SCI-MPICH: The Second Generation

Joachim Worringen

Abstract-The first version of SCI-MPICH offered full MPI-1 func- Jan. 7th, 2000. Next to Solaris x86, SCI-MPICH can also be

tionality with very good communication performance. However, it ysed under Solaris Sparc, Linux and Windows NT.
needed improvement in the areas of reliability and stability, com-

patibility and usability. This paper documents the development B. Organization of the Paper

SCI-MPICH has undergone in these areas. Next to these improve- . _— . .
o o ; The next chapter gives some insights on the internal improve-
ments on existing functionality, new features have been introduced.

A new, asynchronous message transfer protocol using DMA with ments thqt have been introduced into SCI-MPICH and illus-
little CPU utilization is presented. The introduction of a server-less, frates their effects for the user. SCI-MPICH now offers real
DSM based MPI-IO implementation which directly uses the high- asynchronous message transfer protocols utilizing DMA and
performance SCI interconnect for communication is an important remote interrupts which we present in chapter Ill. We are cur-
step towards a complete MPI environment on SCI connected clus- rently developing a high-performance MPI-IO implementation;
ters. details are presented in chapter IV. The paper closes with chap-
ter V which summarizes the results, points out current bottle-
Keywords-MPI, message passing, cluster, SCI, parallel 10, MPI-IO necks of the Dolph|n SCI implementation and programming
interface [2] and outlines potential improvements of SCI-
| INTRODUCTION MPICH.

The first relea.se of SCI—MPICH [1] provided the complete Il | NTERNAL DESIGN IMPROVEMENTS
MPI-1 functionality. Further improvement of the performance . .
of point-to-point communication was hardly possible. However, A Number of internal design improvements have been made
our own experiences and the feedback from other sites usiRg>C!-MPICH and the underlying SMI library in order to make
SCI-MPICH showed that there was still a lot of work to do irpC!-MPICH more stable and resource-aware.
terms of |mprovemer)t of rellabl!lty and stability (_s_tartup and, Improved Startup
shutdown of applications, handling of error conditions), com- . o
patibility (different operating systems, different types of PCI- The original concept for the startup of an SMI application
SCI adapters [2], different SISCI implementations), usabili®Cl-MPICH applications are implicitly SMI applications) was
(compiling the libraries, configuring the memory setup) and al§® Perform the initial synchronization of the processes of an
regarding the extension of SCI-MPICH's capabilities concer@Pplication purely via SCI shared memory. This concept lead to
ing asynchronous message transfer and MPI-10 [3] via SCI. problems since the identifier for the initial SCI memory segment

We have invested a considerable amount of work into theunknown prior to actually creating the segment. This led to
required improvements of both, the MPICH ADI-2 devicé&onflicts if more than one process using SCI-MPICH was run on
namedch_smiand the underlying SCI shared-memory librar single node. Therefore, the basic initialization is now done via
SMI [4]. This paper intends to document the progress of S [CP/IP by broadcasting the SCI segment ID from the initializa-
MPICH based on the improvements and extensions given abdign master to all other processes. We feel that this is the better
In this context, it is unavoidable to point to some limitations gfoncept even if we had to give up the ,SCl-only” concept as
the current generation of PCI-SCI adapters and their relafé§re iS no cluster which does not offer TCP/IP. _
driver software which emerged in the course of our develop-Another new technique which is used for a faster startup is

ment. delayed segment connectigks each process of an SCI-MPICH
application exports three SCI segments (for the three different
A. Platform message transfmission protocols [1]) to which each other pro-

If not stated otherwise, all performance numbers in this pagfSS Needs to connect to, the startup takes longer and resources
were measured on a cluster consisting of 8 Dual-SMP Pentiufj€ Potentially wasted: depending on the communication pattern
Il nodes (450MHz, BX chipset, 32 bit PCI bus) and one Duaff the application, a significant number of these connections
SMP Pentium-1II)&eon node (éSOMHz NX chipset, 64bit pcyvill not be used at all. Therefore, the SCI segments for the three
bus). Only the Pentium-Il nodes were used for SCl-related m@4otocols are not connected until actually required using a spe-
surements. The SCI interconnect consists of one Dolphin D3@#C Ségment creation mode of the SMI library. This means that
PCI-SCI adapter in each node and one Dolphin D512 sthe internal data structures for the segments are set up, but a pro-
switch, to which the nodes are connected as two-node rifglef&€SS d0es not connect to and import a remote shared memory
Additionally, the nodes are connected to a 100Mbit switche9Ment until a message needs to be transferred via this memory
ethernet network (3COM). The nodes were running Solaris 7 3&IMent.
operating system, and the driver software from Dolphin releasgd Proper Shutdown

1. One port has three nodes connected. Another frequent problem is the proper termination of a

Joachim Worringen is with the Lehrstuhl fiir Betriebssysteme, RWTH Aachen,
Kopernikusstr. 16, D-52056 Aachen, Germany.
E-mail: contact@lfbs.rwth-aachen.de, WWW: http://www.Ifbs.rwth-aachen.de .

multi-process application in case of an abnormal termination o MPI Bandwidth

one or more processes. We introduced an SCI based watchd Roundirip/2 on SMP
mechanism in combination with signal handlers to detectabnor ~ 20— T T T T 1
mal termination of the local process as well as a defunct remot e cH Xeon 550 s
process. This means that e.g. sending a SIGINT to any proce 200 |=— SCI-MPICH, PIl-450, Linux 2.
of an SCI-MPICH application leads to a proper shutdown of all = | |55 Scawior npciine oo
participating processes. Such a shutdown includes the release 2150;
all SCI related resources by the SMI library since these are nc ¢ [
always automatically reclaimed by the operating system. -‘;’100:
Z100-
o L
C. Memory Configuration @ [
The memory buffers for the different message transfer proto 501
cols are allocated statically duringpi_init) . To be able to r s
improve the performance for an application which has a certail =

