
3. Operating Systems

Steve Chapin, Syracuse University, USA and Joachim Worringen, RWTH Aachen,
University of Technology, Germany

3.1. Introduction
Just as in a conventional desktop system, the operating system for a cluster lies at the heart
of every node. Whether the user is opening files, sending messages, or starting additional
processes, the operating system is omnipresent. While users may choose to use differing
programming paradigms or middleware layers, the operating system is almost always the
same for all users.

A generic design sketch of an operating system is given in Figure 3.1. It shows the major
building blocks of a typical cluster node with the hardware resources located at the bottom, a
monolithic kernel as the core of the OS, and system and user processes as well as some
middleware extensions running on top of the kernel in the user space.

RAM CPUs Disks Network Others
Cluster

Interconnect

Timers & Interrupts

Hardware Abstraction Layer

Drivers
Memory
Manager Scheduler

Filesystems / Communication / Programmatic Interface

Hardware
Resources

Kernel

Userspace System
Processes

User
Processes

Middleware-related Kernel Extensions

Middleware

System Services User Libraries

User P rocesses
using the middleware

not using
the middleware

Figure 3.1. Generic OS design sketch for a typical cluster node

Some OS feature a distinct layer to abstract the hardware for the kernel. Porting such an OS
to a different hardware requires only the need to adapt this abstraction layer. On top of this,
the core functionalities of the kernel execute: memory manager, process and thread
scheduler and device drivers to name the most important. Their services in turn are offered
to the user processes by file systems, communication interfaces and a general programmatic
interface to access kernel functionality in a secure and protected manner.

User (application) processes run in user space, along with system processes called daemons.
Especially in clusters, the user processes often not only use the kernel functions, but also
utilize additional functionality that is offered by middleware. This functionality is usually
located in user libraries, often supported by additional system services (daemons). Some
middleware extensions require extended kernel functionality, which is usually achieved by
loading special drivers or modules into the kernel.

What then, is the role of the operating system in a cluster? The primary role is the same
twofold task as in a desktop system: multiplex multiple user processes onto a single set of



hardware components (resource management), and provide useful abstractions for high-level
software (beautification). Some of these abstractions include protection boundaries,
process/thread coordination and communication as well as device handling. Therefore, in the
remainder of this section, we will examine the abstractions provided by current cluster
operating systems, and explore current research issues for clusters.

3.2. Background and Overview

The ideal operating system would always help, and never hinder, the user. That is, it would
help the user (which in this case is an application or middleware-designer) to configure the
system for optimal program execution by supplying a consistent and well-targeted set of
functions offering as many system resources as possible. After setting up the environment, it
is desired to stay out of the user's way avoiding any time-consuming context switches or
excessive set up of data structures for performance-sensitive applications. The most common
example of this is in high-speed message passing, in which the operating system pins
message buffers in DMA-able memory, and then allows the network interface card, possibly
guided by user-level message calls, to transfer messages directly to RAM without operating
system intervention. On the other hand, it might be desired that the operating system offer a
rich functionality for security, fault-tolerance and communication facilities – which of course
contrasts with the need for performance that is omnipresent.

Exactly what attributes a cluster operating system should possess is still an open question.
Here is a small list of desirable features:

• Manageability: An absolute necessity is remote and intuitive system administration;
this is often associated with a Single System Image (SSI) which can be realized on
different levels, ranging from a high-level set of special scripts, perhaps controlled via
Java-enabled graphical front-end, down to real state-sharing on the OS level.

• Stability: The most important characteristics are robustness against crashing
processes, failure recovery by dynamic reconfiguration, and usability under heavy
load.

• Performance: The performance critical parts of the OS, such as memory management,
process and thread scheduler, file I/O and communication protocols should work in as
efficiently as possible. The user and programmer should be able to transparently
modify the relevant parameters to fine-tune the OS for his specific demands.

• Extensibility: The OS should allow the easy integration of cluster-specific extensions,
which will most likely be related to the inter-node cooperation. This implies, at a
minimum, user-loadable device drivers and profound documentation of interfaces in
kernel- as well as in user-space to allow for the development of specific extensions.
The best way to provide extensibility is probably the provision of the source code
because it reveals all interfaces and allows for modification of existing functionality
(instead of having to design replacement parts from scratch). A good example for this
is the MOSIX system that is based on Linux (see chapter 4).

