently across two or more SCC boards seems, at least
at a first glance, quite simple.

However, it turned out that especially the switchover from
local-put/remote-get to the remote-put/local-get pattern within
iRCCE, as described in the previous section, constitutes a
major pitfall for its integration into SCC-MPICH. This is
because SCC-MPICH, in its capacity as an MPI library,
needs (in contrast to RCCE and iRCCE) a so-called Progress
Engine1 that iteratively checks for incoming messages and that
is able to dispatch and even to reorder messages according to
MPI rank, MPI tag and MPI communicator used.

This can be achieved on top of iRCCE by means of polling
on all remote MPBs in a round-robin fashion for new messages
addressed to a particular receiver. However, when switching
to remote-put/local-get semantics, a receiver can just poll on
its own local MPB while potential senders have to access this
MPB in a concurrent manner.

In order to fix this issue, additional probe flags (nue-1
in count) can be introduced for each core to reconstruct the
needed communication pattern, where nue is the total number
of started processes. However, the implementation of this
method in a straightforward manner introduces an additional
synchronization overhead that leads to an increased latency,
as illustrated in Figure 4. Therefore, we have spent a lot of
optimization effort to keep this additional overhead as low as
possible.

The way we followed to realize this was to use so-called
Tagged Flags that can carry additional payload information
alongside with their synchronization signals. This can be
achieved when using the so-called Big Flags mode of iRCCE,
where each synchronization flags is embodied by a whole
cache line of 32 Byte. In the common use of this mode, only
one integer word of 4 Byte is used for the actual synchroniza-
tion whereas the remainder is unused. However, in Tagged
Flags mode these remaining 28 Bytes can be used for small
payloads in a piggyback fashion.

1A Progress Engine is a dedicated part of an communication layer that
handles signaling messages, e.g. for flow control, and takes care of progress
for still pending payload messages in an iterative but transparent manner.

local-put/remote-get

sender receiver

put
local

signalsent flag

remote get

signal

rea
dy

fla
g

remote-put/local-get
with probe flag

sender receiver
signalprobe flag

signal

rea
dy

fla
g

remote put

signalsent flag get
local

Fig. 4: Timely behavior of Communication Protocols

This is because on hardware level, all data exchange via the
mesh is conducted in cache line granularity.

Table I holds the obtained latencies for MPI and iRCCE
with On-Die Communication (ODC) and Inter-Board Commu-
nication (IBC) for the common PingPong application. Theses
measurements demonstrate that the resulting overhead of the
introduction of additional probe flags for small messages
can almost be compensated by using the described Tagged
Flags feature. Obviously, this feature reduces also the latencies
between cores communicating on the same die. Therefore, we
plan to integrate the option for Tagged Flags also into the next
major release of iRCCE in terms of a shortcut mechanism that
can improve the latencies of the common iRCCE_send()
and iRCCE_recv() functions.

ODC IBC
iRCCE (with remote-put/local-get): 1.3µs 26.4µs
SCC-MPICH on iRCCE: 3.1µs 29.8µs
SCC-MPICH with TCP over MPB: 140µs —
SCC-MPICH with TCP over eMAC: 108µs 108µs
Raw TCP (Sockets) over MPB: 134µs —
Raw TCP (Sockets) over eMAC: 94µs 94µs

TABLE II: Latency Comparison between iRCCE and TCP

17



1 8 16 32 48 64

500

1,000

1,500

O
D

C

IB
C
+O

D
C

cores

M
FL

O
P

/s

linear speedup
native iRCCE
SCC-MPICH on iRCCE
SCC-MPICH with TCP

Fig. 5: LU (CLASS B) from the NAS Parallel Benchmarks

Since SCC-MPICH provides TCP/IP-based communication,
we applied the PingPong benchmark for such a configuration.
The advantages of omitting the TCP/IP software stack be-
comes blatantly obvious, by comparing the measured latencies
from Table II for TCP/IP and iRCCE-based communication.