M | \ ! | \ \ i
~ 4 16 64 256 1k 4k 16k 64k256k 1M

communication pattern (e.g. many messages in the size of t Message Size [byte]

eager protocol), it is now possible to supply a device configura

tion file to SCI-MPICH which describes, among other runtime MPI Latency
parameters, the size and number of all categories of memot Roundtrip/2 on SMP
buffers. This allows to easily determine the influence of these r | ‘ ‘ ‘
parameters on the performance of an application. F 5 SeMpioH, Eﬁﬂ_sso?gmans-
If not enough SCI shared memory resources are available t 207 |7 el heremiaon 7

configure the buffer setup as demanded by the device configur: | [PV ScaMPl, hpcLine PII-400
tion file, SCI-MPICH automatically reduces the number and I
size of the buffers until the demand matches the available
resources. The reduced number or size of the buffers may ha
an impact on the performance, but at least the application ca
execute at all. The user can verify the actual buffer configuratior
using a special startup option of thgrun command.

To better utilize SMP nodes in a SCI cluster, SCI-MPICH
now uses local shared memory for intra-node communication 0 4 16 ol 755 T K
This leads to less consumption of SCI resources and delivel Message Size [byte]
good performance. In figure 1, we present the results of point
to-point measurements between two processes on a SMP a

round-trip/2 numbers. _stream buffers, adaptions were required due to the direct use of
The Pentium-lll Xeon shows excellent performance if thge stream buffers. The SMI library now determines all relevant

message fits well into the cache, but shows extreme perfgiyameters visciquery) calls, and SCI-MPICH adapts itself

mance drops if the message size is bigger than half the caghgnese parameters. This lead to the introduction of variably

size. This is due to the performance difference between the fllseq control packets which are described in the following para-
speed clocked caches and the main memory. The bench

shows amazing results if executed on a Pentium-Il 450 ur:r(?errrrhe' SMI library and SCI-MPICH have also been adapted to

different operating systems: the performance under Linux 2.Zgoh0rt the SISCI API that the SCI drivers by Scali Inc. offer.
(SuSE 6.2 distribution) is much worse than under Solaris 7. Th&is griver is used for ScaMPI, for example on the Siemens
local shared memory implementation of this Linux releasy1‘:\g¢]:|_ir]e systems. It is now possible to run SCI-MIPCH applica-
seems to need improvement. We also compared SCI-MPIGHl\q o these systems. First performance comparisons of point-
and ScaMPI [5] on a Siemens hpcLine (Linux 2.2.10), consigh_nqint operations have shown similar performance of ScaMPI

ing of Pentium-II 400 dual-SMP nodes. It shows that ScaMPl ig,4 5ci-MPICH. This allows to use MPICH-compatible tools
superior for messages bigger 128kB, while SCI-MPICH has. Vampir [6] or TotalView [7] on the hchirJre
advantages in the range of message sizes between 4kB and

64kB. E. Arbitrary Size of Control Packets

D. Support of any PCI-SCI adapter Control packets, which are also used to transport small

amounts of datashort message transfer protocol) are the basic

_ The first release of SCI-MPICH (and the underlying SMbyer process communication facility for SCI-MPICH. For the
library) was designed and optimized especially for the Dolphifys; rejease of SCI-MPICH, the size of these packets was fixed
D310 PCI-SCI adapter. With the availability of new PCI-SCI

adapters such as the D321 which differs in performance and
memory-consistency related aspects like size and number of1. These two tools are not available for ScaMPI on Linux.

Latency [us]

SFig. 1. MPI Bandwidth and Latency in SMP mode

Il A SYNCHRONOUS MESSAGE PASSING

@ Packet ID E "Data Follows" Flag @ "No More Data" Flag o . . i .
Latency Hidingis a well known concept which is used in

Header | o E - B many areas of computing to reduce the performance impgct of
latencies caused by data access of the CPU. Its actual imple-
SCl Transaction Size SCl Transaction Size mentation technique does of course depend on the nature of the

Fig. 2. Format of arbitrary-sized control packets data access and the implied latency. For the casmexsage

to the size of a stream buffer. As this size was 64 byte for tR@SSingvia MPI, the data access is the sending and receiving of
D310 adapter boards, it equaled the size of an SCI transactiBfSsages, and the implied latency is the time the CPU is busy

by which the contained data is to be transferred atomitally)"’ith writing the data to a remote node or waiting for the data to

This atomicity allowed us to write the packet in a highly effi@PPear in the local receive buffer and transfer it to the user

cient, self-synchronizing manner. As the stream buffers of the/ffer. The technique we present to hide this latency is the fully
D321 adapter are sized 128 bytes and with no SCI transactior@gynchronous implementation of the non-blocking MPI calls
matching size available, a new technique for the self-synchroMP!_send) and MPI_lrecv() by using the DMA and
zation was required. remote interrupt gapabllltles of th'e PCI-S(;I adapters. This
We developed an efficient technique which allows the contr@lows the transmission of data with very little usage of the
packets to be sized at any multiple of the size of the biggest S%TU, freeing it to perform other tasks during the message trans-

write transaction available (which is currently 64 bytes, bpiSsion.

might be w_u:_reased to 256 bytes in th_e future) while maintaining pvA via SCI

the low minimal latency of 64 byte-sized control packets. The) .