• Scalability: The scalability of a cluster is mainly influenced by the provision of the
contained nodes, which is dominated by the performance characteristics of the
interconnect. This includes the support of the OS to be able to use the potential
performance of the interconnect by enabling low-overhead calls to access the
interconnect (inter-node scalability). However, clusters are usually built with SMP
nodes with an increasing number of CPUs contained in each node. The ability of the
OS to benefit from these is determined by its intra-node scalability. The intra-node
scalibility is dominated by the process and thread schedulers and by the degree of
parallelism in the kernel that the OS allows. It also includes the resource limits that
an OS inhibits, foremost the maximum size of usable address space.



• Support: Many intelligent and technically superior approaches in computing failed
due to the lack of support in its various aspects: which tools, hardware drivers and
middleware environments are available. This support depends mainly on the number
of users of a certain system, which in the context of clusters is mainly influenced by
the hardware costs (because usually dozens of nodes are to be installed).
Additionally, support for interconnect hardware; availability of open interfaces or
even open source; support or at least demand by the industry to fund and motivate
research and development are important. All this leads to a user community that
employs required middleware, environments and tools to, at least, enable cluster
applications.

• Heterogeneity: Clusters provide a dynamic and evolving environment in that they can
be extended or updated with standard hardware just as the user needs to or can
afford. Therefore, a cluster environment does not necessarily consist of homogenous
hardware. This requires that the same OS should run across multiple architectures.
If such an OS dose not exist for the given hardware setup, different OS need to be
used. To ensure the portability of applications, a set of standardized APIs (like [1])
should be supported by the different operating systems. The same is true for the
required middleware layers, which are frequently used to enable a cluster for
heterogeneous use.

It should be noted that experience shows that these goals may be mutually exclusive. For
example, supplying a SSI at the operating system level, while a definite boon in terms of
manageability, drastically inhibits scalability. Another example is the availability of the
source code in conjunction with the possibility to extend (and thus modify) the operating
system on this base. This property has a negative influence on the stability and
manageability of the system: over time, many variants of the operating system will develop,
and the different extensions may conflict when there is no single supplier.

3.3. Technological Scope

In this sub-section, we will touch on some of the aspects of operating systems for clusters
that frequently lead to discussions among the developers and users in this area. Some of
these aspects are covered in more detail in other sections of this paper.

3.3.1 Functionality: OS versus Middleware

There has been little work on operating systems specifically for clusters. Much of the work
one might consider as affecting the operating system, e.g. the GLUnix [2] work at U.C.
Berkeley, is actually middleware. There are good reasons for this. First, operating systems
are complex, and it is not always clear how a proposed change will affect the rest of the
system. Isolating these changes in middleware can make good sense. Second, the
applicability of the new functionality added by such a middleware layer is usually not limited
to a single operating system, but can be ported to other operating systems as well.

For example, support for Distributed Shared Memory (DSM) arises from shared address
spaces, which in a conventional kernel would be inside the operating system. However, in
distributed computing, DSM software such as SVMlib [3] is most often implemented in
middleware, running on diverse operating systems such as Windows NT and Solaris. The
advantage here is that a single middleware layer can provide services to multiple operating
systems, without requiring access or changes to OS source code.



3.3.2 Single System Image (SSI)

Regarding the frequently desired feature of SSI, at least two variants of it should be
distinguished: SSI for system administration or job scheduling purposes and SSI on a
system-call level. The first is usually achieved by middleware, running daemons or services
on each node delivering the required information to the administration tool or job scheduler.
The latter would have to offer features like transparent use of devices located on remote
nodes or using distributed storage facilities as one single standard file system. These
features require extensions to current single-node operating systems.

