
be

ve-
s-
al
nd
r-

n;
ap-
le-
g
I-

de
e

n
s
an
to
nt
to
on
ia

a-
tter
s

is

ent
ro-
rces

ern
ns
ree
pe-
at
pro-
ory
ory

a

SCI-MPICH: The Second Generation
Joachim Worringen
Abstract-The first version of SCI-MPICH offered full MPI-1 func-
tionality with very good communication performance. However, it
needed improvement in the areas of reliability and stability, com-
patibility and usability. This paper documents the development
SCI-MPICH has undergone in these areas. Next to these improve-
ments on existing functionality, new features have been introduced.
A new, asynchronous message transfer protocol using DMA with
little CPU utilization is presented. The introduction of a server-less,
DSM based MPI-IO implementation which directly uses the high-
performance SCI interconnect for communication is an important
step towards a complete MPI environment on SCI connected clus-
ters.

Keywords- MPI, message passing, cluster, SCI, parallel IO, MPI-IO

I INTRODUCTION

The first release of SCI-MPICH [1] provided the complete
MPI-1 functionality. Further improvement of the performance
of point-to-point communication was hardly possible. However,
our own experiences and the feedback from other sites using
SCI-MPICH showed that there was still a lot of work to do in
terms of improvement of reliability and stability (startup and
shutdown of applications, handling of error conditions), com-
patibility (different operating systems, different types of PCI-
SCI adapters [2], different SISCI implementations), usability
(compiling the libraries, configuring the memory setup) and also
regarding the extension of SCI-MPICH’s capabilities concern-
ing asynchronous message transfer and MPI-IO [3] via SCI.

We have invested a considerable amount of work into the
required improvements of both, the MPICH ADI-2 device
namedch_smiand the underlying SCI shared-memory library
SMI [4]. This paper intends to document the progress of SCI-
MPICH based on the improvements and extensions given above.
In this context, it is unavoidable to point to some limitations of
the current generation of PCI-SCI adapters and their related
driver software which emerged in the course of our develop-
ment.

A. Platform

If not stated otherwise, all performance numbers in this paper
were measured on a cluster consisting of 8 Dual-SMP Pentium-
II nodes (450MHz, BX chipset, 32 bit PCI bus) and one Dual-
SMP Pentium-III Xeon node (550MHz, NX chipset, 64bit PCI
bus). Only the Pentium-II nodes were used for SCI-related mea-
surements. The SCI interconnect consists of one Dolphin D321
PCI-SCI adapter in each node and one Dolphin D512 SCI
switch, to which the nodes are connected as two-node ringlets1.
Additionally, the nodes are connected to a 100Mbit switched
ethernet network (3COM). The nodes were running Solaris 7 as
operating system, and the driver software from Dolphin released

Jan. 7th, 2000. Next to Solaris x86, SCI-MPICH can also
used under Solaris Sparc, Linux and Windows NT.

B. Organization of the Paper

The next chapter gives some insights on the internal impro
ments that have been introduced into SCI-MPICH and illu
trates their effects for the user. SCI-MPICH now offers re
asynchronous message transfer protocols utilizing DMA a
remote interrupts which we present in chapter III. We are cu
rently developing a high-performance MPI-IO implementatio
details are presented in chapter IV. The paper closes with ch
ter V which summarizes the results, points out current bott
necks of the Dolphin SCI implementation and programmin
interface [2] and outlines potential improvements of SC
MPICH.

II I NTERNAL DESIGNIMPROVEMENTS

A number of internal design improvements have been ma
to SCI-MPICH and the underlying SMI library in order to mak
SCI-MPICH more stable and resource-aware.

A. Improved Startup

The original concept for the startup of an SMI applicatio
(SCI-MPICH applications are implicitly SMI applications) wa
to perform the initial synchronization of the processes of
application purely via SCI shared memory. This concept lead
problems since the identifier for the initial SCI memory segme
is unknown prior to actually creating the segment. This led
conflicts if more than one process using SCI-MPICH was run
a single node. Therefore, the basic initialization is now done v
TCP/IP by broadcasting the SCI segment ID from the initializ
tion master to all other processes. We feel that this is the be
concept even if we had to give up the „SCI-only“ concept a
there is no cluster which does not offer TCP/IP.

Another new technique which is used for a faster startup
delayed segment connection. As each process of an SCI-MPICH
application exports three SCI segments (for the three differ
message transfmission protocols [1]) to which each other p
cess needs to connect to, the startup takes longer and resou
are potentially wasted: depending on the communication patt
of the application, a significant number of these connectio
will not be used at all. Therefore, the SCI segments for the th
protocols are not connected until actually required using a s
cific segment creation mode of the SMI library. This means th
the internal data structures for the segments are set up, but a
cess does not connect to and import a remote shared mem
segment until a message needs to be transferred via this mem
segment.

B. Proper Shutdown

Another frequent problem is the proper termination of
1. One port has three nodes connected.
Joachim Worringen is with the Lehrstuhl für Betriebssysteme, RWTH Aachen,
Kopernikusstr. 16, D-52056 Aachen, Germany.
E-mail: contact@lfbs.rwth-aachen.de, WWW: http://www.lfbs.rwth-aachen.de .

e of
nt

ly
ra-

to
r.
ns
a-
int-
PI

ls

all
ic
e
ed
multi-process application in case of an abnormal termination of
one or more processes. We introduced an SCI based watchdog
mechanism in combination with signal handlers to detect abnor-
mal termination of the local process as well as a defunct remote
process. This means that e.g. sending a SIGINT to any process
of an SCI-MPICH application leads to a proper shutdown of all
participating processes. Such a shutdown includes the release of
all SCI related resources by the SMI library since these are not
always automatically reclaimed by the operating system.

C. Memory Configuration

The memory buffers for the different message transfer proto-
cols are allocated statically duringMPI_Init() . To be able to
improve the performance for an application which has a certain
communication pattern (e.g. many messages in the size of the
eager protocol), it is now possible to supply a device configura-
tion file to SCI-MPICH which describes, among other runtime
parameters, the size and number of all categories of memory
buffers. This allows to easily determine the influence of these
parameters on the performance of an application.

