
ow
ed
t-
r,
ke
m

u-
o-
y
on
s-
a
it

he
H,
tup

ted
c-

s
ed
o
ur

can
U,

ntly
MPI
PI
e
ow
al

y
n
es

Exploiting Transparent Remote Memory Access
for Non-Contiguous- and One-Sided-Communication

Joachim Worringen, Andreas Gäer, and Frank Reker
Abstract

The availability of an implementation of the Message Passi
Interface (MPI) is essential for each interconnect designed f
communication in HPC clusters. Using the open-source imp
mentation of MPI, MPICH, and creating a communication devic
for it based upon the low-level communication libraries of th
interconnect, this goal can be achieved quiet easily. Howev
optimizing the resulting MPI implementation to make maximu
benefit of the characteristics of the interconnect is a more comp
task. This paper presents two of the most recent optimization
SCI-MPICH, an MPICH variant for the SCI interconnect, whic
make use of the global shared memory provided by this interc
nect: efficient communication with non-contiguous MPI datatyp
and one-sided communication according to the MPI-2 standa
We show that the transparent low-latency communication char
teristics of SCI provides these techniques an excellent platform

Keywords: MPI-2, SCI, remote memory access, non-contiguo
datatypes, one-sided communication

1. Introduction

The dominant programming model for parallel scientific an
technical computing is message passing, using theMessage Pass-
ing Interface(MPI) standard [1][2]. Therefore, every HPC cluste
platform, of which the interconnect is a crucial component, nee
to offer an implementation of MPI for it. This implementation
should make optimal use of the characteristics of the interconn
This goal can usually not be achieved when using a legacy pro
col like TCP/IP which includes a very high software overhead, b
requires the adaption of the MPI implementation to the interco
nect-specific low-level protocols.

Examples for such potential optimizations are utilizing har
ware-supported broadcast messages (like the Quadrics inter
nect [3][4]) or moving parts of the MPI protocols onto th
interconnect adapter if it is equipped with a general-purpose p
cessing unit (as found on the Myrinet adapter boards [5], and a
on Quadrics). These are options for „smart“ interconnect adapt
However, for a „dumb“, but nevertheless efficient interconnect li
shared memory, other options arise. TheScalable Coherent Inter-
face(SCI [6]) provides a global shared memory space between
nodes of a cluster. We have exploited this shared memory sp
All authors are with the Lehrstuhl für Betriebssysteme, RWTH Aachen, Koper
kusstr. 16, D-52056 Aachen, Germany.
e-mail: joachim@lfbs.rwth-aachen.de, WWW: http://www.lfbs.rwth-aachen.de
ng
or
le-
e
e
er,
m
lex
s in
h
on-
es
rd.
ac-
.

us

d

r
ds

ect.
to-
ut
n-

d-
con-
e
ro-
lso

ers.
ke

all
ace,

which can be used for read and write accesses with very l
latency and high bandwidth write-access, to create an optimiz
MPI implementation named SCI-MPICH [7], part of a cross-pla
form MPI implementation named MP-MPICH [8]. In this pape
we present two new techniques used in SCI-MPICH which ma
use of the special characteristics of SCI and set it apart fro
other MPI implementations that we have evaluated.

The first technique is an optimization for sending non-contig
ous datatypes in MPI. We have implemented an efficient alg
rithm which allows to omit process-local intermediate cop
operations on the data by exploiting low-latency communicati
via SCI. The local copy operations are usually required to tran
form the disjoint data blocks of a non-contiguous datatype into
contiguous block of bytes in memory (and vice versa) to transm
them via the network. The other technique is the way that t
MPI-2 one-sided operations are implemented in SCI-MPIC
which strives to give the best performance possible for each se
of a one-sided communication operation.

The next section gives an overview on the interconnect-rela
issues when implementing MPI for SCI-connected cluster. Se
tion III presents thedirect_pack_ffalgorithm in SCI-MPICH
which allows for efficient communication with non-contiguou
datatype. After this, we present the implementation of one-sid
communication in SCI-MPICH. We set our results in relation t
related work done in this field in section V and summarize o
findings in section VI.

2. MPI via SCI

Communication between nodes in an SCI-connected cluster
be performed via load and store operations issued by the CP
directed at remote memory segments which are transpare
mapped into the process’ address space. This means that an
implementation on top of SCI is basically a shared-memory M
(in fact, the initial version of SCI-MPICH was based on a nativ
shared-memory device). The performance charts in figure 1 sh
the memory performance of SCI remote memory for a typic
current-generation cluster node1. It shows the latency and band-
width of PIO transfers2 (transparent remote memory access b
the CPU) and DMA transfers (performed by a DMA engine o
the PCI-SCI adapter). However, there are certain differenc

1. For this work, Dual Pentium-III 800MHz, ServerWorks ServerSet
III LE based motherboard with 64bit/66MHz PCI, Dolphin D330
PCI-SCI Adapter are used.

2. The bandwidth reduction for PIO-transfers beyond 128kiB is caused
by the limited local memory bandwidth and doesn’t show up for
chipsets with higher memory performance like the HE variant of the
ServerSet III chipset.

ni-

 .

er as
hat
ess

e
ugh

in
is-
n-

ed

op
ry,
are
a-
ier
s

re-
via

do
the
ata
d is

n
is
of
ata

ia

ild
es-
between intra-node and SCI shared memory next to the access
latency which make a number of adaptions necessary to achieve
good performance:
• The performance of remote reads is only a fraction of the write

performance due to the fact that the CPU stalls until requested
data is available, while writing to remote memory is performed
in a write-and-forget fashion. However, remote-reads of small
data units still have a relatively low latency.

• Achieving maximum performance for remote writes requires
accessing strictly sequential, contiguous, ascending addresses to
make best use of thestream bufferson the PCI-SCI adapters.
These buffers gather consecutive transactions and can in turn
generate bigger SCI transactions which have a higher efficiency.
Also, for small accesses, aligning data access granularity to SCI
transaction sizes delivers higher bandwidth.

• The fact that data is written out by the CPU does not incur that it
has arrived at the receiver in this moment of time. It may still be
buffered in the network. Store-barriers are required to ensure
complete delivery of all data written at a certain moment of
time.