The goal of these extensions is the cluster-wide transparent sharing of resources. Next to the
sharing of I/O space via traditional network file systems or other, more sophisticated means
of real parallel I/O, the sharing of RAM (Distributed Shared Memory, DSM) is an area in
which a lot of research has been done. However, the usual approach to DSM is meant as a
parallel programming paradigm to use shared memory between the processes of a parallel
application distributed across a number of nodes. Therefore, it is mostly realized via user-
level libraries [3] and not as a service offered by the OS. Integration of DSM into the OS has
rarely been done [4], [6]. The reason for this is that the performance for general-purpose use
(requiring strict sequential consistency) is often to low. Using relaxed consistency models
improves performance, but requires that special care is taken by the user of the DSM system
that prohibits offering it as a standard service by the OS. Next to using memory situated on
remote nodes for DSM, some experiments [7] have been done to use it as OS-managed remote
memory: current interconnect technologies such as SCI or Myrinet offer lower latencies and
higher bandwidth of inter-node communication than what can be achieved between the
primary storage level (RAM) and the secondary storage level (hard disk) in intra-node
communication. This leads to the idea to use the memory of remote nodes instead of the local
hard disk for purposes like swapping or paging. This is a promising approach, which is,
however, limited by the fact that it requires permanent memory related load-imbalances
inside the cluster that is not desired in environments of dedicated compute clusters.

An operating-system-level SSI implies detailed state sharing across all nodes of the cluster,
and to this point, OS researchers and practitioners have been unable to scale this to clusters
of significant size (more than a hundred nodes) using commodity interconnects. That does
not mean that an OS-level SSI is a bad thing; for the vast majority of clusters, which have
less than 32 nodes, an operating-system-level single-system image may be quite workable.

One can view Intel's Paragon OS as a cluster operating system, although the Paragon is not
a cluster in the sense of this paper because it is not made of commodity components.
Nevertheless, its design has much in common with todays clusters: independent nodes,
stripped down to basic hardware functionality, running their own instances of an OS and
communicating via a high-speed interconnect. The integration of the OS on the nodes into
one SSI is something many administrators of today’s clusters would like to see.

Sun's Solaris MC, on the other hand, is specifically intended for use in clusters as this paper
addresses them. It provides some shared state between kernels (although much of the Solaris
MC functionality is implemented at the user level). However, a weakness of current
distributed operating systems is that state sharing is binary: they use all-or-nothing sharing,
which inhibits scalability. The Tornado operating system [8] is designed for 2-level
hierarchical clusters of workstations, although it is not yet clear how well this approach will
work for more generalized clusters.



3.3.3 Heterogeneity

It is arguable whether one should attempt to accommodate heterogeneous hardware at the
operating system level within a single cluster. There are definite efficiencies to be gained
from homogeneous clusters, and it may well make economic sense to replace an existing
cluster rather than doing incremental heterogeneous expansion. Even if one accepts
heterogeneity as inevitable, the operating system may not be the best place to address it.
What we really want is that, at some layer, we provide a homogeneous set of abstractions to
higher layers.

The lowest level on which heterogeneity causes problems is the data representation – big-
endian vs. little-endian. If such systems are to be connected, the adaptation of the different
representations could also be done on the lowest level possible to gain suitable performance.
However, approaches to do endian conversion in hardware have not yet been done (the
closest thing we are aware of is the ability of the old MIPS processors to run in either endian-
ness, although there was no dynamic conversion).

On the other hand, this can just as easily be at the middleware layer instead of at the
operating system layer (the “end-to-end” argument in networking would argue for pushing
this to the highest layer possible). Middleware systems have done an excellent job of
providing the illusion of homogeneity in heterogeneous systems – consider the success of
Java and the Java Virtual Machine. However, creating illusions does cost in terms of
performance. Therefore, we consider an operating system that runs on heterogeneous
hardware as more of a serendipitous benefit rather than a requirement.

3.3.4 User-level communication facilities

A key characteristic of high-performance clusters is the interconnect between the nodes
normally not being an Ethernet-based network, but more sophisticated technologies like SCI
[8], Myrinet [10], GigaNet [11], or other, mostly proprietary solutions. This kind of hardware
offers communication bandwidth in the range of several Gbps, however, to make best use of
this performance, it is required that the access to the interconnect adapter involves as little
overhead as possible. Therefore, the involvement of the operating system in this kind of
communication is not desired; everything is to be done in the user space, preferably by
techniques like protected user-level DMA. However, it is expected that the multiplexing of an
arbitrary number of processes to a single interconnect adapter is still possible in a secure
manner. This imposes a difficult task to the developers of the interconnect adapter and its
driver, and also to the designers of the operating system into which the driver is to be
embedded. The VIA industry standard [12], as discussed in the communications section of
this document, appears to be the future for low-latency, high-bandwidth cluster
communication.