If not enough SCI shared memory resources are available to
configure the buffer setup as demanded by the device configura-
tion file, SCI-MPICH automatically reduces the number and
size of the buffers until the demand matches the available
resources. The reduced number or size of the buffers may have
an impact on the performance, but at least the application can
execute at all. The user can verify the actual buffer configuration
using a special startup option of thempirun command.

To better utilize SMP nodes in a SCI cluster, SCI-MPICH
now uses local shared memory for intra-node communication.
This leads to less consumption of SCI resources and delivers
good performance. In figure 1, we present the results of point-
to-point measurements between two processes on a SMP as
round-trip/2 numbers.

The Pentium-III Xeon shows excellent performance if the
message fits well into the cache, but shows extreme perfor-
mance drops if the message size is bigger than half the cache
size. This is due to the performance difference between the full-
speed clocked caches and the main memory. The benchmark
shows amazing results if executed on a Pentium-II 450 under
different operating systems: the performance under Linux 2.2.5
(SuSE 6.2 distribution) is much worse than under Solaris 7. The
local shared memory implementation of this Linux release
seems to need improvement. We also compared SCI-MPICH
and ScaMPI [5] on a Siemens hpcLine (Linux 2.2.10), consist-
ing of Pentium-II 400 dual-SMP nodes. It shows that ScaMPI is
superior for messages bigger 128kB, while SCI-MPICH has
advantages in the range of message sizes between 4kB and
64kB.

D. Support of any PCI-SCI adapter

The first release of SCI-MPICH (and the underlying SMI
library) was designed and optimized especially for the Dolphin
D310 PCI-SCI adapter. With the availability of new PCI-SCI
adapters such as the D321 which differs in performance and
memory-consistency related aspects like size and number of

stream buffers, adaptions were required due to the direct us
the stream buffers. The SMI library now determines all releva
parameters viaSCIQuery() calls, and SCI-MPICH adapts itself
to these parameters. This lead to the introduction of variab
sized control packets which are described in the following pa
graph.

The SMI library and SCI-MPICH have also been adapted
support the SISCI API that the SCI drivers by Scali Inc. offe
This driver is used for ScaMPI, for example on the Sieme
hpcLine systems. It is now possible to run SCI-MIPCH applic
tions on these systems. First performance comparisons of po
to-point operations have shown similar performance of ScaM
and SCI-MPICH. This allows to use MPICH-compatible too
like Vampir [6] or TotalView [7] on the hpcLine1.

E. Arbitrary Size of Control Packets

Control packets, which are also used to transport sm
amounts of data (short message transfer protocol) are the bas
inter-process communication facility for SCI-MPICH. For th
first release of SCI-MPICH, the size of these packets was fix

1. These two tools are not available for ScaMPI on Linux.

64 256 1k 4k4 16
Message Size [byte]

0

10

20
La

te
nc

y
[u

s]

SCI−MPICH, Xeon−550
SCI−MPICH, PII−450, Solaris 7
SCI−MPICH, PII−450, Linux 2.2
SCI−MPICH, hpcLine PII−400
ScaMPI, hpcLine PII−400

MPI Latency
Roundtrip/2 on SMP

64 256 1k 4k 16k 64k 256k 1M4 16
Message Size [byte]

0

50

100

150

200

250

B
an

dw
id

th
 [M

B
/s

]

SCI−MPICH, Xeon−550
SCI−MPICH, PII−450, Solaris 7
SCI−MPICH, PII−450, Linux 2.2
SCI−MPICH, hpcLine PII−400
ScaMPI, hpcLine PII−400

MPI Bandwidth
Roundtrip/2 on SMP

Fig. 1. MPI Bandwidth and Latency in SMP mode

t of
ple-
the

of
usy
to
er
lly
lls

is
e
ns-

an
ta
nce
r

e
ans-

-
am
hs
s

sing
ver,
le
ue

his
ory
to the size of a stream buffer. As this size was 64 byte for the
D310 adapter boards, it equaled the size of an SCI transaction
by which the contained data is to be transferred atomically1.
This atomicity allowed us to write the packet in a highly effi-
cient, self-synchronizing manner. As the stream buffers of the
D321 adapter are sized 128 bytes and with no SCI transaction of
matching size available, a new technique for the self-synchroni-
zation was required.

We developed an efficient technique which allows the control
packets to be sized at any multiple of the size of the biggest SCI
write transaction available (which is currently 64 bytes, but
might be increased to 256 bytes in the future) while maintaining
the low minimal latency of 64 byte-sized control packets. The
data format of these packets is illustrated in Figure 2: the control
packet (which also serves to transmit inlined short messages) is
divided into parts which have the length of the largest SCIwrite
transaction. Each part is synchronized by the closingPacket ID
and additionally carries a flag which indicates if this is the last
part of the packet or if more data follows. The effect of this tech-
nique is shown in figure 3: different sizes of the control packets
cause different switch points from the short to the eager protocol
(which are the clearly recognizable steps). Bigger control pack-
ets cause a smoother transition between the two protocols while
only slightly raising the minimal latency. The lowest latency,
however, is still achieved using 64 byte control packets.

III A SYNCHRONOUS MESSAGE PASSING

Latency Hidingis a well known concept which is used in
many areas of computing to reduce the performance impac
latencies caused by data access of the CPU. Its actual im
mentation technique does of course depend on the nature of
data access and the implied latency. For the case ofmessage
passingvia MPI, the data access is the sending and receiving
messages, and the implied latency is the time the CPU is b
with writing the data to a remote node or waiting for the data
appear in the local receive buffer and transfer it to the us
buffer. The technique we present to hide this latency is the fu
asynchronous implementation of the non-blocking MPI ca
MPI_Isend() and MPI_Irecv() by using the DMA and
remote interrupt capabilities of the PCI-SCI adapters. Th
allows the transmission of data with very little usage of th
CPU, freeing it to perform other tasks during the message tra
mission.