data format of these packets is illustrated in Figure 2: the controlThe current generation of Dolphin PCI-SCI adapters has an

packet (which also serves to transmit inlined short messages)i§grated DMA engine which allows the movement of data

divided into parts which have the length of the largest &@te Petween two nodes. We have measured the key performance
transaction. Each part is synchronized by the clotagket ID values bandwidth and latency for remote writes via DMA for
and additionally carries a flag which indicates if this is the ladt€ Dolphin D321 PCI-SCI adapter (see figure 4).

part of the packet or if more data follows. The effect of this tect SCI Bandwidth

nique is shown in figure 3: different sizes of the control packe 80 Remote memory write: PIO vs. DMA

cause different switch points from the short to the eager protoc
(which are the clearly recognizable steps). Bigger control pac
ets cause a smoother transition between the two protocols wt
only slightly raising the minimal latency. The lowest latency
however, is still achieved using 64 byte control packets.

——=3

o]
. o

Short Protocol
Different Maximum Packet Sizes

Bandwidth [MB/s]
N
o

60 — T T T
| |c-0 64 byte 20
50 |=-o 128 byte
L 256 byte 1
a0 |52 512 byte |
e L _ | | |
1024 byte] 964 286 1k 4k 16k 64k 256k

Blocksize [byte]

Latency [us]
w
o

1 Fig. 4. Bandwidth for remote memory write access

1 The latency of DMA transfers can be split into the setup time
R SO S 7 (preparing the transfer and enqueuing the request) and the trans-
r 1 fer time itself. The related diagram (figure 5) shows the com-
0 ‘ ‘] plete latency and the constant setup time. The other diagram
shows the bandwidth up to its saturation point. Both bandwidths
))) are limited by the maximum length of bursts via the PCI bus
Fig. 3. Latency for differently sized short packets (128 bytes) which the PCI-SCI adapter is able to perform.
These values promise a comparable performance as to using
the CPU to move the data, at least for large messages. However,
it has to be considered that DMA transfers are only possible
between two SCI memory segments; it is not possible to issue
1. Ifdatais transferred via 2 or more SCI transaction packets, DMA transfers between arbitrarily chosen memory areas. This
it is not guaranteed that it appears at the receiver in the makes additional data transfers or registering of user memory
same order as written by the sender. areas necesszfnyAIso, the two segments involved in a DMA

Message Size [byte]

SCI Latency

Remote memory write: PIO vs. DMA

400/ \ \ \ T
& PIO
+— DMA
»%— DMA setup|
300
)
=
&
22001
[J]
©
-
100~
0

256 1K
Blocksize [byte]

Fig. 5. Latency for remote memory write access

B. Interrupts via SCI

To perform the message transfers asynchronously (indepen-
dently from any MPI calls that the application may or may not
perform), an extension of the usual natification technique via
control packetsis required. Incoming control packets are not
detected and processed until the process to which the control
packets was sent calls a related MPI function. Therefore, we are
using remote interrupts via SCI to trigger a special thread of the
receiving process which in turn processes the queue of incoming
control packets independently from the MPI application thread
of the process.

The use of remote interrupts is also supported by the SMI
library via the SMmI_Signal_send() and SMI_Signal_wait()
functions. It is also possible to install a callback function for an
interrupt. The average latency of a remote interrupt without call-
back (measured as round-trip/2 of the two SMI functions) is cur-
rently about35, 6pus as as can be seen from the cumulative
histogramm in figure 7.

transfer need to be addressed via the same file descriptor. Hou
ever, usually different file descriptors are used because each fi
descriptor can only be used for one local and one remote se(
ment. We have introduced a re-connection technique in the SM
library to overcome this limitation: the descriptor of the local

segment is used to connect to the remote segment. These cc
nections are cached to avoid the occuring overhead (which i
illustrated as a cumulative histogram in figure 6) for the upcom-

SCI Remote Interrupt Latency
roundtrip/2, cumulative histogramm, 10000 samples

1000

6000

ing transfers.

Re-Connecting Segments for DMA Transfer
cumulative histogramm, 1000 samples

100

80

8

0 650 700 750 800

latency [us]

850 900 950

Fig. 6. Overhead of (re)connecting remote segments

The support for memory transfer via DMA is integrated int
the SMI library: a transfer is issued 8MI_Imemcpy() while
SMI_Memtest() andsMI_Memwait() are used to test or wait for
the completion of the transfer. Chaining of multiple DMA tran

fers is also supported. Unfortunately, the current SISCI librar

does not yet support the use of callback functions for DM
transfers; we use threads to achieve an equivalent behavior.

2. The SISCI call SCIRegisterSegmentMemory() which is
required to perform DMA to or from an arbitrary user allo-
cated memory area is not yet implemented.

%

34 36 38 40

latency [us]
Fig. 7. Remote interrupts via SMI

C. Asynchronous Eager Protocol

A transmission of a message via thagerprotocol includes
two steps: transfering the data from the local user buffer into the
remote receive buffer and sending a control packet to inform the
receiving process of the arrival of the new message. To perform
this transfer asynchronously, a second thread is used. Due to the
limitation that DMA is only possible between registered SCI

emory segments, it is necessary to first copy the data into a
ocal SCI memory buffer, then issue the DMA transfer and wait
for its completion. The control packet to announce the new

gmessage is sent and the remote process is signaled.