Approaches like VIA (and U-Net [13], an earlier design on which many parts of VIA are
based) try to minimize the involvement of the OS into inter-process communication by
moving as much functionality as possible from the kernel space into user space. This means
the buffer and queue management for send and receive operations is done by the user
process in user-space. The OS is only involved into the setup of communication channels, but
no longer in the communication (depending on the network adapters capabilities). This
increases performance by reducing the number of context switches and local buffer copy
operations. The most radical form of this low-overhead communication is SCI, which maps
memory of remote processes into the address space of the local process, reducing the inter-
process, inter-node communication to simple load and store operations.



3.3.5 Optimized parallel I/O

Less work has been done on high-speed file input/output concepts than for high-speed inter-
process communication. However, file I/O is crucial for the performance of many types of
applications, scientific codes as well as databases. The usual way is to employ a number (one
or more) of dedicated I/O nodes in the cluster. However, every shared resource represents a
potential bottleneck in a system that has to be scalable. A good example for the problems
involved in this is, once again, the Intel Paragon. Its I/O concept was used for traditional file
input/output as well as for swapping, is organized in a complex, tree-oriented parallel
manner and nevertheless did not deliver optimal performance. Clusters should follow other
concepts by doing as much node-local I/O as possible to reduce inter-node communication and
I/O contention, while maintaining a consistent global view of the I/O space.

Examples of this approach are PVFS [14] and PPFS [15] in which a flexible number of
servers in a cluster provide general I/O services in a distributed manner. For specific I/O
needs of scientific applications, specialized middleware libraries like PANDA [16], which
supports efficient parallel I/O for huge multidimensional arrays, have been developed.

3.4. Current State-of-the-art

State-of-the-art can be interpreted to mean the most common solution as well as the best
solution using today's technology. By far the most common solution current clusters is
running a conventional operating system, with little or no special modification. This
operating system is usually a Unix derivative, although NT clusters are becoming more
common. We do not intend "cluster" to be synonymous with "cluster of PCs," although this is,
again, the most common case, for reasons of economics.

The single most popular cluster operating system is Linux [26]. This is primarily for three
reasons:

1. It is free,
2. It is an open source operating system, meaning that one is free to customize the

kernel to ones liking. To date, this has usually meant specialized drivers for
underlying high-speed networks, and other I/O optimizations.

3. For historic reasons: Don Becker selected Linux for the original Beowulf cluster (this
was for both technical and social reasons, as the Linux kernel was free of any
possible licensing problems, unlike the BSD derivatives at the time), and thus
Beowulf-derived systems have also used Linux.

Beowulf [17] is not a single ready-to-run package for Linux clustering, but merely a collection
of tools, middleware libraries, network drivers and kernel extensions to enable a cluster for
specific HPC purposes. This projects includes valuable components and is another example of
how an (open source) OS can be extended and adapted to specific needs.

Sun Microsystems has developed a multi-computer version of Solaris; aptly named Solaris
MC [18] Solaris MC consists of a small set of kernel extensions and a middleware library.
Solaris MC incorporates some of the research advances from Sun’s Spring operating system,
including an object-oriented methodology and the use of CORBA IDL in the kernel. Solaris
MC provides a SSI to the level of the device, i.e. processes running on one node can access
remote devices as if they were local. The SSI also extends to a global file system and a global
process space.



The Puma operating system [19], from Sandia National Labs and the University of New
Mexico, represents the ideological opposite of Solaris MC. Puma takes a true minimalist
approach: there is no sharing between nodes, and there is not even a file system or demand-
paged virtual memory. This is because Puma runs on the “compute partition” of the Intel
Paragon and Tflops/s machines, while a full-featured OS (e.g. Intel’s TflopsOS or Linux) runs
on the Service and I/O partitions. The compute partition is focused on high-speed
computation, and Puma supplies low-latency, high-bandwidth communication through its
Portals mechanism.

