
Real-TimeonMany-CoreSystems
Where real-time and high-performance can benefit from each other

Georg Wassen, Pablo Reble, Stefan Lankes, and Thomas Bemmerl

<lastname>@lfbs.rwth-aachen.de http://www.lfbs.rwth-aachen.de

Chair for Operating Systems, RWTH Aachen University, Germany

Classic approaches to real-time applications on multi-processor systems are:

SMP: Single OS, APIs for Scheduling (POSIX), IPC, . . .

RTOS: Special Operating Systems

RT-Patch: Modifications for Linux-Kernel (soft RT)

Sub-Kernel: RTOS below GPOS (which runs as least prio. task)

Hypervisor: Dedicated (separate) OS for each CPU

GPOS or RTOS

P3P2P1P0 P4 P5 P6

CPU1CPU0 CPU2 CPU3

Single OS (SMP)

GPOS
RTOS

P1P0 P2 T1T0 T2

CPU1CPU0 CPU2 CPU3

Sub-Kernel

Hypervisor or HAL

GPOS RTOS

P1P0 P2 T1T0 T2

CPU1CPU0 CPU2 CPU3

Hypervisor (AMP)

Disadvantages:

•Hard real-time requires special RTOS, often with its own API

•Less portable (e. g. RT-Patch and Sub-Kernel only for selected versions)

•Reduced infrastructure (some tools/libraries are not available)

Approaches to Real-Time on Multi-Processors

Blocking all interrupts on a CPU will harm the system:

•Timer Interrupts: Clock, Accounting (may drift related to other CPUs)

• Inter-Processor Interrupts: if synchronous IPI not handled, system blocks

•Read-Copy-Update: memory not freed

→ Kernel modification was unavoidable (done for Linux 2.6.31-rt and 3.2)

Kernel-patch includes:

•Flexible run-time configuration via sysfs

•Block/ignore IPIs

•Shut down CPU (similar to hotplugging: notify most subsystems)

•Halt timer interrupt (This way: no interrupt-flag needed)

•Can be done from running CPU and remotely (important for recovery)

With these changes, multiple
isolations can be started flexibly.
Tested with run-times up to 72
hours. System remains stable,
max. latency ca. 800 ns. 10 100 200 300 400 500

100
101
102
103
104
105
106
107
108
109
1010

Latency (ns)

E
ve

nt
s

Challenges with Linux and Results

The isolated cores use polling (busy waiting) and are off limits for the load
balancer. The overall system load can not use these CPUs, the efficiency is
lowered. But with more CPUs, it is less hurtful to reserve some for real-time.
With many (even light-weight) CPUs, different domains (e. g. soft and hard
real-time or different assignments) can be created. It is important to con-
sider the underlying architecture (caches, memory topology, system busses).

RAM shared memory

L20..3 L24..7 per-socket cache

L11L10 L12 L13 L15L14 L16 L17 per-CPU cache

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

System HPC HPC HPC Control isol. T isol. T isol. T

Exemplary software architecture (two sockets)

Here, a control process can communicate via the shared L2 cache with the
isolated hard real-time tasks (isol. T) and via RAM with the other processes.
The isolated tasks limit themselves to the L1 cache, all other activity is on
the other socket.

Outlook to Many-Core

Our project targets hard real-time tasks
on a general-purpose operating system
(GPOS). We realized this via isolation
of Linux user-space processes on dedi-
cated CPUs.

GPOS

P2P1P0 P3 P4

CPU1CPU0 CPU2 CPU3

isol. T

Isolation

•Stop NMI watchdog, care for SMI (System Management Interrupt)

•Set CPU frequency to fixed maximum value (Power governor)

•Move Interrupts to other CPUs (Interrupt Affinity) and stop IRQ-Balancer

•Move other processes (CPU-Sets)

•Use Interrupt-Flag to block remaining interrupts (Timer and IPI)

•Avoid System Calls, replace with shared-memory IPC (using atomic ops)

→ Can be done with every Operating System without changes to its Kernel.

+ For Pn: all OS services, libraries, and versions, soft real-time possible
− Isolated Task (isol. T) has limited API

Isolation

Cache effects: shared caches reduce the predictability. A small task limit-
ing itself to the (non-shared) L1 cache is in fact influenced by a memory
consuming load on another CPU if they share an inclusive last-level cache.

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)

ba ya z

yab z

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Eviction in inclusive Caches

Example: An element should be placed in the L10 cache line L10.2. Due to
associativity, it can be placed in L2 cache lines L2.2, L2.5 or L2.8 (red lines).
If the placement strategy chooses L2.8, element (z) will be also evicted from
L11.2, because it is no longer inclusive to the L2 cache.

→ General problem of the x86 architecture, can only be mitigated by careful
placement of tasks on multiple sockets (without shared caches).

Cache Behavior

Analyzing real-time effects on a many-core processor yields experience for:

•Deep understanding of low-level architecture

•Synchronization

•Bare-metal programming

•Caching effects

Isolation gains less than 1 % of CPU time by eliminating interrupts, but this
avoids system jitter. The more cores work together, the more important is
the lockstep of all cores between synchronization points.
We plan to apply isolation to the MCPC’s crbif kernel driver in our cluster
of SCCs (Reble: “Connecting the Cloud”, 2012) to improve the inter-SCC
latency.

Real-time applications also benefit from HPC research.

•Availability of many-core processors

•Cooperation in developing inter-process communication methods

•Non cache-coherrent architectures promise to improve cache behavior

Benefits