A. DMA via SCI

The current generation of Dolphin PCI-SCI adapters has
integrated DMA engine which allows the movement of da
between two nodes. We have measured the key performa
values bandwidth and latency for remote writes via DMA fo
the Dolphin D321 PCI-SCI adapter (see figure 4).

The latency of DMA transfers can be split into the setup tim
(preparing the transfer and enqueuing the request) and the tr
fer time itself. The related diagram (figure 5) shows the com
plete latency and the constant setup time. The other diagr
shows the bandwidth up to its saturation point. Both bandwidt
are limited by the maximum length of bursts via the PCI bu
(128 bytes) which the PCI-SCI adapter is able to perform.

These values promise a comparable performance as to u
the CPU to move the data, at least for large messages. Howe
it has to be considered that DMA transfers are only possib
between two SCI memory segments; it is not possible to iss
DMA transfers between arbitrarily chosen memory areas. T
makes additional data transfers or registering of user mem
areas necessary2. Also, the two segments involved in a DMA

1. If data is transferred via 2 or more SCI transaction packets,
it is not guaranteed that it appears at the receiver in the
same order as written by the sender.

S C I T r a n s a c t i o n S i z e S C I T r a n s a c t i o n S i z e

H e a d e r D a t a D a t a1 0

P a c k e t I D 1 " D a t a F o l l o w s " F l a g 0 " N o M o r e D a t a " F l a g

Fig. 2. Format of arbitrary-sized control packets

1 8 64 512
Message Size [byte]

0

10

20

30

40

50

60

La
te

nc
y

[u
s]

64 byte
128 byte
256 byte
512 byte
1024 byte

Short Protocol
Different Maximum Packet Sizes

Fig. 3. Latency for differently sized short packets

64 256 1k 4k 16k 64k 256k
Blocksize [byte]

0

20

40

60

80

B
an

dw
id

th
 [M

B
/s

]

PIO
DMA

SCI Bandwidth
Remote memory write: PIO vs. DMA

Fig. 4. Bandwidth for remote memory write access

en-
ot
ia
t
trol
are
he
ing
ad

MI

n
ll-
r-

ive

he
the
rm
the
I

o a
it

w

col

he
e-
transfer need to be addressed via the same file descriptor. How-
ever, usually different file descriptors are used because each file
descriptor can only be used for one local and one remote seg-
ment. We have introduced a re-connection technique in the SMI
library to overcome this limitation: the descriptor of the local
segment is used to connect to the remote segment. These con-
nections are cached to avoid the occuring overhead (which is
illustrated as a cumulative histogram in figure 6) for the upcom-
ing transfers.

The support for memory transfer via DMA is integrated into
the SMI library: a transfer is issued bySMI_Imemcpy() while
SMI_Memtest() andSMI_Memwait() are used to test or wait for
the completion of the transfer. Chaining of multiple DMA trans-
fers is also supported. Unfortunately, the current SISCI library
does not yet support the use of callback functions for DMA
transfers; we use threads to achieve an equivalent behavior.

B. Interrupts via SCI

To perform the message transfers asynchronously (indep
dently from any MPI calls that the application may or may n
perform), an extension of the usual notification technique v
control packetsis required. Incoming control packets are no
detected and processed until the process to which the con
packets was sent calls a related MPI function. Therefore, we
using remote interrupts via SCI to trigger a special thread of t
receiving process which in turn processes the queue of incom
control packets independently from the MPI application thre
of the process.

The use of remote interrupts is also supported by the S
library via the SMI_Signal_send() and SMI_Signal_wait()

functions. It is also possible to install a callback function for a
interrupt. The average latency of a remote interrupt without ca
back (measured as round-trip/2 of the two SMI functions) is cu
rently about as as can be seen from the cumulat
histogramm in figure 7.

C. Asynchronous Eager Protocol

A transmission of a message via theeagerprotocol includes
two steps: transfering the data from the local user buffer into t
remote receive buffer and sending a control packet to inform
receiving process of the arrival of the new message. To perfo
this transfer asynchronously, a second thread is used. Due to
limitation that DMA is only possible between registered SC
memory segments, it is necessary to first copy the data int
local SCI memory buffer, then issue the DMA transfer and wa
for its completion1. The control packet to announce the ne
message is sent and the remote process is signaled.

However, the size of messages handled by the eager proto
is usually only up to 32kB which is too small for efficient DMA
transfers: the overhead for the DMA is too high compared to t
duration of the copy operation performed by the CPU. Ther

2. The SISCI call SCIRegisterSegmentMemory() which is
required to perform DMA to or from an arbitrary user allo-
cated memory area is not yet implemented.

64 256 1k 4k 16k
Blocksize [byte]

0

100

200

300

400

La
te

nc
y

[u
s]

PIO
DMA
DMA setup

SCI Latency
Remote memory write: PIO vs. DMA

Fig. 5. Latency for remote memory write access

600 650 700 750 800 850 900 950
latency [us]

0

200

400

600

800

1000

Re−Connecting Segments for DMA Transfer
cumulative histogramm, 1000 samples

Fig. 6. Overhead of (re)connecting remote segments

1. Waiting for the completion of a DMA transfer, and also
waiting for a signal to arrive does not consume any CPU
cycles.

35̇ 6µs,

32 34 36 38 40 42 44
latency [us]

0

2000

4000

6000

8000

10000

SCI Remote Interrupt Latency
roundtrip/2, cumulative histogramm, 10000 samples

Fig. 7. Remote interrupts via SMI

th
ol
e

er

e,
e
u-
d a

i-
syn-
fore, DMA transfers are disabled by default, but may me acti-
vated if desired.