MOSIX [20],[21] is a set of kernel extensions for Linux that provides support for seamless
process migration. Under MOSIX, a user can launch jobs on their home node, and the system
will automatically load balance the cluster and migrate the jobs to lightly-loaded nodes.
MOSIX maintains a single process space, so the user can still track the status of their
migrated jobs. MOSIX offers a number of different modes in which available nodes form a
cluster, submit and migrate jobs, ranging from a closed batch controlled system to a open
network-of-workstation like configuration. MOSIX is a mature system, growing out of the
MOS project and having been implemented for seven different operating
systems/architectures. MOSIX is free and is distributed under the GNU Public License.

Next to the cluster operating systems mainly used in research and for running
computationally intensive applications (which do not require a high degree of OS-support),
clustering is also in use in the commercial arena. The main commercial applications in this
area are data-intensive and often involve database management systems (DBMS). AIX from
IBM has a strong position here, running the SP family of cluster-based servers, featuring
proven stability, good manageability and a number of clustered databases. From the other
commercial Unix variants, Sun’s Solaris has a strong focus on clustering, high availability
(HA) and is also widely used in research. IRIX from SGI relies a sophisticated NUMA-SMP
technology that provides a very specific kind of clustering. Other operating systems with an
emphasis on HA (Tandem Non-Stop Unix and Unixware 7) are covered in the related section
of this paper.

In the area of high-performance I/O, only a very limited number of proven and usable
solutions exist. One of these is GPFS (General Parallel File System) [22] by IBM, specifically
designed for the SP server running AIX. It is based on storage arrays (disks) being connected
to one or more servers that exchange data with the clients via multithreaded daemons. It
fulfils the criterion “usable” in that it features a kernel extension that can be accessed like
any standard UNIX file system. This avoids the necessity of recompiling or even modifying
applications that are to use GPFS. However, it performs best for large sequential reads and
writes due to its technique of striping the data across the disks. Many technically more
sophisticated but less general (and thus mostly less usable in a general cluster environment)
research projects exist [23],[24] which often deal with the special, but frequently occurring
scenario of collective I/O in large scientific applications.

We present a comparison of the most relevant operating systems used for clustering in
Appendix A. We are aware that already the selection criteria “most relevant”, and also the
comparison of the selected systems will lead to discussions. However, covering every aspect
of each system is surely beyond the scope of this paper, and a stimulation of the discussion is
a desired effect. Apart from our own experiences, we consider the studies that have been
performed by D.H. Brown Associates [25],[26].



3.5. Future work

As SMP become more common in clusters, we will see a natural hierarchy arise. SMP have
tight coupling, and will be joined into clusters via low-latency high-bandwidth
interconnection networks. Indeed, we fully expect that heterogeneous clusters of SMP will
arise, having single, dual, quad, and octo-processor boxes in the same cluster. These clusters
will, in turn, be joined by gigabit-speed wide-area networks, which will differ from SAN
primarily in their latency characteristics. This environment will naturally have a three-level
hierarchy, with each level having an order of magnitude difference in latency relative to the
next layer.

This structure will have its greatest impact on scheduling, both in terms of task placement
and in terms of selecting a process to run from a ready queue. Scheduling is traditionally
considered an operating system activity, yet it is quite likely that at least some of this work
will be carried out in middleware.

For example, as one of our research projects we are investigating thread management for
mixed-mode (multi-threaded and message passing) computing using OpenMP and MPI,
which we believe is a natural by product of clusters of SMP. Most cluster applications,
particularly scientific computations traditionally solved via spatial decomposition, consist of
multiple cooperating tasks. During the course of the computation, hot spots will arise, and a
self-adapting program might wish to manage the number of active threads it has in each
process. Depending on the relationship of new threads to existing threads (and their
communication pattern) and the system state, a decision might be made to do one of the
following:

• Add a new thread on an idle processor of the SMP where the process is already
running.

