A Message Passing Interface Library for Inhomogeneous Coupled Clusters

Martin Poeppe, Silke Schuch, Thomas Bemmerl
Lehrstuhl fur Betriebssysteme,
RWTH Aachen, Kopernikusstr. 16,
52056 Aachen, Germany
E-mail: {martin, silke, thomas} @1fbs.rwth-aachen.de

Abstract

Clusters of PC containing mostly general purpose hard-
ware have become more and more usable for high perfor-
mance computing tasks in the past few years. Clustering
existing systems or extending cluster installations leads to
the problem of inhomogeneous cluster installations with a
broad variety of hardware and even operating systems. This
paper describes the efforts of the MetaMPICH project to
deal with multi-platform inhomogeneous clusters, using dif-
ferent networks and processor types. An approach is pre-
sented which on one hand hides the heterogeneity of soft-
and hardware from the MPI application programmer, but
on the other hand supports the exploitation of special abili-
ties of single meta computing resources by providing a new
MPI communicator which reflects the real topology of the
connected systems.

Keywords: Grid Computing, Meta Computing, Cluster,
MPI, Meta Computer Configuration

1. Introduction

The use of Clusters of PC for high performance comput-
ing tasks has become very popular recently, because they
provide a high performance to a much lower price than dedi-
cated multicomputers. New networking techniques have
been developed in the past few years to increase perfor-
mance and to combine the relatively cheap high processor
performance with adequate networking performance. The
short-time availability of standard PC hardware components
of a special type leads to the problem of keeping extensions
of existing cluster installations homogeneously in respect
to the PC hardware of the single nodes. In addition to this,
it is often not possible to keep the network hardware and
topology, e.g. because a new network is used or the cluster
extensions have to be installed in a remote location. This pa-
per presents the MetaMPICH project, which provides a MPI
[12] platform for meta computers, as a solution to many of

these problems.

Though MetaMPICH is also suitable for large Massively
Parallel Systems and dedicated multicomputers as shown in
the Gigabit Testbed West project [3], where a predecessor of
MetaMPICH has been used to run coupled simulations on
WAN-connected supercomputers, this paper focuses on PC-
clusters with high numbers of processors because these have
become more and more popular in the past years. These sys-
tems confront the middleware developer with special prob-
lems generated by the lack of a single system image. The re-
sulting difficulties in resource management and process cre-
ation are covered in section 4. A lot of research and devel-
opment has been done to solve these problems for dedicated
NORMA-systems' in the past years, for example in the In-
tel Paragon Project [14], [13], [15]. The Paragon software
aimed at providing a complete single system image by the
operating system layer, which made it difficult to transfer
this technology to other hardware and software platforms.
Other efforts were made to emulate expensive supercomput-
ers on much cheaper networks of workstations to decrease
the costs of software development and testing [16]. With
the development of the MetaMPICH library we tried to pro-
vide transparent communication using a user-level software,
which runs on a variety of hardware platforms and multi-
purpose operating systems including Linux and Windows
XP.

Other projects like MPICH-G [4] (a MPI implementation
for Globus) and PacX [5] made it possible to run MPI appli-
cations on distributed Massively Parallel Systems, but relied
on existing internet connections, i.e. the normal existing
network routes between the systems were used. In addition
to this, our goal was to make it possible to use multiple dedi-
cated network connections and to support memory-coupled
clusters.

Traditional beowulf-like clusters use a standard network
for communication, in most cases this is fast or Gigabit
Ethernet. In these environments it is easy to extend an

INORMA = No Remote Memory Access

In: International Parallel and Distributed Processing Symposium (IPDPS 2003), Workshop for Communication
Architecture in Clusters (CAC 03), Nice, France, April 2003

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

martin
In: International Parallel and Distributed Processing Symposium (IPDPS 2003), Workshop for Communication Architecture in Clusters (CAC 03), Nice, France, April 2003

installation because the used IP-based networks can easily
grow with the number of nodes and are able to bridge longer
distances to other parts of the cluster in remote facilities.
The performance of the network in such systems is usually
low, and thus only parallel applications on such systems do
not have to communicate very much at all. Because of this,
the scalability of the network is not very important.

Other clusters that diverge from this COTS? paradigm
by using particular networking hardware, which is specially
developed for parallel cluster computing like Myrinet and
Scalable Coherent Interface (SCI). These are much more
sensitive to inhomogeneous extension because the applica-
tions they are running can communicate much more in com-
parison to local computing work.