D. Asynchronous Rendez-Vous Protocol

Therendez-vousprotocol is more complex as it is designed to
transfer messages of arbitrary length. Therefore, the protocol
must be able to transfer a message in multiple parts in case the
intermediate buffers are not big enough to save the whole mes-
sage. Each of these transmissions has to be synchronized
between the sender and the receiver. Figure 8 illustrates the pro-
tocol mechanism. It exhibits the case of anexpected receive, that
means the receiver is already waiting for the message that the
sender sends viaMPI_Isend() as he has calledMPI_Irecv()

before.

E. Performance

In its current state, the absolute performance in terms of
bandwidth and latency of the asynchronous protocols using
DMA is worse than the conventional, CPU driven protocols.

The reason for this comparable low performance becomes
obvious if the bandwidth of the chained copy operations is con-
sidered. Table 1 gives the related bandwidths for a blocksize of
1 MB. Therewith, the upper limit of the bandwidth Brndv can be
calculated to

which results in 35.3 MB/s for the given message size of
1MB. This value is covered by our measurements which are
depicted in figure 9. It shows the effective bandwidth and the
related upper limit of the current 3-copy protocol. The differ-
ence between these values is an indicator for the overhead of the
protocol. It shows that for messages > 512kB, the efficiency of
the protocol is more than 97%, reaching 99% for message sizes
of 8MB. The lower efficiency for smaller messages is due to the
constant overhead of the rendez-vous protocol: two messages
need to be exchanged between the sender and the receiver
before the actual memory transfer can be started (see figure 8).

For reference, figure 9 also shows the raw DMA bandwid
and an estimation of the performance of the 2-copy protoc
(DMA directly from the user buffer) to be implemented once th
drivers provide the required functionality of registering us
memory areas.

The lower bandwidth of the DMA protocol is a disadvantag
but the data transfer via DMA does cost only a fraction of th
CPU cycles and allows the overlap of computation and comm
nication. To demonstrate this advantage, we have designe
synthetical benchmarkoverlap (see figure 10) which simulates
the overlapping of computation and communication (for comb
nations of job and message sizes). The sender posts an a
chronous send operation (MPI_Isend()) and then simulates a
computation for a specified amount of time (jobsize). When

S e n d e r R e c e i v e r

R E Q U E S T _ S E N D _ N B

O K _ T O _ S E N D _ N B

C O N T _ N B

O K _ T O _ S E N D _ N B

C O N T _ N B

A l l o c a t e l o c a l D M A b u f f e r ,
r e q u e s t a r e c e i v e b u f f e r

M P I _ I s e n d ()

M P I _ I r e c v ()

M P I _ W a i t ()

M P I _ W a i t ()

F i l l l o c a l D M A b u f f e r f r o m
u s e r b u f f e r , t r a n s f e r l o c a l D M A b u f f e r
a n d s i g n a l t h e r e c e i v e r

T r a n s f e r l a s t p a r t o f t h e m e s s a g e
f r o m t h e l o c a l D M A b u f f e r , s i g n a l t h e
r e c e i v e r a n d m a r k t r a n s f e r a s c o m p l e t e d

A p p l i c a t i o n t h r e a d w a i t s f o r
t r a n s f e r c o m p l e t i o n

P o s t t h e r e c e i v e r e q u e s t

L o o k u p q u e u e o f p o s t e d r e c e i v e s ,
a l l o c a t e r e c e i v e b u f f e r a n d
s i g n a l t h e s e n d e r

T r a n s f e r d a t a f r o m r e c e i v e b u f f e r
t o u s e r b u f f e r a n d s i g n a l t h e s e n d e r

T r a n s f e r d a t a f r o m r e c e i v e b u f f e r
a n d m a r k t r a n s f e r a s c o m p l e t e d

A p p l i c a t i o n t h r e a d w a i t s f o r
t r a n s f e r c o m p l e t i o n

C P U b u s y
M P I A p p l i c a t i o n
T h r e a d

D M A b u s y
c h _ s m i S i g n a l
T h r e a d

S i g n a l e d C o n t r o l P a c k e t

Fig. 8. Asynchronous rendez-vous protocol specification

Brndv
1

1
BSD

1
BDD

1
BDR
-----------+ +

---<

Copy Operation Name Bandwidth

user send buffer to
local DMA send buffer

BSD 146 MB/s

local DMA send buffer to
remote DMA recv buffer

BDD 69 MB/s

local DMA recv buffer to
local user recv buffer

BDR 146 MB/s

Tab. 1. Bandwidth of copy operations for a block size of 1MB

16 32 64 128 256 512 1024 2048 4096 8192

Message Size [kB]

0

10

20

30

40

50

60

70

B
an

dw
id

th
 [M

B
/s

]
3−copy effect.
3−copy peak
2−copy effect.
DMA

DMA Based Asynchronous Rendez−Vous Protocol
Bandwidth Comparision

Fig. 9. Asynchronous rendez-vous performance

latency = MPI_Wtime()

if (sender)

MPI_Isend(msg, msgsize)

while (elapsed_time < jobsize)

spin

MPI_Wait()

else

MPI_Recv()

latency = MPI_Wtime() - latency

Fig. 10. Pseudo Code foroverlap benchmark

ints

of
rn
r
u-

an
us
ode
t

n
ant
n
a-
).
not
for
e.
o-

-

of

-

or

s

he

O

IO
u-
d
is

it
s

lel
u-
the computation is finished, he blocks until the message to be
sent has been transferred (actually,MPI_Wait() returns when the
message buffer is available to be overwritten). The other process
polls to receive a message.

The results of this benchmark for job sizes tjob between 0 and
60ms and a message size smsg= 1MB is shown in figure 11. The
curve for the synchronous protocol starts with an overall latency
ltotal = lsync= 18ms, which is the message transmission latency,
and rises linearly with tjob. The curve of the asynchronous proto-
col starts with ltotal = lasync= 29ms, but remains on this level as
long as tjob < lasyncis valid. This indicates a good overlapping of
computation and communication. The two curves intersect at a
tjob = 15ms. This intersection represents the performance break-
even point tbe: for tjob > tbe, it is better to use the asynchronous
protocol to minimize the overall latency.