However, the size of messages handled by the eager protocol
usually only up to 32kB which is too small for efficient DMA
transfers: the overhead for the DMA is too high compared to the
duration of the copy operation performed by the CPU. There-

1. Waiting for the completion of a DMA transfer, and also
waiting for a signal to arrive does not consume any CPU
cycles.

fore, DMA transfers are disabled by default, but may me acti-

vated if desired. Copy Operation Name Bandwidth
user send buffer to B 146 MB/s

D. Asynchronous Rendez-Vous Protocol local DMA send buffer | P

Therendez-vougrotocol is more complex as it is designed to local DMA send buffer tol

transfer messages of arbitrary length. Therefore, the protocol | remote DMA recv buffer Boo 69 MB/s

must be able to transfer a message in multiple parts in case the

. . . local DMA recv buffer to

intermediate buffers are not big enough to save the whole mes- local user recv buffer Bpr 146 MB/s

sage. Each of these transmissions has to be synchronized

between the sender and the receiver. Figure 8 illustrates the pro- Tab. 1. Bandwidth of copy operations for a block size of 1MB
tocol mechanism. It exhibits the case ofexpected receive¢hat

means the receiver is already waiting for the message that th&0r reference, figure 9 also shows the raw DMA bandwidth
sender sends VigIPI_isend) as he has calledPl_irecv() and an estimation of the performance of the 2-copy protocol

before. (DMA directly from the user buffer) to be implemented once the
drivers provide the required functionality of registering user
memory areas.

Sender Receiver
| ‘
| 1
| ﬂPI_Irecv () Post the receive request
1

MBI Tsend()—¥ | DMA Based Asynchronous Rendez—Vous Protocol
Allocate local DMA buffer,™ 4—‘[’4‘\

1 . .

request a receive buffer I REQUEST SEND NB_ ' R Bandwidth Comparision
! — Look up queue of posted receives,

allocate receive buffer and 70

0K TO SN N \ signal the sender ‘ ‘
Fill local DMA buffer from : ! =3£1 3-copy effect,
user buffer, transfer local DMA buffer H | _ |
and signal the receiver i | 60 & 3-copy peak
: 2-copy effecty |
o w il
— %—x DMA
J Transfer data from receive buffer
o to user buffer and signal the sender 50
— R L oxroseno
Transfer last part of the message —
from the local DMA buffer, signal the r' £
receiver and mark transfet pleted H 023 40
X o i =
MPI_Wait() P 1 CONTNB— Transfer data from receive buffer =
Application thread waits for ! *l and mark transfer as completed ES]
transfer completion =]
' MPI_Wait() Application thread waits for =
. v =3 transfer completion S 301
5]
| o
CPU busy
: 20
| d ¢ DMA busy
D\ Signaled Control Packet
1Q
Fig. 8. Asynchronous rendez-vous protocol specification H 1
0 | | | | | | | | | |
16 32 64 128 256 512 1024 2048 4096 8192
E. Performance Message Size [kE]

In its current state, the absolute performance in terms Kig. 9. Asynchronous rendez-vous performance
bandwidth and latency of the asynchronous protocols using
DMA is worse than the conventional, CPU driven protocols. ~ The lower bandwidth of the DMA protocol is a disadvantage,
The reason for this comparable low performance becom@g the data transfer via DMA does cost only a fraction of the
obvious if the bandwidth of the chained copy operations is cofPU cycles and allows the overlap of computation and commu-
sidered. Table 1 gives the related bandwidths for a blocksizens¢ation. To demonstrate this advantage, we have designed a
1 MB. Therewith, the upper limit of the bandwidth g, can be synthetical benchmaraverlap (see figure 10) which simulates

calculated to the overlapping of computation and communication (for combi-
1 nations of job and message sizes). The sender posts an asyn-
Brnav < 1 1 1 chronous send operatiomgl_lsend()) and then simulates a

B._ + B~ + B__ computation for a specified amount of timiebéize). When
sb Ppb PbR
which results in 35.3 MB/s for the given message size of |atency = MPI_Wtime()
1MB. This value is covered by our measurements which are if (sender)

depicted in figure 9. It shows the effective bandwidth and the MPI_lIsend(msg, msgsize)
related upper limit of the current 3-copy protocol. The differ- while (elapsed_time < jobsize)
ence between these values is an indicator for the overhead of the spin

protocol. It shows that for messages > 512kB, the efficiency of MPI_Wait()

the protocol is more than 97%, reaching 99% for message sizes e|se

of 8MB. The lower efficiency for smaller messages is due to the MPI_Recv()

constant overhead of the rendez-vous protocol: two messages |atency = MPI_Wtime() - latency

need to be exchanged between the sender and the receiver

before the actual memory transfer can be started (see figure 8)'9- 10- Pseudo Code foverlapbenchmark

Asynchronous vs. Synchronous Rendez-Vous

Comparison for IMB Message

80 T T T T T T
=—a Synchronous (P10)
+— Asynchronous (DMA]
—, 60 —
[92]
E
>
(8]
§ | async
I
°
|_
201 -
| sync
| ! |

| |
0 10t, 20 30 40
Jobsize t_job [ms]

50

60

the two rendez-vous protocol variants and the break-even points
calculated as the difference between the latencies.

However, to make real use of this feature, the programmer of
the MPI application has to design its communication pattern
accordingly. The well known NAS parallel benchmarks [8], for
example, make nearly no explicit use of asynchronous commu-
nication. Because the user of an SCI-MPICH application can
specify if DMA or PIO transfers are to be used for asynchronous
message passing, he is able to determine the appropriate mode
by comparing two runs of his application with and without
DMA transfers.

IV MPI-IO via SCI

Many MPI applications do not only require communication
between the processes, but also have to perform a significant
amount of file 1/0 for various purposes [9]. Often the execution
time of such an application is not dominated by the communica-

Fig. 11. Effect of overlapping Computation and Communication tion, but by the 1/0O (next to the time required for calculation).

the computation is finished, he blocks until the message to
returns when the a
message buffer is available to be overwritten). The other proc%‘s

sent has been transferred (actually)_wait()

polls to receive a message.