• Due to retried transfers after a transmission error, it can not be

guaranteed that data appears at the receiver in the same ord
it was written on the sender. Again, a store-barrier ensures t
the data has arrived completely the moment the calling proc
returns from the barrier.

• In a cluster environment with physically distributed nodes, th
SCI interconnect is based on cable connections. Thus, altho
a shared address space is provided, SCI is still a network
which single nodes may fail or physical connections may be d
turbed (i.e. by plugging a cable). This makes a connection mo
itoring and transfer checking necessary, which is not requir
for intra-node shared memory communication.

All these issues make an efficient implementation of MPI on t
of SCI more complex than an MPI for intra-node shared memo
although the communication principles and basic architectures
very similar [7]. On the other hand, SCI offers more than intr
node shared memory, i.e. DMA transfers and most of all, eas
scalability and thus cost-efficiency for the kind of application
covered in this paper.

Throughout the paper, all SCI-related performance measu
ments are performed on a cluster of 8 of such nodes connected
a single SCI ringlet.

3. Communication of Non-contiguous Data

In typical MPI applications, the data that the processes
exchange is part of the global data structures representing
problem domain to be solved. In many cases, i.e. if the global d
structure is a multi-dimensional array, the data to be exchange
not a single block of memory (contiguous data), but is made up of
multiple blocks of contiguous data, separated by gaps (non-con-
tiguous data). A typical example of such an application are ocea
models in which the decomposition of the simulation volume
done along the two horizontal dimensions [9]. For the exchange
the boundary data, this leads to strided or even double-strided d
(see figure 2).

Different ways exist to transfer such non-contiguous data v
messages in MPI:
1. Send one message for each contiguous block of data.
2. Copy all contiguous data blocks into a separate buffer to bu

one single block of contiguous data to be send with one m
sage (this operation is calledpacking). The receiver needs to
unpack the data again.

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k1M 2M

blocksize [byte]

0

20

40

60

80

100

120

140

160

180

200

220

240

260

ba
nd

w
id

th
 [M

iB
/s

]

PIO write
PIO read
DMA write
DMA read

32 64 128 256 8 16

blocksize [byte]

0

10

20

30

40

50

60

70

la
te

nc
y

[µ
s]

PIO write
PIO read
DMA write
DMA read

Figure 1. Raw SCI communication performance (intra-node
communication) top: small data latency bottom: bandwidth

I
J

K

A (I , J , K)

W

E

SN

N o r t h - S o u t h b o u n d a r y e x c h a n g e : s i n g l e s t r i d e d

E a s t - w e s t b o u n d a r y e x c h a n g e : d o u b l e s t r i d e d

Figure 2. Decomposition of on ocean model and resulting
non-contiguous data for boundary exchanges (from [10])

n it
ce
al

bi-
mit
on.
ng
d to
r-
m-
I

an
4

ted
ous
in

n-
ive
ia

ble
ey
2).
er
be
3. Define anMPI datatypewhich represents the non-contiguous
data and send a single message using this datatype.

Technique 1 reduces the communication performance because
the message startup costs occur for each message. Technique 2
requires at least one additional copy operation and thus reduces
the communication performance, too.

With technique 3, the decision on how to transmit the data is
made by the MPI library which thus can choose the optimal way.
We will show how MPI datatypes can be constructed and explain
the generic solution to send non-contiguous data defined by an
MPI datatype. We will then present our new technique to perform
this task and evaluate the effects it has on the communication per-
formance.

3.1 MPI Datatypes

All data specifications in MPI are based on datatypes. MPI pro-
vides basic datatypes which are essentially the datatypes which
exist in the C and Fortran programming languages. To represent
more complex data structures (likestructsin C) or to group vari-
ous data elements into one datatype to simplify communication,
MPI supports user-defined datatypes. These datatypes can be
defined using a variety of MPI API functions. All these functions
basically do the same thing; they are designed to facilitate the
mapping of common data arrangements in an application to a new
MPI datatype. Such new MPI datatypes may in turn be used to
create other datatypes. Figure 3 gives an example for a non-con-
tiguous datatype which is constructed as a vector of a structure,
which in turn is made up from aninteger , an array ofchar and
two gaps. Each type is specified by combination of the parameters
blocklen, count, extendandstride (see [1]). Before a datatype can
be used for communication, it needs to be committed, which
informs the MPI library that this datatype will be used for commu-
nication. It is at this moment that the library may generate an opti-
mized representation of the datatype. The internal representation
of a datatype is up to each MPI implementation. Usually, a tree-
based representation is choosen. Figure 3 also illustrates the inter-
nal tree-like datatype representation of MPICH [11].

3.2 Non-Contiguous Data Transmission

Because many communication interfaces do only offer the trans-
mission of contiguous data blocks, defined by a memory address
and the length, a generic technique to transmit non-contiguous

data is to pack data before transmitting it, and unpacking it whe
has arrived. Depending on the type of communication interfa
and the MPI implementation, this introduces one or two addition
copy operations.

A communication interface that can transmit data blocks of ar
trary length (stream-oriented interfaces like sockets) can trans
each MPI message with a single invocation of a transfer operati
In this case, only one additional copy is needed for transmitti
non-contiguous data. However, because these interfaces nee
buffer internally, they are generally less efficient on high-perfo
mance interconnects. Non-buffering interfaces (like shared-me
ory, which is always limited in size) need to split large MP
message in parts which are transferred separately. For such
interface, two additional copy operations are required (figure,
top), which may however overlap.

3.3 direct_pack_ff-Algorithm

To eliminate these superfluous copy operations, we implemen
a packing algorithm that can be used to pack the non-contigu
distributed data directly into the SCI shared memory as shown
figure 4,bottom. This requires that the discrete pieces of the no
contiguous datatype are transferred individually into the rece
buffer. With SCI, these kinds of transfers can be performed v
transparent remote writes by the origin CPU with a reasona
bandwidth (see figure 1) even for small block sizes, provided th
are written into a consecutive manner (see chapter II, point
This condition means that directly writing the data into the us
buffer, even it would be exported to shared memory, would not
efficient for small block sizes.

Int Ch
ar

Ch
ar

Ch
ar

Ch
ar

Ch
ar

End...