Applications which scale well on the metacomputing
platforms described in this paper are therefore those who
don’t communicate very much at all. This implies they
never benefit from high speed cluster interconnects. But
even non-trivial parallel applications with much more com-
munication can make use of this hardware platforms if they
take care of the communication topology. As an exam-
ple, one could distribute a simulation application, which
consists of two or more different loosely coupled parallel
applications, on different cluster systems. Another possi-
bility is to partition application data in a manner, which
minimizes the communication between groups of partitions
which then are assigned to different clusters. In this way,
internal high speed cluster interconnects could be exploited
without the inter-cluster connection causing a serious bot-
tleneck in communication.

This article is structured as follows: In section 2 we give
a short description of the hardware architectures that we
used for our work and how these systems are connected.
We explain our techniques to describe and configure meta
computing systems, which are used in section 3, where the
MetaMPICH library is presented. Another important topic
in this scope is covered in section 4: process management in
distributed inhomogeneous computing environments. Sec-
tion 5 shows some benchmarking results measured with
MetaMPICH. The future work which has still to be done is
described in the last section in addition to a short summary
of this paper.

2. Cluster-based Meta Computing Architec-
tures

Meta computing resources are existing hard- and soft-
ware installations which are to be combined to a higher
level construct which is widely named as meta computer
or grid computer. Because these systems were not installed

2COTS - components off the shelf: This means only standard hard- and
software components designed for the mass marked

with the intention to be used together as one big system, a
broad variety of hard- and software and even of system ar-
chitectures is found. Figure 1 shows the processor related
view of a sample meta computer configuration consisting
of a cluster (meta host A) and a SMP-system (meta host B).
Unlike in traditional massively parallel systems, the proces-
sors are not replaceable by each other, instead they have
to be grouped into a number of levels within which they
are exchangeable. The figure shows four level 1 groups in
meta host A, which could be dual processor SMP systems.
Their grouping in a level 2 processor group could be done
by a system area network (SAN) like Scalable Coherent
Interface [7], which is supported by MetaMPICH through
the SCI-MPICH extension [17] based on the SMI—library3
developed at the chair for operating systems ([1],[10],[2]).
Each SMP node represents a SCI node in a level 2 group.
These nodes are partially exchangeable if the nodes run the
same operating system and provide the same hardware plat-
form. Only processes that need special networking hard-
ware which is not installed in all nodes have to be executed
on the special I/O-node, which is a task for the meta com-
puter configuration described in section 2.1. The network
interfaces can be attached to different process group levels,
e.g. while meta host A has only interfaces at multiple level
1 groups, all processors of meta host B share the networking
facilities at level 2.

The figure also defines the term meta host which is often
used in this paper: a meta host is a component of a meta
computer which is seen as one system from the view of the
meta computer.

Our installation at the chair for operating systems con-
sists of a quad Xeon(550MHz) server, a 8-node cluster
with dual Pentium-III (§00MHz) and a 4-node-Cluster with
dual Pentium-II processors. For the testing of processor-
heterogeneous configurations we use a SUN Sparc Enter-
prise 450.

For networking we use the above mentioned SCI, which
we use at the same processor level as shared memory. To
connect the meta hosts to each other fast and Gigabit Ether-
net as well as multiple ATM 155Mbps adapters, which can
be used for ATM WAN connections, are installed.

2.1. Meta Computer Configuration

In contrast to SMP-Systems, a Cluster of PC has no sin-
gle process space, no shared memory and in particular no
shared access to networking facilities. Therefore in oppo-
site to SMP-machines it is not possible to just fork a num-
ber of symmetrical processes which can all take the same
part in the meta computing application. The processors of

3The Shared Memory Interface is a shared memory communication
library which utilizes the SCI network.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

Meta Computer
level 3
Meta Host A Meta Host B
[> D
\[j
>
level 2 >

> D
L1 N

level 2

[> Processor
[0 Network Interface

D/D Network Connection

Figure 1. Processor Groups in a Sample Meta
Computer Configuration

a meta computer can be grouped in two or more levels as
shown in figure 1.

To use a cluster, the routing processes (see 3.1) which
need access to the network interfaces, have to be initiated
on the appropriate nodes of the meta host.