Obviously, the break-even point can generally be determined
as . This relation is illustrated in figure 12.
It shows the transmission latencies against the message size for

the two rendez-vous protocol variants and the break-even po
calculated as the difference between the latencies.

However, to make real use of this feature, the programmer
the MPI application has to design its communication patte
accordingly. The well known NAS parallel benchmarks [8], fo
example, make nearly no explicit use of asynchronous comm
nication. Because the user of an SCI-MPICH application c
specify if DMA or PIO transfers are to be used for asynchrono
message passing, he is able to determine the appropriate m
by comparing two runs of his application with and withou
DMA transfers.

IV MPI-IO VIA SCI

Many MPI applications do not only require communicatio
between the processes, but also have to perform a signific
amount of file I/O for various purposes [9]. Often the executio
time of such an application is not dominated by the communic
tion, but by the I/O (next to the time required for calculation
The usual I/O interfaces offered by operating systems do
support parallelism; and if a system features mechanisms
parallel I/O, they have to be used via a proprietary interfac
Therefore, the MPI-2 standard includes a definition of a pr
gramming interface for parallel I/O called MPI-IO [3] to allow
portable programming of MPI applications with I/O require
ments.

A. State of MPI-IO

Currently, at least two portable implementations of MPI-IO
exist, next to a number of solutions dedicated to a single type
machine:
• ROMIO [10] was developed at the ANL (free, many file sys

tems supported)
• PMPIO [11] by NASA Ames (free, some file systems sup-

ported, no NFS)
• MPI-IO for the PIOFS and GPFS file systems by IBM

(freely available, only proprietary file systems)
• Pallas has developed a complete MPI-2 implementation f

Fujitsu.
Probably due to its close relationship to MPICH (ROMIO i

included in the current MPICH distribution), ROMIO is the
most commonly used MPI-IO implementation. It accesses t
actual I/O devices via an Interface calledAbstract Device I/O
(ADIO [12]). This approach is similar to MPICH’s ADI-2 [13]
interface. To have ROMIO support a specific file system or I/
library, it is necessary to glue them with a layer (called ADIO
device) which translates the function calls defined by the AD
into the function calls required by the underlying system. Us
ally, implementing such an ADIO device is not too complicate
due to the inherent similarities between I/O interfaces. Th
leads to a growing support for ROMIO.

B. Related Work

A lot of work has been done in the area of parallel I/O, let
be parallel file systems or user-level libraries for parallel I/O. A
MPI-IO is becoming an important standard interface for paral
I/O in scientific computing, several of the more general sol

0 10 20 30 40 50 60
Jobsize t_job [ms]

0

20

40

60

80

T
ot

al
 L

at
en

cy
 [m

s]

Synchronous (PIO)
Asynchronous (DMA)

Asynchronous vs. Synchronous Rendez−Vous
Comparison for 1MB Message

t be

l sync

l async

Fig. 11. Effect of overlapping Computation and Communication

8k 32k 128k 512k 2M 8M
Message Size [byte]

10
2

10
3

10
4

10
5

La
te

nc
y

[u
s]

PIO
DMA
break−even

DMA Based Asynchronous Rendez−Vous
Performance Break−Even Diagramm

Fig. 12. Break-even point for asychronous rendez-vous via DMA

tbe lasync lsync–=

e

m-

uld
e
ys-

t
ke
,
al
fig-

d
ed
t

es.
l

tions are enabled for MPI-IO by supplying a suitable interface.
Todays high-performance clusters are usually networked with

an ethernet-type network for TCP/IP based services and ahigh-
performance interconnect(HPI) like SCI or Myrinet for inter-
process communication. To use MPI-IO on clusters, two solu-
tions can currently be used:
• the ROMIO distribution contains an ADIO devicead_nfs to

use a file located on a NFS server which is reachable by all
processes of the MPI application

• theParallel Virtual File System (PVFS [14]) was recently
adapted to ROMIO via a suitable ADIO device [15].

However, all of these solutions use TCP/IP based services for
the communication between the clients (the processes which
need to use the I/O services) and the servers (the processes
which offer and perform the I/O services). So far, there is no
approach to directly utilize a HPI using a lean protocol, avoiding
the immense overhead of a TCP/IP stack. Having the TCP/IP
stack operate on the HPI is no real solution, either, since related
approaches have shown that only a fraction of the HPI’s perfor-
mance will be delivered by the TCP/IP stack on top [16].

A possible approach would be to implement an MPI-IO solu-
tion in the scope ofSciOS[17] which offers a file system inter-
face for SCI memory namedSciFS[18]. However, SciFS only
supports non-persistent files and is implemented as a Linux ker-
nel module which hinders portability to other operating systems.

C. Concept & Implementation

We wanted to design an MPI-IO implementation which
makes optimal use of the fast SCI interconnect by having mini-
mal protocol overhead. We also wanted to avoid the introduction
any potential bottlenecks by using dedicated servers. This lead
to the idea of using distributed, memory-mapped I/O between
the MPI processes as the foundation of our design.

In a straight-forward approach for an SCI connected cluster,
every process would have a part of the whole file available
locally (mapped into its address space from a file on its nodes
local hard disk), and the remaining parts which are located on
other nodes are accessed via memory areas connected by SCI.
Accesses to data from the file are simple accesses to memory
locations. Therewith, nearly no protocol overhead at all occurs
when accessing portions of the file, and all processes are servers
as well as clients. Figure 13 illustrates this basic principle for
the case of two processes (running on distinct nodes).

However, this straight-forward design has several drawbacks.
Read accesses to remote portions of the file would be very slow,
and caching is not possible in a simple manner. Additional
mechanisms to ensure the required degree of consistency would
have to be added. Finally, a lot of address space (matching the
size of the file) mapped into the SCI address space would be
required which is a problem for all current operating systems
and the available drivers for the PCI-SCI adapters.

These problems made the introduction of an additional soft-
ware layer inevitable which had to
• convert remote read accesses (to access portions of the file

located on other nodes) into remote write accesses from the
remote node towards the local node.