VI. BENCHMARKS

For a more challenging problem for the SCC, Mattson et
al. ported the LU and BT benchmarks from the well known
NAS [9] parallel benchmarks to RCCE [10]. To benchmark
our prototype, we run the LU benchmark (Class B) with
iRCCE and SCC-MPICH using the transparent Inter-Board
Communication. Here, we obtained measurements for up to
64 cores2 by connecting two SCC boards. That means that up
to 32 cores, the benchmark runs only on a single SCC, whereas
the scenario with 64 cores represents the coupled case.

As one can see in Figure 5, the benchmark scales quite well
as long as there is On-Die Communication only.3 Surprisingly,
the benchmark with iRCCE on 64 cores, the computing
performance scales super-linearly for the coupled case.

The reason is that the improved memcpy for the SCC of
iRCCE [11] uses software prefetching of data, which leads
to a better cache behavior for the benchmark. The Class B
problem of the LU kernel is small enough to fit into the
agglomerated caches of the 64 cores. This shows very plainly
that spawning one parallel session across multiple SCCs may
not only benefit from the higher degree of parallelism but also
from an increased aggregated cache size.

However, when looking at the MPI performance for 64
cores, a major drawback of using additional probe flags (at
least in iRCCE’s big flags mode) becomes obvious:

2The LU benchmark requires a power of two as the number of started
processes. Hence, all 96 cores cannot be used in this scenario.

3Frequency settings (Core/Mesh/Memory): 533 MHz/800 MHz/800 MHz

Since the allocation of these flags decreases the amount
of MPB space remaining for the actual payload transfer,
the achievable communication throughput decreases, too. In
fact, when starting an SCC-MPICH session running on 64
cores, 6 kByte MPB space per core gets just allocated for
synchronization purpose (and of course for short messages
that can be sent via Tagged Flags), whereas merely 2 kByte
are effectively left for transferring larger messages. Finally,
the bad impact of this effect can be observed in Figure 5 for
the MPI case where the computing performance significantly
suffers for the 64 cores scenario.

VII. CONCLUSION AND OUTLOOK

In this paper we presented a concept for a low-level
Inter-Board Communication. We developed and analyzed a
prototype for the SCC platform which connects 96 cores in
a transparent way. As a result, the RCCE communication
library can be used for the communication between multiple
SCC boards with a hierarchical communication structure. We
figured out that with remote-put/local-get, the change of the
communication scheme leads to best performance for the
Inter-Board Communication.

For future research, it has to be evaluated how SCC-MPICH
can be optimized if both connections (PCIe and eMAC) are
used in parallel. Parallel applications can use hierarchy-aware
communication patterns to get best performance, especially
with respect to collective communications. Therefore, we draft
extensions to the common iRCCE API to expose locality to
the programmer. We see potential that other research projects
from the MARC community may profit from the results that
has been presented in this paper. For this purpose, we plan
to integrate the remote-put/local-get communication scheme
and tagged flag support to the next iRCCE release. Addition-
ally, we plan to expand our prototype by mapping remote
synchronization and interrupt registers, as well as off-die
shared memory regions with the techniques that are presented
in this paper. This will enable the analysis of approaches
like Remote Direct Memory Access (RDMA) [12], Software
based Coherence [13] or Inter-Kernel Communication and
Synchronization [14] with an increase of the scalability and
overcome the limitation using only big flags mode of RCCE
(cf. Section VI) for Inter-Board Communication as in the
scope of this paper.

The general concept of a transparent communication with
an MCPC that acts as a software router is not limited to a
Cluster of SCCs with two boards, and a resulting core count of
96 as in our setting. Obviously, the limitation is generated by
the maximum number of PCIe devices, that can be connected
to a single MCPC. Moreover, if one of the MARC research
projects can benefit from a setup with up to eight SCC boards
connected by Rocket I/O, the project owner should not hesitate
to contact the authors in order to discuss the options for a
realization of the concept.

18



ACKNOWLEDGMENT

This research was funded by Intel Corporation. The authors
thank Michael Konow, Jan-Michael Brummer and Niels Ole
Salscheider for their help and guidance.

