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Efficient Parallel I/O on SCI Connected Clusters

Joachim Worringen
Abstract-This paper presents a new approach towards parallel I/O
for message-passing (MPI) applications on clusters built with com-
modity hardware and an SCI interconnect: instead of using the
classic scheme of clients and a number of servers communicating
via TCP/IP, a pure peer-to-peer communication topology based on
efficient use of the underlying SCI interconnect is presented. Every
process of the MPI application is client as well as server for I/O
operations. This allows for a maximum of locality in file access,
while the accesses to remote portions of the distributed file are per-
formed via distributed shared memory techniques. A server is only
required to manage the initial distribution of the file fragments
between the participating nodes and to provide services like exter-
nal access and redundancy.
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I INTRODUCTION

As a cost-effective alternative to vendor-integrated systems,
more and more high-performance computing systems are built
ascomponents-off-the-shelf(COTS) clusters. The standard com-
ponents include the hardware and also the software, with the
operating system as the basic building block. Common operat-
ing systems for COTS clusters are Linux, Windows NT/2000
and Solaris.

The currently most used programming interface to create por-
table parallel scientific or technical applications is MPI. Many
implementations of MPI exist for COTS clusters, too. However,
this kind of applications does not only require communication
between the processes, but often also has to perform a signifi-
cant amount of file I/O for various purposes [1].

The standard I/O interfaces offered by operating systems used
in COTS clusters lack support of high-performance, parallel I/O
services as they are required for typical I/O related load of sci-
entific applications [2]. On the other hand, existing mechanisms
for parallel I/O like dedicated parallel file systems have to be
used via a proprietary interface which hinders portability. To
overcome these problems at least for the scope of MPI program-
ming, the MPI-2 standard includes a definition of a program-
ming interface for parallel I/O called MPI-IO [3] to allow
portable and efficient programming of MPI applications with I/
O requirements. A number of MPI-IO implementations are
available for COTS clusters, too.

To improve the performance of COTS clusters, high-speed
interconnects like Myrinet or SCI are used instead of the ether-
net-based TCP/IP network. However, the direct and thus effi-
cient support of these interconnects for I/O is not very common.
In this paper, we present the design and an implementation of a
system for parallel I/O with an MPI-IO API on SCI connected
clusters which directly utilizes the fast SCI interconnect.We
have named this systempioSC3 which stands forparallel I/O on
SCI connected COTS clusters. The next chapter describes the
basic priniples ofpioSC3, while chapter III summarizes the
results and gives some directions for future development.

II PRINCIPLES OF PIOSC3

Our current target is to design and implement a system
parallel I/O via SCI which will be used by MPI applications via
the MPI-IO interface: a set of processes running on multip
nodes of a cluster is accessing a file for read or write operatio
via appropriate MPI-IO calls. This means that we can impl
ment our design as a run-time library which operates in us
space. A system for parallel I/O which is designed to be us
with MPI-IO is of course less general than a generic parallel fi
system. But it has the advantage of having semantic knowled
of how the data is structured (via the MPI type definitions) an
allows collective access to a file and can thus be optimiz
towards its specific use.

The basic design idea ofPIOSC3 is illustrated in figure 1. Each
process has a global view on the whole file. This view is pr
vided via the SCI shared memory, which hides the physic
location of the underlying file fragments. Accesses to the file
the MPI-IO library are executed as memory accesses to
address regions in which the differerent file fragments have be
mapped.

However, it is not possible to directly map the file into th
SCI address space. Additionally, it is important to cache por
ions of the file which have been accessed, and to convert rem
read accesses into remote write operations (writing to rem
memory is an order of magnitude faster than reading fro
remote memory). This means that an additional software laye
required which
• uses SCI for communication without the need to map t

whole file into SCI memory segments.
• converts remote-read accesses to remote-write accesse

the opposite direction.
• caches the remote portions of the file which have be

accessed with a suitable consistency scheme.
• optimize locality of file accesses to reduce the amount

communication for remote accesses.
For this purpose, we use a slightly modified version of th

SVMlib [4] which provides distributed shared memory by sof
ware means and is able to perform inter-process communica

M P I - A p p l i c a t i o n

R O M I O

M P I - I O

A D I O

M e m o r y  M a p p e d  F i l e

M P I - A p p l i c a t i o n

R O M I O

M P I - I O

A D I O

G l o b a l  V i e w  o f  F i l e
i n  A d d r e s s  S p a c e S C I

L o c a l  D i s k d r i v e s

G l o b a l  V i e w  o f  F i l e
i n  A d d r e s s  S p a c e

S t o r a g e  o f  1 s t  H a l f  o f  t h e  F i l e  

M e m o r y  M a p p e d  F i l e

L o c a l  D i s k d r i v e s

S t o r a g e  o f  2 n d  H a l f  o f  t h e  F i l e  

Fig. 1. Concept of MPI-IO via memory-mapped files and SCI
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via SCI. SVMlib offers different consistency models; for the
given purpose, themultiple reader - single writerconsistency
model is the best choice. This results in a setup as illustrated in
figure 2, again for the case of two proceses on distinct nodes
accessing one shared file which is distributed over both nodes.

Next to the techniques to access a distributed file, an infra-
structure to manage the distribution and collection of the file
fragments is required. The approach that we have designed is
illustrated in figure 3. Each node on which an MPI application
process is running and performing I/O is apeer, since it is acting
as a server and a client at the same time. Next to these peers, one
serverdoes exist. If a the I/O demon running on a peer needs a
file fragment which is not locally available, it asks the server for
this fragment which serves it itself or issues the transfer request
to anothersubserver(not shown). This means the servers and
subservers maintain a repository of all files in the system, while
the peers may maintain redundant copies of the file fragments.
The management of the files is done via a simple database on
the server. If a process from outside the cluster (client) wants to
access a file, it does this via the server which provides it via the
standard TCP/IP connection.

III SUMMARY & CONCLUSIONS

First measurements with our current pioSC3 prototype show
that the performance is vastly superior to any NFS server wh
is still the most common solution for I/O in COTS clusters. Th
SCI interconnect contributes in two ways to this performanc
the communication for file access is performed via SCI, but a
the inter-process communication of the MPI-IO library which
done via MPI function calls benefits from the high performan
of the underlying SCI interconnect [5].

Of course, a number of tasks remain.While the current perf
mance is good compared to NFS, we need to compare it to ot
distributed file systems for COTS clusters like PVFS. We al
have located performance bottlenecks in the SVMlib; it mig
be substituted by a solution which has less overhead by reduc
the number of context switches between user and kernel sp
and by maintaining the information for the distribution of th
file in SCI shared memory.
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Fig. 2. Two processes map a distributed file
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Fig. 3. Interaction of the components of the pioSC3 system
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