Vector:

oldtype=Struct
count=n blocklen=1 stride=16

Vector

Struct

int char

Ch
ar

Memory Layout

Type Definitions

Int Ch
ar

Ch
ar

Ch
ar

Ch
ar

Ch
ar Int

Ch
ar

Ch
ar

Ch
ar

Ch
ar

220 64

extent = 1

1611

count = 5

extent = 16

count = n

Datatype Tree

count = 1

Struct:

oldtypes=[int,char]
indices=[0,6] blocklens=[1,5]

Figure 3. Datatype representation in memory and internal
tree structure

Shared

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��
��

��
��
��
��

Memory

��
��
��

��
��
��

��
��
��

��
��
����
��
��
��
��
��
��

��
��
����
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

Userbuffer

Sender

Userbuffer

Receiver

Memory
Shared

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Userbuffer

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Userbuffer

Sender Receiver

Copy Buffer

pack

Copy Buffer

unpack

direct_pack_ff direct_unpack_ff

copy copy

Figure 4. Transmission of non-contiguous data. Top:
generic technique (i.e. generic MPICH). Bottom:
direct_pack_ff technique (SCI-MPICH)

ding
ry.

lit
n

f
ion

),
pth

cor-
sed
w
ive
ted
ith

py
it
id-
ni-

g
To

cop-

as-
On

up
fers
ld

the
ur

ed
rk
e.
le
The algorithm is derived from the ‘flattening on the fly’-tech-
nique presented in [12] and thus calleddirect_pack_ff. One main
requirement this algorithm needs to fulfill is the ability to pack
only parts of the data starting at an arbitrary point in the structure
and having no constraints about the length of the data to pack.

When examining the derived datatype structure, one may notice
that a derived datatype can be interpreted as a tree with basic con-
tiguous datatypes as the leaves. The path from the root to a spe-
cific leaf describes the repeat pattern of this basic datatype in the
user-buffer. This pattern is defined by two informations on each
level of the datatype tree: thereplication countand theextent of
the data(including a stride between items). The total size for each
level is also used to speed up some operations, although it is not
essential for the algorithm. With this information, it is now possi-
ble to build up a stack for eachbasic block(contiguous entities
which can be transferred in one copy operation), describing the
arrangement of the data in a very compact way, without losing
information which can be used for the optimization of the copy
process. For each of the different MPI type constructors (vector,
hvector, indexed, hindexed, struct and contiguous), there is a spe-
cial way to place the information on the stack.

3.3.1 Building the stack

A suitable data structure to store and access the type construction
information is a list of stacks, because it can be traversed in a non-
recursive manner (for a detailed description of this concept see
[12]). These stacks are build up when committing the datatype, so
it is not exactly ’on the fly’. But as the memory consumption of
the stacks is very low, it can be tolerated for an even faster packing
operation. When committing a new datatype, a list is added to the
internal structure. This list represents the datatype as it holds an
item for each leaf. This item consists of the contiguous size of the
leaf, the position where the first block is to be found in the user
buffer and the stack describing the repeat pattern.

After the stack for a leaf is built, it will bemerged: it often is pos-
sible to build up larger blocks of adjacent basic blocks. Addition-
ally, stack items with a replication count of 1 which are not the
only element in the stack can be deleted as they don’t represent
any effective replication. Figure 5 shows the application of this
algorithm to the vector-of-structs datatype given in figure 3.

3.3.2 Sending non-contiguous data

When performing a send operation with a non-contiguous

datatype, thedirect_pack_ff function is used and the list of
basic blocks is scanned. For each basic block, the correspon
stack is used to pack the data directly into SCI shared memo
There is some additional functionality for the handling of sp
blocks, which is not described here in detail. The top functio
direct_pack_ff is shown in figure 6.

The function find_position is used to resume after a part o
a large message block was already sent up to posit
byte_offset . It also uses the ff-stack information of the
datatype and completes in a maximum time of O(N) + O(D
where N is the number of basic blocks and D the maximum de
of the datatype tree.

The direct_pack_ff-algorithm itself is implemented in
copy_leaf_basic . This function copies the data for one leaf in
the datatype tree by evaluating the repeat pattern stored in the
responding stack. On the receiving side, the same function is u
just by swapping the direction of the copy operation. This ne
packing algorithm has two main advantages over the old recurs
implementation. First, it replaces the time consuming repea
recursive transversal of the datatype tree by two nested loops w
only simple stack (array) operations. Second, it is able to co
partial blocks of arbitrary length within the data structure. Now
is possible to pack directly into the remote shared memory, avo
ing two copies into local buffers and thus speeding up commu
cation between nodes.

It must be noted that the memory accesses of thedirect_pack_ff
algorithm are no longer performed with strictly increasin
addresses for datatypes with differently sized basic blocks.
avoid cacheline thrashing in these cases, the amount of data
ied in one handshake cycle of therendez-vous protocol(see [7])
should be kept below the size of the 2nd level cache. This can e
ily be assured by setting the protocol parameters accordingly.
the other hand, thedirect_pack_ffalgorithm avoids cache pollu-
tion as it does not perform any local copy operations.

3.4 Performance Evaluation

For every communication channel with a non-zero start
latency, transfers of smaller blocks are less efficient than trans
of big blocks. To evaluate the influence of the blocksize, we wou
need to do tests with increasing blocksizes. The complexity of
datatype should have little influence on the performance of o
optimization, since the algorithm is generic. However, we want
to verify this, too. Therefore, we designed a micro-benchma
noncontigwhich transmits a simple single-strided vector datatyp
This blocksize of this vector is increased from 8 byte (a sing

contig_size=4
pos=0

extent=4
size=4
count=1

can be
deleted
(count=1)

CHAR
Stack for

INT
Stack for

stacktop

size=5
count=1

extent=5

contig_size=1
pos=6

extent=1
size=1
count=5

extent=16
size=5
count=n

5 adjacent blocks (extent = size)
form a new leaf with contig_size = 5

merging

Stack

pos=0

Stack for
INT

Stack for
CHAR

contig_size=4

FF Datastructure

leaf_list

stacktop stacktop

Stack Stack

contig_size=5
pos=6

extent=16
size=5
count=n

extent=16
size=4
count=n

FF Datastructure

leaf_list

stacktop

Stack

extent=4
size=4
count=1

extent=16
size=4
count=n

Figure 5. Internal datatype representation (of the type
given in figure 3) with direct_pack_ff -Algorithm