• install a software-controlled cache for remote portions of th
file.

• offer a suitable consistency model for accesses to the me
ory that makes up the file.

• use SCI for communication, but without having to map the
whole file into the SCI address space.

These characteristics indicate that the software layer wo
be rather complex - it’s just a complete DSM system. Th
Lehrstuhl für Betriebssysteme has developed such a DSM s
tem as a user-level library calledSVMlib (Shared Virtual Mem-
ory library) [19] which uses SCI (or TCP/IP, if SCI is no
available) for inter-process communication. We decided to ma
the SVMlib the basic building block of our MPI-IO concept
which lead to a design of the complete MPI-1 (convention
message passing) and MPI-IO environment as illustrated in
ure 14.

The MPI-1 part is not connected with the MPI-IO part an
thus did not change. For the MPI-IO part, we use the unmodifi
ROMIO 1.0.1 implementation and use our ADIO complian
devicead_svm. This is based on the slightly modified SVMlib1,
which in turn uses the SISCI API to access the SCI resourc
Currently, ROMIO uses some MPI-1 functionality for interna
communication.

1. SVMlib had to be modified to use persistent files instead of
temporary files, and a protocol for locking portions of the
memory had to be introduced to allowatomic access.

M P I - A p p l i c a t i o n

R O M I O

M P I - I O

A D I O

M e m o r y M a p p e d F i l e

M P I - A p p l i c a t i o n

R O M I O

M P I - I O

A D I O

G l o b a l V i e w o f F i l e
i n A d d r e s s S p a c e S C I

L o c a l D i s k d r i v e s

G l o b a l V i e w o f F i l e
i n A d d r e s s S p a c e

S t o r a g e o f 1 s t H a l f o f t h e F i l e

M e m o r y M a p p e d F i l e

L o c a l D i s k d r i v e s

S t o r a g e o f 2 n d H a l f o f t h e F i l e

Fig. 13. Concept of MPI-IO via memory-mapped files and SCI

A D I - 2

M P I - I O

M P I - 1

M P I A p p l i c a t i o n

M P I - R

R O M I O
A D I O

a d _ s v m

c h _ s m i

M P I - 1

S V M l i b
n t 2 u n i x

S M I L i b r a r y
S I S C I

S I S C I

S I S C I L i b r a r y

d e v e l o p e d b y L f B S

d e v e l o p e d b y A N L

Fig. 14. Software Architecture of MPI-1 and MPI-IO via SCI

ia

r-
n in

r-
not
yn-

ro-
was

net
rf
e
e

er
the
en-
.

CI-
This concept leads to a three-dimensional data distribution
model as illustrated in figure 15. The first dimension are the
nodes on which the processes are running and which each store
a fraction of the file. The second dimension is the size of each of
these fragments (calledsegments). The third dimension is the
number of segments on each node. More than one segment is
used if the file is growing: the size of a segment that is once
mapped into the memory is fixed, thus file enlargement has to be
done by creating new segments and mapping them behind the
existing ones. The size of these new segments is a critical
parameter: the smaller this size is chosen, the more frequently it
may be necessary to create a new segment. On the other side,
smaller segments improve locality since a smaller segment is
more likely to store only data of the local processes.

D. Performance

The first prototype which we used to produce the perfor-
mance numbers below is a fully working MPI-IO implementa-
tion, but without any optimizations. We will present the results
of two benchmarks:coll_perf is a synthetical benchmark
included in the ROMIO distribution which collectively writes
and reads a block-distributed, three-dimensional array in a non-
contiguous manner as illustrated in figure 16. The dimensions of
the Array are 128 integers each, resulting in a file size of 8MB.
For optimum locality, the segments of the global file would have
to be arranged as illustrated in figure 16. However, the current
default setting for the segment size is 1MB.

The other benchmarkBTIO [20] (part of the NAS NPB) is
more application-oriented and iteratively solves three block-tri-
agonal systems of linear equations. After each iteration step, the
results are written into a file. We compare the results of our
ad_svm device with the standard ROMIO solution for clusters,
ad_nfs (PVFS was not yet available for Solaris).

Before comparing these MPI-IO results, it is necessary to
evaluate the performance of the underlying file systems which is
UFS for ad_svm and NFS for ad_nfs. The nodes of the cluster
are equipped with SCSI hard disks of type IBM DDRS-34560D
and SCSI host adapters Adaptec 2940UW, while the NFS server
we used is a Quad-SMP Sun Enterprise 450 with hard disks of

type IBM DNES-318350. All systems are interconnected v
switched fast ethernet. We ran theBonnie[21] disk performance
benchmark with 1GB files to determine the raw read/write pe
formance of the used storage devices. The results are give
table 2.

UFSPII is the local disk I/O of a cluster node; NFSPII->450 is
the NFS I/O of such a node towards the NFS server. UFS450 is
the local disk I/O of the NFS server to exclude its disk perfo
mance as a potential bottleneck. The results show, that I/O is
very CPU intensive and is thus well suited to be executed as
chronously.

Table 3 shows the results of the two benchmarks for 4 p
cesses on 4 nodes. The message passing as well as the IO
performed via SCI for the ad_svm version and via FastEther
for the ad_nfs version. The bandwidth given for the coll_pe
benchmark is the collective bandwidth of all nodes, while th
time period given for the BTIO benchmark is the execution tim
for the application including I/O and computation.