The results of this benchmark for job sizgg between 0 and
60ms and a message sizgg= 1MB is shown in figure 11. The
curve for the synchronous protocol starts with an overall latency

Erée usual I/O interfaces offered by operating systems do not
support parallelism; and if a system features mechanisms for
rallel 1/O, they have to be used via a proprietary interface.
erefore, the MPI-2 standard includes a definition of a pro-
gramming interface for parallel I/O called MPI-IO [3] to allow
portable programming of MPI applications with 1/O require-
ments.

ltotal = lsync= 18ms, which is the message transmission latengy, State of MPI-1O

and rises linearly with &, The curve of the asynchronous proto-
col starts with {5 = lasync= 29ms, but remains on this level as
long as jop < lasyncis valid. This indicates a good overlapping of

Currently, at least two portable implementations of MPI-10
Xist, next to a number of solutions dedicated to a single type of

computation and communication. The two curves intersect aP‘&‘Ch'”ei

tiop = 15ms. This intersection represents the performance break-
even point g for g, >ty it is better to use the asynchronous

protocol to minimize the overall latency.

DMA Based Asynchronous Rendez-Vous

Performance Break—Even Diagramm

1 I I I I b
+—+ PIO
10> < DMA 2
A-A break—even K
S
—_— %
£ pd
=10 57
o
c .
et K
S o
16 /04&/
S
=
/‘
¥
102 | | | | |
8k 32k 128k 512k 2M 8M

Message Size [byte]

ROMIO [10] was developed at the ANL (free, many file sys-

tems supported)

PMPIO [11] by NASA Ames (free, some file systems sup-

ported, no NFS)

« MPI-IO for the PIOFS and GPFS file systems by IBM
(freely available, only proprietary file systems)

« Pallas has developed a complete MPI-2 implementation for
Fujitsu.

Probably due to its close relationship to MPICH (ROMIO is
included in the current MPICH distribution), ROMIO is the
most commonly used MPI-IO implementation. It accesses the
actual 1/0 devices via an Interface call@tbstract Device 1/O
(ADIO [12]). This approach is similar to MPICH’s ADI-2 [13]
interface. To have ROMIO support a specific file system or I/O
library, it is necessary to glue them with a layer (called ADIO
device) which translates the function calls defined by the ADIO
into the function calls required by the underlying system. Usu-
ally, implementing such an ADIO device is not too complicated
due to the inherent similarities between 1/O interfaces. This
leads to a growing support for ROMIO.

Fig. 12. Break-even point for asychronous rendez-vous via DMA B. Related Work

Obviously, the break-even point can generally be determins
I This relation is illustrated in figure 12.

aStbe = Iasync_ sync -

It shows the transmission latencies against the message sizef/ r

lot of work has been done in the area of parallel I/O, let it
parallel file systems or user-level libraries for parallel I/0. As
PI-10 is becoming an important standard interface for parallel
in scientific computing, several of the more general solu-

tions are enabled for MPI-10 by supplying a suitable interface.

Todays high-performance clusters are usually networked with| MPI-Application | \ MPI-Application |
an ethernet-type network for TCP/IP based services drdra
performance interconne¢HPl) like SCI or Myrinet for inter- \ ROMIO | \ ROMIO |
process communication. To use MPI-IO on clusters, two solu; :—: :—:
tions can currently be used: Global View of File @» Global View of File
» the ROMIO distribution contains an ADIO deviad_nfsto in Address Space in Address Space
use a file located on a NFS server which is reachable by all :—: :—:
processes of the MPI application
« theParallel Virtual File SystenfPVFS [14]) was recently Local Diskdrives Local Diskdrives
adapted to ROMIO via a suitable ADIO device [15] Storage of 1st Half of the File Storage of 2nd Half of the File
However, all of these solutions use TCP/IP based services fg -
the communication between the clients (the processes whic

need to use the I/O services) and the servers (the processg . .
- . . ig. 13. Concept of MPI-10 via memory-mapped files and SCI
which offer and perform the I/O services). So far, there is no g P y-mapp

approach to directly utilize a HPI using a lean protocol, avoiding install a software-controlled cache for remote portions of the
the immense overhead of a TCP/IP stack. Having the TCP/IP file.
stack operate on the HPI is no real solution, either, since relasedoffer a suitable consistency model for accesses to the mem-
approaches have shown that only a fraction of the HPI's perfor- ory that makes up the file.
mance will be delivered by the TCP/IP stack on top [16]. e use SCI for communication, but without having to map the

A possible approach would be to implement an MPI-10 solu- whole file into the SCI address space.
tion in the scope 06ciOS[17] which offers a file system inter- These characteristics indicate that the software layer would
face for SCI memory nameficiFS[18]. However, SciFS only be rather complex - it's just a complete DSM system. The
supports non-persistent files and is implemented as a Linux kieehrstuhl fiir Betriebssysteme has developed such a DSM sys-
nel module which hinders portability to other operating systemem as a user-level library call&VMlib (Shared Virtual Mem-

. ory library) [19] which uses SCI (or TCP/IP, if SCI is not

C. Concept & Implementation available) for inter-process communication. We decided to make

We wanted to design an MPI-IO implementation whicthe SVMIib the basic building block of our MPI-IO concept,
makes optimal use of the fast SCI interconnect by having minihich lead to a design of the complete MPI-1 (conventional
mal protocol overhead. We also wanted to avoid the introductiomessage passing) and MPI-IO environment as illustrated in fig-
any potential bottlenecks by using dedicated servers. This lage 14.
to the idea of using distributed, memory-mapped I/O between —
the MPI processes as the foundation of our design. MPI Application ‘

In a straight-forward approach for an SCI connected cluster,
every process would have a part of the whole file available
locally (mapped into its address space from a file on its nodes
local hard disk), and the remaining parts which are located on

other nodes are accessed via memory areas connected by SCI. E SVMlib
Accesses to data from the file are simple accesses to memory nt2unix
locations. Therewith, nearly no protocol overhead at all occurs

when accessing portions of the file, and all processes are servers

as well as clients. Figure 13 illustrates this basic principle for ‘ SISCI Library

the case of two processes (running on distinct nodes).
However, this straight-forward design has several drawback$!