/* find initial position for partial sends */
 leaf = find_position(byte_offset);

 /* copy the rest of a split block */
 copy_split_block();

/* traverse the list of leaves */
while (sufficient space in target buffer) {

copy_leaf_basic (leaf);
leaf = leaf->next;

}

Figure 6. Top-level loop of the direct_pack_ff algorithm.

ver,
.g.
ith
re
le
ded
bal

er.

by

PI-

ible
llo-
es
-
ion
thin

s)
s)
d

sed
and
to
llow

bly

ell
e

ing

I-
ared
ory

a-
-

for
y
. In
ote

cre-
ll

sed
ntly
double element) up to 128 kiB throughout the test The stride
between two blocks is twice the blocksize, creating an equal-sized
sequence of data and gaps in memory. Thegeneric and the
direct_pack_fftransfers are compared, with the bandwidth of an
equivalentcontiguousdata transfer as reference. Each transfer
transmits the same amount of data, which is 256kiB for this case.

The results given in figure 7 show that the bandwidth for non-
contiguous transfer using thedirect_pack_fftransport technique
approximates the bandwidth for contiguous transfers, and already
reaches 90% of it for blocksizes of 128 byte. It delivers already
twice the bandwidth of the generic algorithm for a blocksize of 16
bytes and above. Only for the case of 8 byte-blocksizes, the
generic technique proves to be faster for inter-node communica-
tion, due to the relatively high latency of remote memory accesses
with 8 byte granularity1.

Interestingly, the performance of the non-contiguous transfer
with direct_pack_ffvia shared memory can surpass the bandwidth
of the equivalent transfer of contiguous data. We have observed
this not only on the Pentium-III platform used for the testing
above, but also for a Sun UltraSparc II. The block sizes for which
non-contiguous transfer is faster than contiguous transfer are dif-
ferent on these two platforms, but the effect is fully reproducible.
We suspect that due to the different access pattern of the stack-
storage used by thedirect_pack_fftechnique, the cache utilization
can improve for certain blocksizes. This assumption is based on
the fact that this effect does not occur for blocksizes bigger than
the 1st or 2nd level caches. A detailed survey is beyond the scope
of this paper, considering the marginal effect this behavior has in
practice.

4. One-Sided Communication

The MPI-1 standard does only define two-sided communication,
in which every communication is made up from a receive opera-

tion which needs a matching send operation to succeed. Howe
several application areas with irregularly distributed data (e
sparse matrices) or which require dynamic load balancing w
strongly varying task sizes (e.g. in computational chemistry) a
hard to implement with this model of communication: to enab
arbitrary access to local data by remote processes with two-si
communication, all processes need to repeatedly perform glo
computation or poll explicitly for incoming requests.Remote
memory access(RMA) would make these accesses much easi
The MPI-2 standard has defined RMA asone-sided communica-
tion in which all parameters for a communication are supplied
one process only.

4.1 MPI-2 One-Sided Communication

The concept of one-sided communication as defined in the M
2 standard is based onwindows.A window defines a contiguous
memory area of each process in a group which is made access
to all other processes of the group. The process may have a
cated this memory area in a random way; however, MPI-2 defin
a special memory allocation function to let the MPI library allo
cate memory with special attributes to increase communicat
performance. Once a window has been created, the data wi
(located at thetarget process)may be accessed by anyorigin pro-
cess via three functions:
• MPI_Put : move data from the origin to the target (write acces
• MPI_Get : move data from the target to the origin (read acces
• MPI_Accumulate : move data from the origin to the target an

combine it with the existing data at the specified location.
Different synchronization and consistency schemes can be u

to coordinate accesses of multiple origins towards one target
to specify the point in time in which the transaction are visible
all other processes. These relaxed consistency schemes a
implementations to optimize transfers by delaying and possi
gathering multiple requests up to the synchronization point.

4.2 Issues with Single-Sided Communication on SCI

Due to its nature as a memory-coupling interconnect, SCI is w
suited for efficient single-sided communication. However, som
restrictions need to be taken into account when implement
MPI-2 single-sided communication on top of SCI.

First, with SCI as it can be used in commodity clusters by PC
SCI adapters, only parts of the address spaces can be sh
between processes for direct remote access. Usually, the mem
for these parts (theshared regions) must have been allocated via
the SCI kernel driver. For this purpose, the MPI-2 memory alloc
tion functionMPI_Alloc_mem() has been implemented to allo
cate memory from such shared regions. Recent developments
the SCI driver will make it possible to dynamically use arbitrar
user-allocated memory regions for remote access via SCI [13]
any case, a complete implementation needs to provide rem
access for arbitrary memory regions, shared or private. On the
ation of a window for single-sided communication (MPI-2 ca
MPI_Win_create), SCI-MPICH remembers which parts of the
global window are SCI shared memory and thus can be acces
directly. Accessing data from such areas can be done transpare
by the CPU, potentially followed by aload or store barrier to

1. This can be controlled by specifying a minimal block size for the
direct_pack_ff algorithm; we have set this to zero for this experiment
to do a full comparison.

16 32 64 128 256 512 1 k 2 k 4 k 8 k 16 k 33 k 66 k 131 k
contiguous blocksize [bytes]

20

40

60

80

100

120

ba
nd

w
id

th
 [M

iB
/s

]

SCI: generic
SCI: direkt_pack_ff
SCI: contiguous
shmem: generic
shmem: direct_pack_ff
shmem: contiguous

Figure 7. Performance of non-contiguous data transfers in
SCI-MPICH (generic vs. direct_pack_ff) for inter- and intra-
node communication, using SCI and shared memory

ni-

e to
ion
east

-
be
g-
d a
ame

ach
re

es.
u-

t

CI
s,

We
ems,
of

ark
ide
en-

es,
nd

ich
is
or

CI
fer
ell
ids
out

-
for
yet
ensure the completion of all ongoing transactions (which means
that the data has arrived at the destination). To access the remain-
ing parts, internal control messages in conjunction with a remote
interrupt are used to invoke a remote handler on a process to
accept or deliver data using the standard transfer protocols (so-
calledemulation because the direct access is emulated).