• Expand the address space via distributed shared memory to include an additional
node, and add a thread there.

• Add a thread to a non-idle processor already assigned to the process.
• Migrate the process to a larger SMP (e.g. from 2 nodes to 4 nodes) with an idle

processor, and add a new thread there.

The described technique of thread placing and process migration is also related to the high-
availability issue that is critical for commercial applications. Automatic and fast migration of
running processes, taking benefit from advanced interconnect technology offering e.g.
transparent remote memory access, will lift the definition of fail-over times into new
dimensions.

We might also examine the issue of configurability. Users might want to alter the personality
of the local operating system, e.g. "strip down" to a Puma-like minimalist kernel to maximize
the available physical memory and remove undesired functionality. Possible mechanisms to
achieve this range from a reload of a new kernel and a reboot to dynamically
linking/unlinking code into/out of the kernel. This leads to the question: “How much (and
which) functionality does a cluster operating-system need?” The more functionality a system
has, the more complicated it gets to maintain and the greater the chance for malfunctions
due to bad configurations or errors in the interaction of different parts of the system. Again,
Linux is the easiest way for the majority of researchers to study this area.



Another important aspect of cluster computing in which the operating system is strongly
involved is distributed file I/O. Current solutions of I/O systems are mostly static, do not
adapt very well to the actual workload and thus tend to have bottlenecks, mostly by the
limited number of dedicated I/O nodes to which all data has to be routed. The transparent
filesystem-level support of distributed and adaptive I/O is an open issue for cluster operating
systems. As an example for an attempt, we are currently implementing an MPI-IO
implementation that operates on the basis of an existing DSM library on top of an SCI
interconnect. This technique may result in a dedicated filesystem for high-bandwidth, low-
latency requirements that is totally distributed among the participating clients.

3.6. Conclusions

Cluster operating systems are similar in many ways to conventional workstation operating
systems. How different one chooses to make the operating system depends on ones view of
clustering. On the one hand, we have those who argue that each node of a cluster must
contain a full-featured operating system such as Unix, with all the positives and negatives
that implies. At the other extreme, we see researchers asking the question, "Just how much
can I remove from the OS and have it still be useful?" These systems are typified by the
work going on in the Computational Plant project at Sandia National Laboratories. Still
others are examining the possibility of on-the-fly adaptation of the OS layer, reconfiguring
the available services through dynamic loading of code into the cluster operating system.

It is worth noting that every notable attempt to provide SSI at the OS layer has been
regarded as a failure on some level. Sun’s Solaris MC has never been offered as a product,
and recently sun has approached academic computer scientists to evaluate Linux on Sparc
stations as the basis of a cluster product. Intel’s Paragon OS is well known for its tendency
to lock up the entire machine because of minor problems on one node, as well as its wretched
performance on large systems. We are not saying it is impossible to build a scalable SSI at
the OS level, we are just saying that no one has done it, and we think there is a good reason.
The forthcoming SIO standard will blur the edges between remote and local devices, and
perhaps this will lead to more highly scalable SSI.

A final note is that, through a combination of OS improvements and acquisition of relevant
technology, Microsoft has become a viable option in the realm of clustering. The HPVM [27]
effort has demonstrated that it is possible to build a reasonable cluster from Windows NT
boxes, and with the recent installation of clusters such as the one at Cornell University, NT
or Windows 2000 is going to be a factor in the cluster OS picture for the foreseeable future.

To sum it up, clusters for technical and scientific computing based on Linux and other
standalone Unix platforms like AIX are here, and they work. In the area of commercial
cluster computing, Linux still lacks essential functionalities which “conventional” Unix
systems and in parts even Windows NT do offer. It is to be observed if the free and
distributed development model of Linux will be able to offer proven solutions in this area,
too, since these topics are rarely addressed in the Linux developer community. Nevertheless,
more exotic OS technology is and will be the current focus of many research efforts, both
academic and commercial. There will probably never be “THE” cluster OS, as Linux will
adopt research results much more quickly than commercial vendors, particularly Microsoft, if
history is a reliable guide.