It was expected that MPI-IO via SCI would be much fast
than via NFS over fast ethernet. These first results proof that
presented new concept is indeed vastly superior to the conv
tional solution, even in the state of a non-optimized prototype

V SUMMARY & FUTURE WORK

The presented improvements to the first release make S

Fig. 15. Data distribution for MPI-IO via SCI

Benchmark ad_svm ad_nfs

coll_perf: read 25,7 MB/s 3,7 MB/s

coll_perf: write 28,0 MB/s 0,25 MB/s

BTIO, class S 1,62 s 10,13 s

Tab. 3. Benchmark results for MPI-IO via SCI vs. NFS

Fig. 16. coll_perf’s data organization in memory and on file

I/O device block read CPU block write CPU

UFSPII 7,3 MB/s 9,9 % 8,4 MB/s 13,4 %

NFSPII->450 2,4 MB/s 4,7 % 6,7 MB/s 12 %

UFS450 20,8 MB/s 23,0 % 14,7 MB/s 21,7%

Tab. 2. Raw I/O performance of UFS and NFS storage devices

ed
CI-
is
y
nd
, it
ou-
l
re
e

ses
e
s
ng

r-
for

n
o-
nt

ge
ot
or

yet
ser
put
mi-

a
-

m-

f
e.
or
cre-
f

-

ase
IX
to
MPICH now a easily usable and reliable MPI implementation
which delivers high performance for very low cost. The intro-
duction of new features like the asynchronous, DMA based
message passing protocol indicates the direction of further
development which needs to be exploited by the application pro-
grammers. The presented design of MPI-IO via SCI and the per-
formance of the first prototype promises to utilize the
performance of SCI not only for message-passing, but also for
the important area of file I/O.

A. Fighting the Limitations

When creating the software that makes up SCI-MPICH, we
had to discover a number of limitations in the current implemen-
tation of SCI for clusters (which is realized by PCI-SCI adapters
by Dolphin ICS). Parts of these limitations are due to the hard-
ware, parts are due to the driver software of the operating sys-
tem. We want to mention these limitations to stimulate the
discussion on how to remove them.

A.1 DMA transfers

Our experience showed that DMA transfer is only possible
for segments which are created with identical SCI descriptors
which, under a UNIX environment, is usually not the case. We
solved this problem by re-connecting the concerned segments.
Additionally, DMA read accesses and callback functionality
was not yet implemented in the driver software. The same is true
for the registering of existing memory areas as SCI shared mem-
ory which would allow DMA transfers directly from and to user
buffers. This feature would greatly enhance the performance of
the asynchronous protocols, if 2-copy of even single-copy can
be implemented.

A.2 SCI Shared Memory Size

The operating systems impose different limits on the size of
the exported SCI shared memory since this memory needs to be
non-pageable:
• Solaris x86 needslow memory pages for exporting SCI

shared memory. For Solaris 7, this currently limits this
amount to less than 4MB which is not sufficient for applica-
tions with a large number of processes.

• Linux statically allocates a part of the address space for this
purpose. This is not the ideal solution, too, as this address
space is not available for other purposes, but at least imposes
no fixed upper limit.

• NT uses memory from a common pool of non-pageable
memory. The size of this pool is configurable.

A.3 Concurrent Performance

The accumulated performance of remote write accesses
toward distinct memory locations which are performed concur-
rently by multiple threads is worse than the related performance
of a single thread. This should be avoidable by a suitable sched-
uling of the available stream buffers which has to be configured
by the driver. If DMA and PIO transfers are executed concur-
rently, the resulting bandwidth is in the same range as the band-
width for non-concurrent transfers.

A.4 Porting to Linux

Our primary development platform is Solaris on x86-bas
nodes. However, many of the actual or potential users of S
MPICH are running some sort of Linux on their cluster. Th
made it necessary to port SCI-MPICH including the SMI librar
to Linux, too. While the basic porting process (adapting a
compiling the sources from Solaris to Linux) was done easily
showed that another category of problems caused a lot of tr
ble: Linux is not Linux. While SCI-MPICH ran fine on our loca
Linux-driven cluster on up to 8 nodes, other sites which we
running other Linux distributions (or other releases of the sam
distribution) had severe problems to use more than 2 proces
in an SCI-MPICH application due to a different behavior of th
mmap() function in the C library. This key component ha
changed frequently and obviously in incompatible ways maki
it a pain to develop low-level software for Linux.

Finally, it showed that Linux 2.2.5 has a lower memory pe
formance than Solaris 7 (see figure 1). This also shows up
remote memory accesses; the reason has to be determined.

B. Directions for the Future

Although many open issues of the first SCI-MPICH versio
have been fixed and additional functionality has been intr
duced, there is still room for improvement. The most importa
areas are described below.

B.1 Improved DMA performance

The current implementation of the asychronous messa
transfer protocols are 3-copy protocols which is of course n
the optimal solution. We already have the concepts for 2-copy
even single-copy variants of these protocols which can not
be realized because the required SISCI calls to register u
memory areas are not yet implemented. These variants will
the performance of the asynchronous protocols on a level si
lar to the synchronous protocols with very little CPU load.

B.2 MPI-IO

The current implementation of MPI-IO via SCI is merely
prototype which offers a lot of optimization potential in all lay
ers:
• ROMIO contains some functionality to enhance perfor-

mance when using traditional file systems, but which is si
ply overhead in our environment.

• The use of MPI-1 functions has to be changed in a way to
safely allow the use of threads for asynchronous MPI-IO
calls. Currently, this is not possible since the MPI-R layer o
MPICH which processes MPI-1 calls is not yet thread-saf

• The ad_svm device needs to determine the optimal size f
new segments which are to be created to reduce segment
ation overhead while maintaining a high degree of locality o
the data distribution. It can do so by internal book-keeping
and by getting more information from ROMIO or the appli
cation.

The system also needs significant enhancements to incre
its usability. Among these enhancements are a standard UN
interface to access the files from any application, daemons

.

-
S-

6,

n
r

,

r,

y

92
/

retrieve files from any node in the cluster and the introduction of
a backup-server for higher availability and better manageability.
The development of this environment is already in progress.

B.3 Fault Tolerance

Although the current SCI-MPICH version allows the applica-
tion to continue while another node within the cluster is reboot-
ing, the failure handling needs further testing and improvement.
A long-term goal is the support of multiple PCI-SCI adapters for
redundancy and also improved performance for systems with
multiple PCI buses.