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corporation,
November 2010, Revision 1.1. [Online]. Available: http://communities.
intel.com/docs/DOC-5852

[2] S. Lankes, P. Reble, C. Clauss, and O. Sinnen, “The Path to
MetalSVM: Shared Virtual Memory for the SCC,” in Proceedings
of the 4th Many-core Applications Research Community (MARC)
Symposium, Potsdam, Germany, December 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-19214

[3] P. Reble, S. Lankes, F. Zeitz, and T. Bemmerl, “Evaluation of Hardware
Synchronization Support of the SCC Many-Core Processor,” in
Proceedings of the 4th USENIX Workshop on Hot Topics in Parallelism
(HotPar 12), Berkeley, CA, USA, June 2012. [Online]. Available: https:
//www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf

[4] T. Mattson and R. van der Wijngaart, RCCE: a Small Library
for Many-Core Communication, Intel Corporation, January 2011,
Software 2.0-release. [Online]. Available: http://communities.intel.com/
docs/DOC-5628

[5] C. Clauss, S. Lankes, T. Bemmerl, J. Galowicz, and S. Pickartz,
iRCCE: A Non-blocking Communication Extension to the RCCE
Communication Library for the Intel Single-Chip Cloud Computer,
Chair for Operating Systems, RWTH Aachen University, July
2011, Users’ Guide and API Manual, V1.2. [Online]. Available:
http://communities.intel.com/docs/DOC-6003

[6] B. Bierbaum, C. Clauss, R. Finocchiaro, S. Schuch, M. Pöppe,
and J. Worringen, MP-MPICH – User Documentation and
Technical Notes, Chair for Operating Systems, RWTH-Aachen,
University. [Online]. Available: http://www.lfbs.rwth-aachen.de/users/
global/mp-mpich/mp-mpich manual.pdf

[7] C. Clauss, S. Lankes, and T. Bemmerl, “Performance Tuning of
SCC-MPICH by means of the Proposed MPI-3.0 Tool Interface,”
in Proceedings of the 18th European MPI Users Group Meeting
(EuroMPI) 2011, Santorini, Greece, September 2011. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24449-0 37

[8] C. Clauss, S. Pickartz, S. Lankes, and T. Bemmerl,
“Hierarchy-Aware Message-Passing in the Upcoming Many-
Core Era,” Grid Computing – Technology and Applications,
Widespread Coverage and New Horizons, pp. 151–178, 2012.
[Online]. Available: http://www.intechopen.com/articles/show/title/
hierarchy-aware-message-passing-in-the-upcoming-many-core-era

[9] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, R. Fatoohi,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga, “The NAS parallel benchmarks,” Intl. Journal
of Supercomputer Applications, vol. 5, no. 3, pp. 66–73, 1991.

[10] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: The Programmer’s View,” in
Proceedings of the 2010 ACM/IEEE Conference on Supercomputing
(SC10), New Orleans, LA, USA, November 2010.

[11] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the intel scc many-core
processor,” in Proceedings of the 2011 International Conference
on High Performance Computing and Simulation (HPCS 2011),
Istanbul, Turkey, July 2011, pp. 525 –532. [Online]. Available:
http://dx.doi.org/10.1109/HPCSim.2011.5999870

[12] S. Christgau and B. Schnor, “One-Sided Communication in RCKMPI for
the Single-Chip Cloud Computer,” in Proceedings of the 6th Many-Core
Applications Research Community (MARC) Symposium, July 2012, pp.
19–23. [Online]. Available: http://hal.archives-ouvertes.fr/hal-00719017

[13] R. Rotta, T. Prescher, J. Traue, and J. Nolte, “Data Sharing
Mechanisms for Parallel Graph Algorithms on the Intel SCC,” in
Proceedings of the 6th Many-Core Applications Research Community
(MARC) Symposium, July 2012, pp. 13–18. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00718993

[14] P. Reble, S. Lankes, C. Clauss, and T. Bemmerl, “A Fast Inter-
Kernel Communication and Synchronization layer for MetalSVM,”
in Proceedings of the 3rd MARC Symposium, KIT Scientific
Publishing, Ettlingen, Germany, July 2011. [Online]. Available:
http://communities.intel.com/docs/DOC-6871

19