2.2. A Description Language

To allow the user of a meta computer a flexible way to
configure his desired computing platform, we developed
a simple description language. The MetaMPICH library,
which is described in section 3, makes use of this language,
both to manage the needed processes and to inform the pro-
cesses about their part in the meta computing application.

Figure 2 extends the example from figure 1 to a real meta
computing platform. Meta host A would be declared as
shown in figure 3.

The nodes of a meta host built by a cluster of PC must be
enumerated together with the network addresses which can
be used to connect to other meta hosts, the native ADI* de-
vice must also be specified. IP networking is supported but
also the AAL-5 layer provided by ATM protocol stacks, in
this example an ATM PVC connection is used. In addition it
is possible to define the quality of service parameters (QoS)
for an ATM connection in the configuration. The advantage

4 Abstract Device Interface - software interface for the networking de-
vice drivers used in the MPICH-library

node a node b
N
3 4
5 6
>
O

Metahost A: cluster Metahost B: SMP

D application processor Q router processor

Figure 2. A more concrete Meta Computer
Configuration

METAHOST metahost A {
TYPE=ch_smi;
NODES= node_a,
node_b (192.168.0.1),
node_c,
node_d (ATM_PVC 0.0.42);

Figure 3. Definition of a Meta Host

of a QoS supporting network is obvious, because one gets a
stable networking environment with the desired properties.
Using public IP networks like the internet or intranets to
couple meta hosts will lead to unpredictable results caused
by network traffic of other applications and changing net-
work routes. An ATM connection allocates the resources
for the specified QoS parameters at initialization time and
guarantees them for the life-time of the connection.

Furthermore, the meta host definition may contain other
parameters like environment variables for the processes and
the path to the executable. Maximum numbers of appli-
cation processes per node can also be given to disburden
nodes which are supposed to do the external communica-
tion for the meta host. For large cluster installations with
a big number of nodes, these can be enumerated with node
boundaries. Precondition is that the node names follow the
pattern <prefix><numbers>, where <numbers is a se-
rial node number and <prefix> is a common name pre-
fix. p4-00 - p4-63 for example would denominate 64
nodes from the cluster p4.

Another important part of the meta computer description
is the connection configuration. The example in figure 2
has only two meta hosts connected by one IP connection
and one ATM connection. To describe these, each pair of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

meta hosts is declared separately with both connections as
figure 4 shows.

PAIR metahost_ A metahost_B 2 -
192.168.0.1 -> 192.168.0.2
ATM_PVC 0.0.42 -> ATM PVC 0.0.42

PAIR metahost B metahost A 1 -
192.168.0.2 -> 192.168.0.1 \
ATM_PVC 0.0.42 -> ATM_PVC 0.0.42

Figure 4. Definition of the Connections be-
tween two Meta Hosts

In this example, we have a two-to-one router configu-
ration, therefore the first PAIR section has two router defi-
nitions. In the inverted order only one router is specified,
which is made possible by the SMP architecture of meta
host B. The first meta host must have two router processes
because the network interfaces used are installed on two dif-
ferent cluster nodes.

The complexity of the configuration grows with O(m?),
where m is the number of meta hosts, because the number
of host-to-host connection declarations equals to m * (m —
1). More information about the meta computer configura-
tion can be found in the MetaMPICH manual [11].

3. MetaMPICH: A Meta Computing MPI-
Implementation

Based on the portable MPI implementation MPICH from
Argonne National Labs [6], we developed a metacomput-
ing extension for this software library. The goal was to
keep the portability of the MPICH-library and use the va-
riety of networking devices for our purposes, which leads
to an architecture that uses two new pseudo devices for
the meta computing functionality. These new devices are
ADI-2 devices which fit in the communication architecture
of MPICH. This clearly layered communication model of
MPICH, next to its freely available source code, was the
strongest reason to use it for our extension. To make an
existing ADI-2 device work with our extension, only a few
changes have to be made to its source code. This makes
MetaMPICH easy to port and to extend.

MetaMPICH is part of the MP-MPICH? project, which
also includes SCI-MPICH for Scalable Coherent Interface
support.