B.4 Scheduler

The Lehrstuhl für Betriebssysteme has developed an RPC-
based cluster management system with a Java interface for cli-
ent applications. A useful addition to this system will be a
scheduler for SCI-MPICH jobs which also considers the MPI-
IO requirements of the applications to run.

REFERENCES

[1] J.Worringen and Th.Bemmerl:MPICH for SCI-Connected Clusters.In
Proc. SCI-Europe 1999, pp. 3-11, Toulouse, 1999
http://wwwbode.in.tum.de/events/sci-europe99/proceedings
http://www.lfbs.rwth-aachen.de/users/joachim/SCI-MPICH

[2] M.C.Liaaen and H.Kohmann:Dolphin SCI Adapter Cards.In SCI: Scal-
able Coherent Interface, Edited by H.Hellwagner and A.Reinefeld, LNCS
1734, Springer, 1999

[3] MPI-2 standard, including MPI-IO specification
http://www.mpi-forum.org/docs/docs.html

[4] M.Dormans, K.Scholtyssik, Th.Bemmerl:A Shared Memory Program-
ming Interface for SCI Clusters, In SCI: Scalable Coherent Interface,
Edited by H.Hellwagner and A.Reinefeld, LNCS 1734, Springer, 1999

[5] Scali AS:Scali MPI - ScaMPI. http://www.scali.com
[6] Pallas GmbH:Vampir: Visualization and Analysis of MPI Programs,

http://www.pallas.de
[7] Etnus In.c.:TotalView Multiprocess Debugger, http://www.etnus.com
[8] D.H. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo and M

Yarrow: The NAS Parallel Benchmarks 2.0, NASA Technical Report
NAS-95-020, NASA Ames Research Center, December 1995
http://www.nas.nasa.gov/Software/NPB

[9] R. Oldfield and D.Kotz: Applications of Parallel I/O, Department of Com
puter Science, Dartmouth College, Hanover, Technical Report PC
TR98-337, August 1998. http://www.cs.dartmouth.edu/pario

[10] R. Thakur, W. Gropp, and E. Lusk:On Implementing MPI-IO Portably
and with High Performance, in Proc. of the Sixth Workshop on I/O in Par-
allel and Distributed Systems, May 1999, pp. 23--32.
http://www-unix.mcs.anl.gov/romio

[11] NASA Ames Research Center:PMPIO - A portable MPI-2 I/O library
http://parallel.nas.nasa.gov/MPI-IO/pmpio/pmpio.html

[12] R. Thakur, W. Gropp, and E. Lusk:An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces, in Proc. of the 6th Sympo-
sium on the Frontiers of Massively Parallel Computation, October 199
pp. 180-187. http://www-unix.mcs.anl.gov/~thakur/adio

[13] E. Lusk and W. Gropp:The implementation of the second generatio
MPICH ADI. MPICH working note (draft), Mathematics and Compute
Science Division, Argonne National Laboratory, Argonne, Ill., 1997
http://www.mcs.anl.gov/mpi/mpich/workingnote/adi2impl/note.html

[14] W. B. Ligon III, R. B. Ross, and R. Thakur:PVFS: A Parallel File System
For Linux Clusters, submitted to ICS 2000, December, 1999.
http://www.parl.clemson.edu/pvfs

[15] H. Taki and G.Utard:MPI-IO on a Parallel File System for Clusters of
Workstations“, in Proc. of IEEE Int. Workshop on Cluster Computing
Dec. 1999, http://www.dgs.monash.edu.au/~rajkumar/tfcc/IWCC99

[16] H. Taskin, R.Butenuth:TCP/IP over SCI under Linux, In SCI: Scalable
Coherent Interface, Edited by H.Hellwagner and A.Reinefeld, LNCS
1734, Springer, 1999

[17] P. T. Koch, J. S. Hansen, E. Cecchet and X. Rousset de Pina:SciOS : An
SCI-based Software Distributed Shared memory.In Proc. 1st Workshop
on Software Distributed Shared Memory, June 1999
http://sci-serv.inrialpes.fr

[18] Povl T. Koch, J. S. Hansen, E. Cecchet and X. Rousset de Pina:Imple-
menting a File System Interface to SCI.In SCI: Scalable Coherent Inter-
face, Edited by H.Hellwagner and A.Reinefeld, LNCS 1734, Springe
1999

[19] K. Scholtyssik, M. Dormanns:Simplifying the use of SCI shared memor
by using software SVM techniques.In Proc. 2nd Workshop Cluster Com-
puting, Karlsruhe, March 1999.
http://www.lfbs.rwth-aachen.de/users/karsten/projects/SVMlib

[20] R. Carter, B. Ciotti, S.Fineberg and B. Nitzberg:NHT-1 I/O Benchmarks.
NASA Ames Research Center, Technical Report RND-92-016, Nov. 19
http://www.nas.nasa.gov/Pubs/TechReports/RNDreports/RND-92-016
RND-92-016.html

[21] T. Bray:Bonnie, Benchmark for Unix Filesystem Operations,
http://www.textuality.com/bonnie

	I Introduction
	A. Platform
	B. Organization of the Paper

	II Internal Design Improvements
	A. Improved Startup
	B. Proper Shutdown
	C. Memory Configuration
	D. Support of any PCI-SCI adapter
	E. Arbitrary Size of Control Packets

	III Asynchronous message passing
	A. DMA via SCI
	B. Interrupts via SCI
	C. Asynchronous Eager Protocol
	D. Asynchronous Rendez-Vous Protocol
	E. Performance

	IV MPI-IO via SCI
	A. State of MPI-IO
	B. Related Work
	C. Concept & Implementation
	D. Performance

	V Summary & Future Work
	A. Fighting the Limitations
	A.1 DMA transfers
	A.2 SCI Shared Memory Size
	A.3 Concurrent Performance
	A.4 Porting to Linux

	B. Directions for the Future
	B.1 Improved DMA performance
	B.2 MPI-IO
	B.3 Fault Tolerance
	B.4 Scheduler

	References