Read accesses to remote portions of the file would be very slowy, . 101 ¢ part is not connected with the MPI-IO part and

and caching is not possible in a simple manner. Additionﬁ.l did not change. For the MPI-10 part, we use the unmodified
mechanisms to ensure the required degree of consistency w 10 1.01 implémentation and usel our ADIO compliant
have to be added. Finally, a lot of address space (matching lig;oa symThis is based on the slightly modified SVMib
size of the file) mapped into the SCI address space would Rich in turn uses the SISCI API to access the SCI resources.

required which is a problem for all current operating syStena,surrently ROMIO uses some MPI-1 functionality for internal
and the available drivers for the PCI-SCI adapters. ommuni'cation

These problems made the introduction of an additional soft-
ware layer inevitable which had to
* convert remote read aCC_esseS (to acce_ss portions of the file 1. SVMIib had to be modified to use persistent files instead of

located on other nodes) into remote write accesses from the emporary files, and a protocol for locking portions of the

remote node towards the local node. memory had to be introduced to allaomic access

[developed by LBS

l:l developed by ANL

MPI-R ad_svm

ig. 14. Software Architecture of MPI-1 and MPI-10 via SCI

This concept leads to a three-dimensional data distribution

model as illustrated in figure 15. The first dimension are the 1/O device | plock read CPU block writd CPU
nodes on which the processes are running and which each store
a fraction of the file. The second dimension is the size of each of UFP1 7.3 MB/s 9.9 % 84 MB/s| 1349
these fragments (callesegmengs The third dimension is the | NFSs; 5450 | 2,4 MB/s 4,7 % 6,7 MB/s 12 %
number of segments on each node. More than one segment-is
used if the file is growing: the size of a segment that is once YFSso | 20.8MB/s | 23,0% | 14,7 MB/s 21,7%

mapped into the memory is fixed, thus file enlargement ha; to bf‘:’:ab. 2. Raw /O performance of UFS and NFS storage devices
done by creating new segments and mapping them behind the
existing ones. The size of these new segments is a critiggbe IBM DNES-318350. All systems are interconnected via
parameter: the smaller this size is chosen, the more frequentlyiifitched fast ethernet. We ran tBennie[21] disk performance
may be necessary to create a new segment. On the other sidechmark with 1GB files to determine the raw read/write per-
smaller segments improve locality since a smaller segmentidgmance of the used storage devices. The results are given in
more likely to store only data of the local processes. table 2.

UFS,) is the local disk 1/O of a cluster node; NFRs450iS
the NFS I/O of such a node towards the NFS server. \d§iS
the local disk I/O of the NFS server to exclude its disk perfor-
mance as a potential bottleneck. The results show, that I/O is not
. very CPU intensive and is thus well suited to be executed asyn-
. chronously.

Table 3 shows the results of the two benchmarks for 4 pro-

cesses on 4 nodes. The message passing as well as the 10 was
performed via SCI for the ad_svm version and via FastEthernet

[}
é for the ad_nfs version. The bandwidth given for the coll_perf
g y7 éj _ benchmark is the collective bandwidth of all nodes, while the
§’ go} s Vetainoe ion time period given for the BTIO benchmark is the execution time
for the application including I/O and computation.
Segments/Node
— Benchmark ad_svm ad_nfs
Fig. 15. Data distribution for MPI-10O via SCI coll_perf: read 25 7 MB/s 3 7 MB/s
coll_perf: write 28,0 MB/s 0,25 MB/s
D. Performance -P
. . BTIO, class S 1,62s 10,13 s
The first prototype which we used to produce the perfor-

mance numbers below is a fully working MPI-IO implementa-
tion, but without any optimizations. We will present the results

Tab. 3. Benchmark results for MPI-IO via SCI vs. NFS

of two benchmarks:coll_perf is a synthetical benchmark

It was expected that MPI-IO via SCI would be much faster

included in the ROMIO distribution which collectively writesthan via NFS over fast ethernet. These first results proof that the
and reads a block-distributed, three-dimensional array in a ngmesented new concept is indeed vastly superior to the conven-

contiguous manner as illustrated in figure 16. The dimensionstimal solution, even in the state of a non-optimized prototype.

the Array are 128 integers each, resulting in a file size of 8MB.
For optimum locality, the segments of the global file would have

V SUMMARY & FUTURE WORK

to be arranged as illustrated in figure 16. However, the currentfThe presented improvements to the first release make SCI-

default setting for the segment size is 1MB.

The other benchmarBTIO [20] (part of the NAS NPB) is
more application-oriented and iteratively solves three block-tri-
agonal systems of linear equations. After each iteration step, the
results are written into a file. We compare the results of our
ad_svm device with the standard ROMIO solution for clusters,
ad_nfs (PVFS was not yet available for Solaris).