3.1. Router Processes for Message Transport

The meta computers covered by this paper do not need to
provide any all-to-all networking facilities, i.e. nodes may

5http: //www.lfbs.rwth-aachen.de/mp-mpich

logical

connection ~—a

/@@ =
»e1) (5
‘@

[\
\

®
|

network interfaces

Figure 5. Point-to-point Router Connections
between three Meta Hosts

exist which are not able to communicate directly with their
primary network interface. Therefore MetaMPICH needs
special communication nodes which route outgoing mes-
sages from a meta host to the destination meta host. The
communication is done by routing processes, which have
to be run at application startup. As shown in figure 5, a
router process drives connections to one other meta host.
To do this we can have one-to-many connections (but all to
the same meta host) and multiple connections between two
routers. Each router has two parts of communication: first
the native network, which connects the local meta host pro-
cessors, and second the external network interface, which
bridges the distance to the remote meta host.

To optimize the use of the networking resources, router-
to-router connections can also bundle network interfaces to
one logical connection. Large messages are split then into
smaller pieces which can be transferred at a larger band-
width and lower latency.

Figure 6 shows the architecture of the multithreaded
router process. It has two communication directions: ver-
tically it receives messages from the local meta host via
MPI Receive calls and forwards them horizontally to
the appropriate remote router process, which then tunnels
the message in the remote meta host to the target process.
Implemented by now is the use of the TCP protocol and the
AALS protocol with ATM adapters. As described in sec-
tion 2.1 it is possible to use QoS parameters which provide
network connection with stable properties and performance
even for long-distance connections over public ATM net-
works.

3.2. Meta Computing Devices

The architectural design of MetaMPICH uses three ADI-
devices. This solution was chosen to separate the meta
computing functionality from the native device, which
makes the adaption of new ADI-devices easy because only
marginal changes have to be made to the source code of the
device. Figure 7 shows the splitted communication layers

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

meta host A meta host B
MPI routing process socket socket MPI routing process
threads threads
export | import import export
thread thread thread thread
A A
Y Y
MPIR Layer of MPICH MPIR Layer of MPICH

Figure 6. A layered view of horizontal and
vertical communication of the MetaMPICH
routers

for the meta computing devices: the meta computing func-
tionality is achieved through the ch_gateway and ch tunnel
devices, which allow communication with the router pro-
cesses we described in section 3.1. They forward messages
from the local meta host to another by using other network-
ing facilities than the local application processes. The two
new devices are pseudo devices in that they need a native
device (a real device) to communicate. Their own task is
to forward messages to the router processes (gateway) and
distribute them into the local meta host (tunnel), pretend-
ing to be the real sending process on the remote meta host.
This way, the native ADI-device which receives this mes-
sage on the local meta host does not know that the message
came from a remote meta host. Since the meta comput-
ing devices use standard calls of the native device, they are
device-independent.

meta host A } meta host B

8 MPI application 8

‘MPI processH router process Kﬂ router process ‘ ‘MPI process‘

3
\ MPICH \ MPICH \

I
I
I
|
I
gateway tunnel } tunnel gateway
I
I
I
I
I
I
I
I

‘native ADI ‘ native ADI ‘ native ADI ‘ native ADI‘

3 3
\MPICH \ MPICH

Figure 7. Multi Device Architecture of
MetaMPICH

Messages with senders and destinations on the local
meta host are sent using the default communication method

which is provided by the native device functions. Sup-
ported so far are the devices ch_shmem and ch _smi, which is
the shared memory device for Scalable Coherent Interface
adapters. Therefore the target platforms are symmetrical
multi-processor systems and SCI-coupled clusters.

3.3. Exploitation of Meta Host Specific Hardware

MetaMPICH hides the distributed topology of the con-
figured meta computer completely from the message pass-
ing application. But although every MPI program runs out
of the box, it is clear that the router connections will form
communication bottlenecks because of their much lower
bandwidth and higher message latencies. So only applica-
tions with low communication per calculation relation will
scale well on a meta computer consisting of coupled clus-
ters. To use more communication intensive applications on
this kind of parallel computing platform, the MPI program-
mer must take care of the bottlenecks. MetaMPICH sup-
ports such efforts in providing a special new communica-
tor, which groups the process groups described in section 2.
Figure 8 shows a sample set of application processes, where
the subsets located on different meta hosts are available in
the local communicator MPI_.COMM LOCAL, all applica-
tion processes are in MPI_COMM_WORLD as one would
expect.