3.7. References

[1] IEEE Std. 1003.1: Information Technology-Portable Operating System Interface
(POSIX)-Part 1: System Application: Program Interface (API) [C Language]. Institute
of Electrical and Electronics Engineers, Inc., 1990.

[2] Global Layer Unix, http://now.cs.berkeley.edu/Glunix/glunix.html
[3] K. Scholtyssik and M. Dormanns, Simplifying the use of SCI shared memory by using

software SVM techniques, 2nd Workshop Cluster-Computing, Published in: W. Rehm,
and T. Ungerer (Eds.), Cluster-Computing, Proc. 2. Workshop, 25-26. March 1999,
Universität Karlsruhe (CSR-99-02), http://www.tu-chemnitz.de/informatik/RA/CC99/

[4] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R Rajamony, W. Yu and W.
Zwaenepoel, TreadMarks: Shared Memory Computing on Networks of Workstations,
IEEE Computer, Vol. 29, No. 2, 1996,
http://standards.ieee.org/regauth/oui/tutorials/sci.html

[5] S. Zeisset, S. Tritscher, M. Mairandres, A New Approach to Distributed Memory
Management in the Mach Microkernel, USENIX 1996 Technical Conference, San Diego,
California, 1996

[6] G. Cabillic, T. Priol, I. Puaut, MYOAN: an implementation of the KOAN shared virtual
memory on the Intel paragon, Technical Report RR-2258, Institute National de
Recherche en Informatique et en Automatique, 1994

[7] E. Anderson, A. Mainwaring, J. Neefe, C. Yoshikawa, T. Anderson, D. Culler, D.
Patterson, Experience with Two Implementations of Network RAM, Internal Report,
Computer Science Division, University of California at Berkeley,
http://http.cs.berkeley.edu/~eanders/projects/netram/

[8] B. Gamsa and O. Krieger and J. Appavoo and M. Stumm, Tornado: Maximizing
Locality and Concurrency in a Shared Memory Multiprocessor Operating System, In
the Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), pp. 87-100, February 1999.

[9] SCI Association, http://www.SCIzzL.com; SCI Products – http://www.dolphinics.com
[10] Myrinet, http://www.myri.com
[11] GigaNet, http://www.giganet.com
[12] VIA, http://www.viarch.org
[13] U-Net, http://www.cs.berkeley.edu/~mdw/projects/unet; M. Welsh, A. Basu, and T. von

Eicken: ATM and Fast Ethernet Network Interfaces for User-Level Communication,
Proc. of High-Performance Computer Architecture 3, San Antonio, February 1997.

[14] PVFS, http://parlweb.parl.clemson.edu/pvfs
[15] PPFS, http://www.crpc.rice.edu/CRPC/newsletters/win97/work_PPFS.html
[16] PANDA, http://drl.cs.uiuc.edu/panda
[17] Beowulf, http://www.beowulf.org
[18] Solaris MC, http://www.sunlabs.com/research/solaris-mc
[19] Puma, http://www.cs.sandia.gov/puma
[20] MOSIX, http://www.mosix.org
[21] A. Barak, O. La'adan and A. Shiloh, Scalable Cluster Computing with MOSIX for

LINUX (ftp), Proc. Linux Expo '99, pp. 95-100, Raleigh, N.C., May 1999.
[22] J. Barkes, M.R. Barrios, F. Cougard, P.G. Crumley, D. Martin, H. Reddy, and T.

Thitayanum, GPFS: A Parallel File System, IBM International Technical Support
Organization, SG24-5165-00, April 1998

[23] D. Kotz, Parallel I/O Archive, Dartmouth College, http://www.cs.dartmouth.edu/pario/



[24] Yong E. Cho, Efficient Resource Utilization for Parallel I/O in Cluster Environments,
Ph.D Thesis, University of Illinois at Urbana-Champaign, 1999

[25] 1998-1999 Operating System Function Review, D.H. Brown Associates Inc.,
http://www.rs6000.ibm.com/resource/consult/dhbrown/osfrev.html, 1998

[26] Linux – How Good Is It? Executive Summary, D.H. Brown Associates Inc.,
http://www.dhbrown.com, 1999

[27] HPVM, http://www-csag.ucsd.edu/projects/hpvm.html