Before comparing these MPI-IO results, it is necessary to
evaluate the performance of the underlying file systems which is
UFS for ad_svm and NFS for ad_nfs. The nodes of the cluster
are equipped with SCSI hard disks of type IBM DDRS-34560D
and SCSI host adapters Adaptec 2940UW, while the NFS server

Process 0

3D-Array (PO)

(128x128x128)

Process 1
(P1)

distributed

on 4 processes
Process 2

(P2)

Process 3

(P3)

Non-contigous data distribution in the file:

PO P1 P2 P3 PO
we used is a Quad-SMP Sun Enterprise 450 with hard disks ofig. 16. coll_perf’s data organization in memory and on

P1 P2

P3 PO .

file

MPICH now a easily usable and reliable MPI implementatioA.4 Porting to Linux

which delivers high performance for very low cost. The intro- gy primary development platform is Solaris on x86-based
duction of new features like the asynchronous, DMA baseghges. However, many of the actual or potential users of SCI-
message passing protocol indicates the direction of furth@p|cH are running some sort of Linux on their cluster. This
development which needs to be exploited by the application pigade it necessary to port SCI-MPICH including the SMI library
grammers. The presented design of MPI-10 via SCl and the pg§-|inux, too. While the basic porting process (adapting and
formance of the first prototype promises to utilize thgompiling the sources from Solaris to Linux) was done easily, it
performance of SCI not only for message-passing, but also {owed that another category of problems caused a lot of trou-
the important area of file I/O. ble: Linux is not Linux. While SCI-MPICH ran fine on our local
Linux-driven cluster on up to 8 nodes, other sites which were
running other Linux distributions (or other releases of the same
When creating the software that makes up SCI-MPICH, Wastribution) had severe problems to use more than 2 processes
had to discover a number of limitations in the currentimplemefy an SCI-MPICH application due to a different behavior of the
tation of SCI for clusters (which is realized by PCI-SCI adaptefgsmap() function in the C library. This key component has

by Dolphin ICS). Parts of these limitations are due to the harghanged frequently and obviously in incompatible ways making
ware, parts are due to the driver software of the operating sjytsa pain to develop low-level software for Linux.

tem. We want to mention these limitations to stimulate the Finally, it showed that Linux 2.2.5 has a lower memory per-
discussion on how to remove them. formance than Solaris 7 (see figure 1). This also shows up for
remote memory accesses; the reason has to be determined.

A. Fighting the Limitations

A.1 DMA transfers

Our experience showed that DMA transfer is only possibB. Directions for the Future
for segments which are created with identical SCI descriptorsA|th0ugh many open issues of the first SCI-MPICH version

which, under a UNIX environment, is usually not the case. Wgyve peen fixed and additional functionality has been intro-

solved this problem by re-connecting the concerned segmegfigeed, there is still room for improvement. The most important
Additionally, DMA read accesses and callback functionalityreas are described below.

was not yet implemented in the driver software. The same is true

for the registering of existing memory areas as SCI shared mel Improved DMA performance

the asynchronous protocols, if 2-copy of even single-copy C@k optimal solution. We already have the concepts for 2-copy or
be implemented. even single-copy variants of these protocols which can not yet
A.2 SCI Shared Memory Size be realized because the required SISCI calls to register user

memory areas are not yet implemented. These variants will put

The operating systems impose different limits on the size §fe performance of the asynchronous protocols on a level simi-

the exported SCI shared memory since this memory needs tqd} the synchronous protocols with very little CPU load.
non-pageable:

e Solaris x86 needesw memory pagefor exporting SCI B.2 MPI-IO
shared memory. For Solaris 7, this currently limits this ~ The current implementation of MPI-IO via SCI is merely a
amount to less than 4MB which is not sufficient for applicgsrototype which offers a lot of optimization potential in all lay-
tions with a large number of processes. ers:

* Linux statically allocates a part of the address space for this RoMIO contains some functionality to enhance perfor-

purpose. This is not the ideal solution, too, as this address mance when using traditional file systems, but which is sim-
space is not available for other purposes, but at least imposesply overhead in our environment.

no fixed upper limit. « The use of MPI-1 functions has to be changed in a way to
* NT uses memory from a common pool of non-pageable safely allow the use of threads for asynchronous MPI-10
memory. The size of this pool is configurable. calls. Currently, this is not possible since the MPI-R layer of

MPICH which processes MPI-1 calls is not yet thread-safe.
« The ad_svm device needs to determine the optimal size for
The accumulated performance of remote write accessespew segments which are to be created to reduce segment cre-
toward distinct memory locations which are performed concur- ation overhead while maintaining a high degree of locality of
rently by multiple threads is worse than the related performance tne gata distribution. It can do so by internal book-keeping
of a single thread. This should be avoidable by a suitable sched-5nq py getting more information from ROMIO or the appli-
uling of the available stream buffers which has to be configured :ation.

by the driver. If DMA and PIO transfers are executed concur- The system also needs significant enhancements to increase

rently, the resulting bandwidth is in the same range as the bagd-ysability. Among these enhancements are a standard UNIX
width for non-concurrent transfers. interface to access the files from any application, daemons to

A.3 Concurrent Performance

retrieve files from any node in the cluster and the introduction of
a backup-server for higher availability and better manageabilify

The development of this environment is already in progress.

B.3 Fault Tolerance

Although the current SCI-MPICH version allows the applical—zl
tion to continue while another node within the cluster is reboot-
ing, the failure handling needs further testing and improvemers.
A long-term goal is the support of multiple PCI-SCI adapters for
redundancy and also improved performance for systems with

multiple PCI buses.

B.4 Scheduler

(5]
(6]

The Lehrstuhl fir Betriebssysteme has developed an RPC-
based cluster management system with a Java interface for [&li-

ent applications. A useful addition to this system will be

scheduler for SCI-MPICH jobs which also considers the MPI-

10 requirements of the applications to run.