. MPI_COMM_WORL

—_

D °

(O Application Process

- .
./ Communicator Scope

Figure 8. Example with three Meta Hosts: The
new Communicator provided by MetaMPICH

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

4. Process Management

As described in chapter 2.1, it is not sufficient to start
similar processes on the nodes of a Meta Computer in or-
der to run a parallel application. The distribution of the
processes depends on one hand on the hardware structure
of the meta computer and on the other hand on the operat-
ing system running on the different nodes as shown in this
chapter.

4.1. Process Distribution on a Meta Computer

To run a MPI application on a meta computer consisting
of several meta hosts, which might themselves be clusters of
computers, it is not sufficient to merely specify the number
of application processes that have to be run on each meta
host. As shown in section 3.1 there have to be two types of
processes, router processes and application processes. The
distribution of the different processes depends on the user-
specified meta computer configuration (see section 2.1). In
the example from figure 2, the two router processes on meta
host A must run on the two dedicated nodes node b and
node_d. Therefore, it must be possible for the mpirun com-
mand to place the router processes exactly on the nodes
where they are needed.

To make good use of the hardware, it must also be possi-
ble to specify the number of application processes on each
node. In the given example, the nodes of meta host A have
two processors each. Because the router processes are run-
ning on two of them, it is a good idea to run only one ap-
plication process on node b and node d. The single node
forming meta host B has 8 processors which can all access
all network interfaces - so no process has to be started on a
dedicated processor. In some cases it is profitable to reserve
more than one processor for a routing process to take an ad-
vantage of its multithreaded architecture as it is described
in section 3.1

To provide a simple mpirun command to the user,
which needs only the configuration description and
the program name, the process creation procedure is
split into the process groups on the metahosts. For the
given example the user would commit the command
mpirun -meta mymetacomp.cfg progname
which causes the execution of two sub-mpirun calls. One
sub-call is made for the SCI Cluster on the frontend node
of meta host A (mpirun.smi -np 8 -nodes
node_b,node_d,node_a,node_c -metarun
mymetacomp.cfg progname) and one for the
SMP system (mpirun.shmem -np 8 -metarun
mymetacomp.cfg progname). The mpirun com-
mand parses the configuration to run the commands of
the next stage, the running processes themselves have to
parse it again to determine their part in the meta computing

Linux Linux NT Linux Linux NT

‘.

Linux XP N XP Linux XpP XP

Figure 9. Merging two Homogeneous Clusters
to one Heterogeneous

application. The routing processes then “know” they have
to execute the router code instead of the application code.

4.2. Process Creation in Inhomogeneous Operating
Systems Environments

The MPI-processes located on one meta host use the
same communication device, e.g. SCI, but different meta
hosts can use different communication devices. In that case
it is impossible to use the same commandline parameters
for each meta host of one meta computer. Each commu-
nication device needs special commandline parameters as
described in the MP-MPICH manual [8]. Furthermore, to
use different communication devices, different executables
respectively dynamic libraries are required. To use the ap-
propriate files and parameters, mpirun has to analyze the
meta configuration file.

When starting a MPI-application on a meta computer, it
should be possible to use machines with different operating
systems. Meta computers can not only be a combination of
meta hosts with different operating systems, but also each
meta host can be a heterogeneous cluster consisting of ma-
chines with different operating systems - this is especially
true in environments where existing desktop workstations
are put together to use them for cluster computing. This
demand effects that the process initiation on one meta host
also is inhomogeneous. Depending on the operating sys-
tems the executable files and commandline parameters dif-
fer on the nodes of one meta host.

The creation of MPI-processes in environments with
multiple operating systems is laborious. Although it is pos-
sible to start remote processes by using rsh directly this is
not a comfortable solution, because it is necessary to start
each process manually. The creation of many processes
should not be more complicated than the start of a single
process. To simplify the process creation on a meta com-
puter special remote executions tool are necessary.

4.3. Remote Execution Tools
The MP-MPICH project provides startup tools for homo-

geneous Windows- and Linux/Unix-clusters, but these tools
are not yet suited for process creation in inhomogeneous

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

clusters. For initiation of MPI-processes on one homoge-
neous meta host, the command-line tools mpirun respec-
tively mpiexec can be used.

The call of mpirun is similar on Unix/Linux and
Windows-systems, however the effect of the call is different
on the varying platforms. When calling mpirun on a Unix
node rsh is used to start remote processes, while the remote
processes in a Windows environment are started by using
a special RPC-service. NT-MPICH offers the Windows-
service rcluma for remote execution, which uses Windows-
RPC and provides several features for remote execution.