Secondly, the bandwidth for remote read access via SCI is much
lower than for remote write (see figure 1). This means that direct
reading will only be effective up to a certain amount of data, from
which on a so-calledremote-put, in which the target process
writes the data into the origin process’ address space, will be
faster. Such aremote-putis also triggered by the target process
calling a remote handler at the origin process as described above.

The required mutual exclusion for passive and active target syn-
chronization (see below) is performed via shared memory locks
and barriers, using techniques described in [14]. These techniques
provide a very low latency for scenarios with little contention. For
large-scale clusters and contention, other distributed locking
mechanisms based on control messages will probably perform
better. Generally, access patterns with lock contention (multiple
processes competing continuously to write into one process’ win-
dow) should be avoided for performance reasons.

4.3 Performance Evaluation

The evaluation of the performance of MPI-2 one-sided commu-
nication is difficult because neither recognized application bench-
marks nor micro-benchmarks do exist. Also, for micro-
benchmarks, many different acceptable performance metrics do
exist due to the various consistency modes in MPI-2 one-sided
communication. Accesses to windows need to be synchronized in
MPI-2 for two reasons:
• Avoid race conditions between concurrent accesses of different

processes to the same window.
• Let the MPI library know when accesses start and when they are

due to have completed to allow for optimizations like gathering
multiple small accesses into a single large access.

To satisfy the requirements of different data access scenarios,
MPI-2 defines three synchronization techniques, based on two dif-
ferent models, which the application designer can choose from:
• active target: both processes (source and target of the transfer

operation) are explicitly involved in the synchronization. This
can be achieved either by using a barrier-like operation
MPI_Win_fence or by defining exposure (at the target process
via MPI_win_post andMPI_Win_wait) and access epochs (at
the origin process via MPI_Win_start and
MPI_Win_complete).

• passive target: the origin process acquires a lock (via
MPI_Win_Lock), guaranteeing exclusive access for a window
located at the target process. The target process does not take
any action.

We have designed a micro-benchmark calledsparse(see figure
8) which measures fine-grained read and write accesses to remote
memory as they are likely to occur in sparse matrix operations.
With a fixed access size and a stride bigger than this size (to create
non-contiguous accesses), each process iterates through another
process’ part of the global window usingMPI_Put or MPI_Get

calls. All processes synchronize after having posted all commu
cation calls by callingMPI_Win_fence .

Other synchronization techniques could also be used, but du
the collective nature of the operation, active target synchronizat
is appropriate, and the fence-synchronization causes the l
overhead1. Depending on the implementation, the required com
munication operations for each communication call may
delayed until this synchronization point. The pseudo-code in fi
ure 8 illustrates this benchmark. For our experiments, we use
stride of 2, which means after each data element, a gap of the s
size follows which is not accessed.

The results of this benchmark, expressed as latency for e
communication call and overall bandwidth for all accesses, a
shown in figure 9 for two processes located on distinct nod
Both data directions, get and put, are performed with the comm
nication window located insharedSCI memory (direct remote
access possible) or inprivateprocess memory (which means tha
access is performed via message exchange).

The results for the bandwidth with direct access to remote S
memory show a relatively low bandwidth for small access size
somewhat below the raw SCI performance as given in figure 1.
suspected the strided access to be the reason for the probl
which proved to be true after we evaluated the performance
strided remote write access by another (low-level) benchm
which performed remote writes with various access and str
sizes. The numbers we got bthrough this test show a strong dep
dency of the effective bandwidth from the stride of the access
varying between 5and 28 MiB/s for 8 byte access size, or 7 a
162 MiB/s for 256 byte access size. The values for strides wh
deliver the maximum performance are multiples of 32, which
the size of the write-combine buffer in the CPU. The reason f
the sensitivity of the performance to the stride is the use ofwrite-
combining for accesses directed towards the remote S
addresses, imported via the PCI bus. The write-combining buf
of the Pentium-III CPU is 32 bytes big, and does not perform w
for mis-aligned accesses. Disabling the write-combining avo
the performance drops, but lowers the overall bandwidth ab
50%.

The latency forMPI_Get from shared memory is increasing rap
idly, which is also due to the strided access pattern. The spike
accessing 3 elements (24 bytes) is reproducible and could not

1. For the given benchmark, the performance for exposure/access epoch
style synchronization is nearly identical for the SCI platform.

MPI_Win_create (..., winsize, ...)
for (increasing values of access_cnt) {

offset = 0
stride = access_cnt + sizeof(datatype)
flush_cache()
time = MPI_Wtime()
while (offset + access_size < winsize) {

MPI_Get/Put (.., partner , offset, access_cnt, ..)
offset = offset + stride

}
MPI_Win_fence(...)
tíme = MPI_Wtime() - time

}

Figure 8. Pseudo-code for micro-benchmark sparse

al
is
a-

s
of

e
It
ld
om-
ion

s
or
nt.

of
tics
or
i,
m
n

ed
s-

cal
via
cal
re
the
en
-
to
in
ies

u-
ed
he
le-
ies
ed
ro-
al

r
-2,

s

e of
CI.
to
ata.
be specified. The latencies for accessing remote private memory
are high due to the required signalling of the remote process and
the message exchange involved. Signalling could be omitted for a
polling remote thread, but this is would only increase benchmark
numbers; real applications would probably suffer even higher
latencies.

The bandwidth numbers for accessing remote private memory
and reading remote shared memory become very similar for big-
ger access sizes as they are all performed via message exchange.

5. Related Work & Performance Comparison

A large number of MPI implementations does exist, freely avail-
able open-source implementations as well as undisclosed vendor
implementations. The internal architecture of some open-source
implementations is documented to a certain degree, while the
internal architecture of most vendor implementations is not pub-
licly documented in most cases.

5.1 Non-contiguous Datatype Communication

The handling of non-contiguous datatypes is rarely documented
at all. [12] describes an optimized packing algorithm, especially
well-suited for the NEC SX-5 parallel vector computer with hard-

ware support for strided memory transfers. An library-intern
optimization for the handling of non-contiguous vector types
presented in [21]. However, direct packing including communic
tion (to avoid local packing) is not performed in either case.