(9]

(20]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

REFERENCES

J.Worringen and Th.BemmerMPICH for SCI-Connected Clustersn
Proc. SCI-Europe 1999, pp. 3-11, Toulouse, 1999
http://wwwbode.in.tum.de/events/sci-europe99/proceedings
http://www.Ifbs.rwth-aachen.de/users/joachim/SCI-MPICH

M.C.Liaaen and H.Kohmanrolphin SCI Adapter Carddn SCI: Scal-
able Coherent InterfaceéEdited by H.Hellwagner and A.Reinefeld, LNCS
1734, Springer, 1999

MPI-2 standard, including MPI-10 specification
http://www.mpi-forum.org/docs/docs.html

M.Dormans, K.Scholtyssik, Th.Bemmer Shared Memory Program-
ming Interface for SCI Clusterdn SCI: Scalable Coherent Interface
Edited by H.Hellwagner and A.Reinefeld, LNCS 1734, Springer, 1999
Scali AS:Scali MPI - ScaMPIhttp://www.scali.com

Pallas GmbHVampir: Visualization and Analysis of MPI Programs
http://www.pallas.de

Etnus In.c.:TotalView Multiprocess Debuggérttp://www.etnus.com

D.H. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo and M.
Yarrow: The NAS Parallel Benchmarks 2.0lASA Technical Report
NAS-95-020, NASA Ames Research Center, December 1995
http://www.nas.nasa.gov/Software/NPB

R. Oldfield and D.Kotz: Applications of Parallel I/O, Department of Com-
puter Science, Dartmouth College, Hanover, Technical Report PCS-
TR98-337, August 1998. http://www.cs.dartmouth.edu/pario

R. Thakur, W. Gropp, and E. Lusion Implementing MPI-IO Portably
and with High Performancen Proc. of the Sixth Workshop on I/O in Par-
allel and Distributed Systems, May 1999, pp. 23--32.
http://www-unix.mcs.anl.gov/romio

NASA Ames Research Cent&MPIO - A portable MPI-2 I/O library
http://parallel.nas.nasa.gov/MPI-10/pmpio/pmpio.html

R. Thakur, W. Gropp, and E. LuskAn Abstract-Device Interface for
Implementing Portable Parallel-1/O Interfacegis Proc. of the 6th Sympo-
sium on the Frontiers of Massively Parallel Computation, October 1996,
pp. 180-187. http://www-unix.mcs.anl.gov/~thakur/adio

E. Lusk and W. GroppThe implementation of the second generation
MPICH ADI. MPICH working note (draft), Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, lll., 1997
http://www.mcs.anl.gov/mpi/mpich/workingnote/adi2impl/note.html

W. B. Ligon lll, R. B. Ross, and R. ThakuPVFS: A Parallel File System
For Linux Clusterssubmitted to ICS 2000, December, 1999.
http://www.parl.clemson.edu/pvfs

H. Taki and G.UtardMPI-IO on a Parallel File System for Clusters of
Workstations’ in Proc. of IEEE Int. Workshop on Cluster Computing,
Dec. 1999, http://www.dgs.monash.edu.au/~rajkumar/tfcc/IWCC99

H. Taskin, R.ButenuthTCP/IP over SCI under Linydn SCI: Scalable
Coherent Interface Edited by H.Hellwagner and A.Reinefeld, LNCS
1734, Springer, 1999

P. T. Koch, J. S. Hansen, E. Cecchet and X. Rousset de 8@i@S : An
SCl-based Software Distributed Shared membryProc. 1st Workshop
on Software Distributed Shared Memory, June 1999
http://sci-serv.inrialpes.fr

Povl T. Koch, J. S. Hansen, E. Cecchet and X. Rousset de Pide-
menting a File System Interface to S@i.SCI: Scalable Coherent Inter-
face Edited by H.Hellwagner and A.Reinefeld, LNCS 1734, Springer,
1999

K. Scholtyssik, M. DormannsSimplifying the use of SCI shared memory
by using software SVM techniqués.Proc. 2nd Workshop Cluster Com-
puting, Karlsruhe, March 1999.
http://www.Ifbs.rwth-aachen.de/users/karsten/projects/SVMIlib

R. Carter, B. Ciotti, S.Fineberg and B. NitzbeMj1T-1 I1/O Benchmarks.
NASA Ames Research Center, Technical Report RND-92-016, Nov. 1992
http://www.nas.nasa.gov/Pubs/TechReports/RNDreports/RND-92-016/
RND-92-016.html

T. Bray:Bonnie, Benchmark for Unix Filesystem Operatjons
http://iwww.textuality.com/bonnie

	I Introduction
	A. Platform
	B. Organization of the Paper

	II Internal Design Improvements
	A. Improved Startup
	B. Proper Shutdown
	C. Memory Configuration
	D. Support of any PCI-SCI adapter
	E. Arbitrary Size of Control Packets

	III Asynchronous message passing
	A. DMA via SCI
	B. Interrupts via SCI
	C. Asynchronous Eager Protocol
	D. Asynchronous Rendez-Vous Protocol
	E. Performance

	IV MPI-IO via SCI
	A. State of MPI-IO
	B. Related Work
	C. Concept & Implementation
	D. Performance

	V Summary & Future Work
	A. Fighting the Limitations
	A.1 DMA transfers
	A.2 SCI Shared Memory Size
	A.3 Concurrent Performance
	A.4 Porting to Linux

	B. Directions for the Future
	B.1 Improved DMA performance
	B.2 MPI-IO
	B.3 Fault Tolerance
	B.4 Scheduler

	References