As a workaround for remote execution on heterogeneous
meta hosts, it is possible to call mpirun for each operat-
ing system of this meta host on an appropriate node. Thus,
manual analysis of the meta configuration file and compari-
son with the arrangement of operating systems on the nodes
is necessary.

For comfortable cluster management, the exclusive use
of mpirun is not adequate, therefore a graphical frontend
for management of heterogeneous clusters is necessary.

5. Performance of the Router Connections

As we would expect, meta computing environments are
not suitable for parallel applications with processes which
communicate and synchronize very often all-to-all. The
slow inter-meta-host connections (in comparison to todays
fast cluster interconnects) are bottlenecks to the communi-
cation performance. Only applications which take care of
the topology with the use of meta-communicators described
in section 3.3 will scale well. These application must di-
verge from the classical SIMD-scheme and execute appli-
cation code on the meta hosts which communicates locally
much more than to other meta hosts. For example a good
idea would be to split a simulation containing two weakly
coupled computing models on two meta hosts.

To show some basic performance data, we present two
point-to-point communication experiments done with the
PingPong test of the Pallas MPI benchmark. Fast and Giga-
bit Ethernet and ATM at 155 Mbps connections were used
directly over one switch as meta-host interconnect and SCI
was used as cluster interconnect.

Figure 10 shows the measured round-trip communica-
tion latencies for several message sizes. As one would ex-
pect, Gigabit Ethernet does not perform best at small mes-
sage sizes but gets an advantage with large messages be-
cause of the high bandwidth. ATM performs nearly equal
for small messages while Fast Ethernet has an advantage at
sizes below 512 byte.

The bandwidth chart in figure 11 shows that ATM per-
forms slightly better than Fast and Gigabit Ethernet for mes-
sage sizes below 1024 byte. Although the ATM adapters
we used only support 155 MBit/s, they provide a bandwidth

1200 T T T
ATMx 155Mbps —=— 4
1000 - Fast Ethernet e .,
.
, 800 /A
35 ".. /
£ s P
% 600 | § A
c B
Q & A
‘(—“‘ .
T 400 + ,'a/ E
0.‘. 2
e
200 [t stemaE et eel S et]
0 L L L L L L
1 4 16 64 256 1024 4096

message size

Figure 10. Point-to-Point Latencies with dif-
ferent Router Interconnects

25
ATM 155Mbps —=—
Fast Ethernet --e--
20 8
w
g
< 15 | B
<
k=)
- e
g 10} i
o oo
5t il 1
e e
0 . . s«*!'”’f's . . \ \

1 4 16 64 256 1024 4096 16384 65536
message size

Figure 11. Point-to-Point Bandwidth with dif-
ferent Router Interconnects

similar to GE for smaller message sizes. This effect is con-
ditional on the small packet switching technology of ATM,
which transports messages in portions of 48 Bytes. In ad-
dition, the ATM adapters used (ForeRunner PCA-200EPC)
have a dedicated on-board processor for data processing,
which disburdens the system processor. The bandwidth sat-
uration is 11 MByte/s for ATM, 9 MByte/s for Fast Eth-
ernet and 23 MByte/s for Gigabit Ethernet. For Gigabit
Ethernet this is a bad result which indicates a problem in
the router implementation, which seems to be caused by the
thread scheduling in the multithreaded router. The band-
width of the SCI network is 80 MByte/s, which would be
high enough to use the full capacity of the Gigabit Ethernet
connection. The latency between application process and
router using the SCI network is in the range of 8 — 12us

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

and has therefore low influence on the measured latencies.

Both experiments show that the router architecture of
MetaMPICH exploits the used networking techniques very
good. Especially the latencies for MPI messages are not
much higher than the normal latencies of the protocol stacks
which have to be used. Thus the overhead of the message
forwarding done by the router processes is low.

6. Conclusions and Outlook

In this paper we presented a solution to run parallel appli-
cations using the Message Passing Interface on a cluster of
clusters system. We described a way to configure this type
of meta computers with a description language which offers
the possiblity to specify multiple dedicated network con-
nections between the parts of the meta computer. The net-
working facilities of multiple cluster nodes can be used to
increase the performance. To use Wide Area Network tech-
nologies more efficiently, the utilization of the AALS layer
of the ATM protocol has been implemented which supports
quality of service and avoids the overhead of the IP pro-
tocol. We showed that the MetaMPICH architecture gains
nearly the maximum performance out of the meta computer
connections, with exception of Gigabit Ethernet. This prob-
lem has to be investigated and solved. Future work will now
focus on suitable meta computing applications to prove the
usability of the described computing platforms.