[22] mentions the possibility of optimizing non-contiguou
datatype communication with hardware support, but no results
such an optimization have been published.

A quite complete, but slightly outdated overview of performanc
for non-contiguous datatype communication is given in [9].
shows that no MPI implementation on any interconnect cou
deliver reasonable performance for the non-contiguous case, c
pared with the contiguous case. Our performance evaluat
shows that this has not changed very much.

Also for other platforms, like NEC SX-5 or IBM SP2, the result
published in [24] show a significantly reduced performance f
non-contiguous datatypes opposed to the contiguous equivale

5.2 One-Sided Communication

Much more work has been done regarding the implementation
one-sided communication because it is an obvious characteris
of an MPI implementation to support one-sided communication
not. Many vendor MPI implementations (like SGI, Cray, Hitach
HP, IBM) support one-sided communication using the custo
interconnect of the respective machine, but very little informatio
on implementation and performance is publicly available.

The MPI implementation for the NEC SX-5 features one-sid
communication as described in [16]. Like an SCI-connected clu
ter, the SX-5 knows global shared memory and process lo
memory. For large data blocks, the one-sided communication
global shared memory is considerably faster then via process lo
memory, especially when communication is performed with mo
than one partner in a single synchronization phase. In [15],
SX-5 implementation of one-sided communication has be
ported to a SMP-cluster with VIA [25] communication mecha
nisms, which only features write-access to remote memory. Due
the required explicit synchronization, one-sided communication
both of these implementations has considerably higher latenc
than the equivalent two-sided send-recv construct.

[17] and [18] describe the implementation of one-sided comm
nication for generic interconnects (including TCP/IP and shar
memory), SMP shared-memory and a combination of both. T
results show that only for the specialized shared-memory imp
mentation, one-sided communication can achieve lower latenc
than the equivalent two-sided communication. It must be not
that the authors used ping-pong communication without synch
nization to evaluate the performance, which is not at all a typic
communication pattern of one-sided communication.

In [19], the implementation of one-sided communication fo
Myrinet-connected SMP nodes is presented. This is not MPI
but a custom APIARMCIwhich can operate next to MPI (or serve
to implement MPI-2 on top of it). The Myrinet interconnect i
used via the GM API [20]. As with Myrinet, remote memory
access does always need to be performed via the DMA engin
the PCI adapter, the latency is considerably higher then with S
The authors have put a lot of effort into the implementation
increase the performance, especially for non-contiguous d

1 8 64 512 4 k 33 k 262 k
number elements [MPI_DOUBLE]

0,1

1,0

10,0

100,0

ba
nd

w
id

th
 [M

iB
/s

]

SCI get private
SCI put private
SCI get shared
SCI put shared

Figure 9. Performance of MPI_Get() and MPI_Put() in SCI-
MPICH (sparse micro-benchmark, strided access)
top: latency bottom: bandwidth

1 8 64 512 4 k
number elements [MPI_DOUBLE]

1,0

10,0

100,0

1000,0

la
te

nc
y

[µ
s]

SCI get private
SCI put private
SCI get shared
SCI put shared

ed
r-
e,
for
ly
n.
of

ce
n
-
es:
ed
m-
lu-

ni-
ed
as

ms
w-
However, the peak bandwidth is not reached until the size of the
blocks to transfer is bigger than 700 kiB - a lot of performance
degradation is due to the slow registering of DMA memory by the
GM driver. If registering is omitted, two additional memory copy
operations are required to transfer data from and to pinned mem-
ory for DMA. Adapting this library to the SCI interconnect, as it is
planned by the authors, will allow interesting comparisons.

5.3 Performance Comparison

The lack of hard information on the communication characteris-
tics for non-contiguous datatypes and one-sided communication
made it necessary to do evaluate them ourselves. We had access to
a number of MPI platforms, including an MPP and clusters of 24-
way, 4-way and 2-way SMPs, connected via Myrinet, SCI, Giga-
bit Ethernet or Fast Ethernet (see table 1). The overview table lists
the hardware platform, the interconnect used for message passing
and the MPI implementation (and whether it supports one-sided
communication). Each configuration is given an ID for easier ref-
erence in the following figures.

We performed the non-contiguous benchmark for the simple
vector type on all of these configurations. .

The results are shown in figure 10 and show that obviously none
of the tested MPI implementations has a consistent technique to
optimize non-contiguous data transfers. The Cray T3E reaches an
efficiency of about 1 for blocksizes between 8 and 32 kiB, but has
a very low efficiency for very small (< 4 kiB) and big (> 32 kiB)
blocksizes. Sun MPI for shared memory shows a very constant
efficiency, which jumps from 0.5 to 1 for blocksizes of 16k and
above, which indicates that a simple optimization has been imple-
mented. However, no information is available concerning this fea-
ture [23]. All other implementations seem to use the generic pack-
and-send technique for intra- and inter-node communication as
well.

The configurations supporting one-sided communication also ran
thesparse micro-benchmark with the results given in figure 11.

Obviously, Sun MPI delivers very good performance for shared

memory communication, while it does not yet support one-sid
communication for inter-node communication, neither via Ethe
net nor via Myrinet. Cray T3E also shows good performanc
which is in the same range as the performance of SCI-MPICH
SCI remote shared memory. LAM-MPI is one of the few free
available MPI implementations to offer one-sided communicatio
As expected, it has very high latencies and gives a maximum
10 MiB bandwidth via fast ethernet. Surprisingly, the performan
of the shared memory implementation is a little bit lower tha
SCI-MPICH via SCI. One-sided communication using a VIA
interface as presented in [15] shows significantly higher latenci
for 1024 bytes, it’s about a factor 3 (compared with one-sid
communication via messages on SCI) up to a factor of 15 (co
pared with direct SCI put) slower than using the presented so
tion via SCI.