Much work has still to be done in the area of pro-
cess management on clusters. To provide a comfort-
able solution to start processes on meta computers, a new
startup-mechanism for inhomogeneous clusters has to be
implemented. The new remote execution tools, including
mpirun, must be independent of platforms and operating
systems, especially user account management will get sep-
arated from the operating systems mechanism. This will
avoid the need for normal user accounts on external com-
puting resources, only a meta computing account is needed
then which will never allow direct login.

Important will be the choice of the underlying commu-
nication mechanism. Unix RPC and Microsoft RPC will
not be used because they are not compatible due to authen-
tication issues. As a platform independent solution, JAVA
RMI is very attractive but the needed running virtual ma-
chine on each system has the disadvantage of a large mem-
ory consumption, in addition many of the needed functions
will have to be implemented with JAVA native interface.

Due to these difficulties, we decided to choose another
middleware for the process communication, which will be
a real-time CORBA implementation developed at our insti-
tute [9].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

M. Dormanns. Parallelisierung gitterbasierter Algorithmen
auf NUMA Verbundsystemen mit gemeinsamem Speicher.
PhD thesis, RWTH Aachen, 1999.

M. Dormanns, K. Scholtyssik, and T. Bemmerl. A Shared-
Memory Programming Interface for SCI Clusters. In
H. Hellwagner and A. R. (eds.), editors, SCI: Scalable Co-
herent Interface, pages 281-290. Springer Verlag, 1999.
Eickermann, Volpel, Wunderling. Gigabit Testbed West
Abschlussbericht. Technical report, Forschungszentrum
Jiilich, March 2000.

I. Foster and N. Karonis. A grid-enabled mpi: Message pass-
ing in heterogeneous distributed computing systems. In Pro-
ceedings 1998 SC Conference, 1998.

E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed
Computing in a Heterogeneous Computing Environment. In
Proceedings PVM/MPI 1998, pages 180-187, 1998.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789—
828, Sept. 1996.

IEEE. ANSI/IEEE Std. 1596-1992, Scalable Coherent In-
terface (SCI). Technical report, IEEE, 1992.

J. Worringen and K. Scholtyssik. MP-MPICH, user docu-
mentation & technical notes. Lehrstuhl fiir Betriebssysteme,
RWTH Aachen, 2002.

S. Lankes, M. Pfeiffer, and T. Bemmerl. Design and Im-
plementation of a SCI-based Real-Time CORBA. In 4th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2001), Magdeburg,
Germany, May 2001.

M. Dormanns. Shared-Memory Parallelization of the GRO-
MOS96 Molecular Dynamics Code. In H. Hellwagner
and A. R. (eds.), editors, SCI: Scalable Coherent Interface.
Springer Verlag, 1999.

M. Poppe and J. Worringen. Meta-MPICH, user documen-
tation & technical notes. Lehrstuhl fiir Betriebssysteme,
RWTH Aachen, 2002.

MPI Forum. MPI: A message-passing interface standard. In-
ternational Journal of Supercomputing Applications, 1994.
Riidiger Esser, Renate Knecht. Intel Paragon XP/S - Ar-
chitecture and Software Environment. In Supercomputer
'93 - Anwendungen, Architekuturen, Trends, pages 121-141,
Mannheim, Juni 1993.

Scalable Systems Division Intel Corporation. Intel Paragon
Supercomputers. 1993.

Stephan Zeisset, Stefan Tritschner, Martin Mairandres. A
new approach to distributed memory management in the
mach microkernel. In USENIX Annual Technical Confer-
ence, San Diego, January 1996.

T. Bemmerl and B. Ries. Programming tools for dis-
tributed multiprocessor computing environments. Interna-
tional Journal of High Speed Computing, Vol.5 No.4, pages
595-615, January 1992.

J. Worringen. SCI-MPICH: The Second Generation. In SCI
Europe 2000, pages 10-20, 2000.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

	IPDPS 2003
	Return to Main Menu