We have compared the scaling behavior for one-sided commu
cation on all of the platforms with hardware-supported (shar
memory, SCI or Cray interconnect) one-sided communication
illustrated in figure 12. As expected, the shared-memory platfor
exhibit a much higher bandwidth for fine-grained accesses. Ho

Machine Interconnect MPI OSC ID

Cray T3E-1200 custom Cray yes C

Sun Fire 6800 Gigabit Ethernet Sun HPC 3.1 noa

a. Myrinet installed, but not yet available (does also not support
one-sided communcation with Sun MPI)

F-G

24-way SMP, 750 MHz shared memory 64 bit PCI yes F-s

PentiumIII Dual SMP SCI MP-MPICH yes M-S

800 MHz, 64 bit PCI shared memory 1.2.1 beta yes M-s

Pentium III Xeon fast ethernet LAM 6.5.4 yes X-f

Quad SMP, 550 MHz shared memory yesb X-s

Pentium II Dual SMP Myrinet 1280 SCore 2.4.1 no S-M

400 MHz, 32 bit PCI shared memory no S-s

b. only MPI_Get(), MPI_Put() deadlocked
Table 1. Cluster platforms for evaluation of MPI performance

Figure 10.Non-contiguous datatype communication: band-
width for strided vector (nc) and equivalent contiguous
vector (c)

16 32 64 128 256 512 1 k 2 k 4 k 8 k 16 k 33 k 66 k 131 k
contiguous blocksize [bytes]

5

10

20

40

100

200

400

ba
nd

w
id

th
 [M

iB
/s

] C: c
C: nc
F-s: c
F-s: nc
F-G: c
F-G: nc
X-f: c
X-f: nc
X-s: c
X-s: nc
S-M: c
S-M: nc
S-s: c
S-s: nc

1 8 64 512 4 k 33 k 262 k
number elements [MPI_DOUBLE]

0,1

1,0

10,0

100,0

ba
nd

w
id

th
 [M

iB
/s

]

C - MPI_Get
C - MPI_Put
F-s - MPI_Get
F-s - MPI_Put
X-f - MPI_Get
X-f - MPI_Put
X-s - MPI_Get

Figure 11.Performance for single-sided communication in
sparse micro-benchmark

ts
ho-
y 4
y

le
two
eg-
20

w
ode.
es
, we
to

u-
y
is

e
by
lt-
d
eg-
h
ty.
rs
ay
e-
ich

by
n
ch
not
nce
the
n-
re
nt,
nt
nce
ts as
nt.
he
red
MI

-
be

ith
d
ss)
in
ever, platforms with an inferior memory system design like the 4-
way Xeon SMP scale very badly for coarse-grained accesses and
deliver a bandwidth below the SCI-connected system. The high-
performance (and high-cost) shared-memory designs of the Sun
Fire system scale better, but even it’s bandwidth declines notable
for more than 6 active processes. On the other hand, the distrib-
uted memory architectures with hardware-supported remote mem-
ory access scale significantly better. The Cray T3E keeps its
uneven, but regular bandwidth characteristics constant for up to 32
processes.

The SCI interconnect has a considerably higher bandwidth for
single-element accesses and a constant peak bandwidth of 120
MiB/s for up to 5 nodes. For more than 5 nodes, the single SCI
ringlet used in this tests does not supply sufficient bandwidth:
using the default link frequency of 166MHz, the ring bandwidth is
at 633 MiB/s. and the peak bandwidth declines accordingly down
to 71.8 MiB/s for 8 nodes. However, as SCI is based on indepen-
dent point-to-point connections (segments), the effective band-
width for such a communication scenario depends on the number

of concurrent data transfers running over each segment (segment
utilization). The topology of the cluster used for these experimen
is a single ring of 8 nodes. For the experiment above, we have c
sen an average scenario in which each segment is utilized b
transfers. The maximal utilization of a segment with this topolog
is 8 transfers, while the minimal utilization is of course a sing
transfer from one node to the next one. The results for these
extremes are given in table 2. They show that for the minimal s
ment utilization, the bandwidth per node remains constant at 1
MiB/s, although the overall traffic on the ring rises due to flo
control packets sent back for each data packet received by a n
With a segment utilization of 8, the per node bandwidth declin
as the ring becomes saturated. To check for saturation effects
calculated the relative ring load (output traffic of nodes relative
nominal ring bandwidth) and the ring efficiency (ratio of accum
lated bandwidth to nominal ring bandwidth). The efficienc
79.3% for a load of 152.5% indicates that little congestion
present.

However, it is obvious hat the link bandwidth needs to b
increased for ringlets with more than 6 nodes. We did do so
increasing the link frequency up to 200 MHz (by software), resu
ing in a nominal link bandwidth of 762 MiB/s. The measure
bandwidth for the worst case scenario (8 sending nodes with s
ment utilization of 8) increased linearly with the ring bandwidt
indicating that this is the next step to go for increased scalabili

It shows that for this application, the SCI interconnect offe
similar performance for commodity clusters as the custom Cr
interconnect does deliver in the T3E. With the increased link fr
quency, a limit of 8 nodes per ringlet seems reasonable, wh
gives a 512 nodes system when using 3D-torus topology.

6. Conclusions & Outlook

Our results show that global shared memory as implemented
SCI offers possibilities for optimization of cluster communicatio
as demonstrated for the MPI implementation SCI-MPICH. Su
techniques are not easily possible with cluster interconnects
supporting transparent load and store operations. However, it o
again became clear that SCI as implemented for clusters (via
PCI bus) isnot shared memory, but I/O-access which is very se
sitive concerninghow data is passed onto the bus and from the
onto the PCI-SCI adapter. Proper alignment is very importa
which sometimes may severely limit the efficiency of transpare
remote accesses, if not intercepted by software. The performa
numbers achieved are already satisfying, although some aspec
the MPI_Put() on shared memory leave room for improveme
An interesting side effect is that all of the work presented for t
SCI interconnect can equally be applied to intra-node sha
memory communication thanks to the abstraction of the S
library (Shared Memory Interface[26]), as shown for the perfor-
mance measurements.

It will be interesting to evaluate the possibilities of non-contigu
ous data transfers with DMA-based interconnects. This can
done with the DMA-engine of the PCI-SCI adapters, but also w
„smart“ interconnect adapters like Myrinet. Also, true single-side
communication (without a software handler at the target proce
should be possible with such interconnects. It is also included

1 8 64 512 4 k 33 k 262 k
number elements [MPI_DOUBLE]

0,1

1,0

10,0

100,0

1000,0

ba
nd

w
id

th
 [M

iB
/s

]

M-S 2
M-S 8
X-s 2
X-s 4
F-s 2
F-s 8
C 2
C 32

Figure 12.Scaling of one-sided strided communication
(sparse benchmark, MPI_Put()) on platforms with hard-
ware-support for this operation. On the Xeon platform,
SCI-MPICH is used for intra-node shared memory commu-
nication. Bandwidth shown is the mininum of the per-pro-
cess maximum bandwidths achieved.

Active
Nodes

1 transf. / segment 8 transfers / segment

p. node acc. p. node acc. load eff.

4 122.94 491.8 120.70 482.8 76.3 % 76.3 %

5 120.69 603.5 115.80 579.0 95.3% 91.5%

6 120.88 725.3 97.75 586.5 114,4% 92.7%

7 120.66 844.6 79.3 555.1 133,5% 87.7%

8 120.83 966.6 62.78 502.2 152.5% 79.3%

Table 2. Scalibility for different segment utilization levels (the
p. node and acc. columns show the bandwidth in MiB/s). The
eff. column gives the effiency of the utilization of the avail-
able bandwitdth for the worst case setup (link saturation).

PS

n.

6th
es

CI
.
er

ers’
ges

er

.

ry.
-
S

’s

p,

up
-17,
the VIA specifications, but since it is optional, it is rarely imple-
mented. It probably is the higher complexity involved in such a
solution which has hindered implementations so far.

Generally, if synchronization is considered, one-sided communi-
cation does usually not provide lower latencies if compared
directly with two-sided communication using micro-benchmarks.
However, all these numbers do not, and can not, include the poten-
tial synchronization delay included when using two-sided commu-
nication in a global exchange phase. Because the communication
models are so different (one-sided vs. two-sided and also the dif-
ferent one-sided synchronization schemes), ping-pong-like com-
parisons are not really meaningful, but can give an upper limit of
performance. Only comparing the performance and algorithmic
complexity of applications solving a given problem with one- or
two-sided communication will allow to decide for one or the other
technique. Such benchmarks are not yet commonly available; but
we expect SCI to support these communication models well.

The complete source of the software packages discussed in this
paper, including the benchmarks used, is freely available at [8].

7. Acknowledgements

We would like to thank Jesper L. Träff from NEC C&C Research
Labs (St. Augustin) for relevant discussions concerning MPI
datatype flattening. Karsten Scholtyssik from the Central Institut
for Applied Mathematics (ZAM, Research Centre Jülich) has pro-
vided us with the performance numbers for the Cray T3E. The
performance numbers from the Intel Xeon systems where also
gathered at the ZAM from the ZAMpano cluster, and Marc A.
Schweitzer from the Department for Applied Mathematics (Uni-
versity of Bonn) gave us the performance numbers of their
Parnass2 Myrinet Cluster.

References
[1] Message Passing Interface Forum:MPI: A message-passing interface stan-

dard. International Journal of Supercomputing Applications, 8(3/4), 1994.
URL: http://www.mpi-forum.org/docs/docs.html

[2] Message Passing Interface Forum:MPI-2: Extensions to the Message-Pass-
ing Interface. July 1997.
URL: http://www.mpi-forum.org/docs/docs.html

[3] Quadrics Supercomputer World Ltd:QsNet High Performance Interconnect.
Manufactures product information. Retrieved October 2001.
URL: http://www.quadrics.com/web/support/flyers/QsNet.pdf

[4] Fabrizio Petrini, Adolfy Hoisie, Wu-chun Feng and Richard Graham:Perfor-
mance Evaluation of the Quadrics Interconnection Network.Workshop on
Communication Architecture for Clusters (CAC ‘01), in conjunction with
Int’l Parallel and Distributed Processing Symposium (IPDPS ’01), San Fran-
cisco, April 2001

[5] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su:Myrinet - A Gigabit-
per-Second Local-Area Network.IEEE Micro vol.15 (1), February 1995.

[6] IEEE: ANSI/IEEE Std. 1596-1992,Scalable Coherent Interface (SCI). 1992
[7] Joachim Worringen, Th. Bemmerl:MPICH for SCI-connected clusters.In

Proc. SCI Europe ’99, helt in conjunction with EuroPar ’99, pp. 3-11, Tou-
louse, France, September 1999
URL: http://www.lfbs.rwth-aachen.de/users/joachim/publications

[8] J. Worringen, K. Scholtyssik:MP-MPICH: Multi-Platform MPICH.
URL: http://www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH

[9] Mike Ashworth:A report on further progress in the development of codes for
the CS2.In Deliverable D.4.1.b F. Carbonnell (Eds), GPMIMD2 ESPRIT
Project, EU DGIII, Brussels, (1996)

URL: http://www.cse.clrc.ac.uk/PublicationAbstract/943
[10] Mike Ashworth:OCCOMM Benchmark Code.Presentation at the Workshop

on Scalable Parallel Computing on Cray Systems (Berlin) and the 8th RA
Workshop (Offenbach), November 1995
URL: http://www.dl.ac.uk/TCSC/CompEng/OCCOMM/slides.html

[11] W. Gropp, E. Luskk, N. Doss and A. Skjellum:A high-performance, porta-
ble implementation of the{MPI} message passing interface standard.Parallel
Computing, vol. 22 (6), pp 789-828, September 1996.

[12] Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, Falk Zimmerman
Flattening on the Fly: efficient handling of MPI derived datatypes.In Recent
Advances in Parallel Virtual Machine and Message Passing Interface.
European PVM/MPI Users’ Group Meeting, volume 1697 of Lecture Not
in Computer Science, pages 109-116, 1999.

[13] Friedrich Seifert, Joachim Worringen, and Wolfgang Rehm:Using Arbitrary
Memory Regions for SCI communication.In Proc. SCI Europe Conference
2001, pp. 59-64, Trinity College, Dublin, October 2001.

[14] Martin Schulz:Efficient Coherency and Synchronization Management in S
based DSM systems.In Proc. of SCI Europe Conference 2000, pp. 31-36
Helt in conjunction with EuroPar 2000 Conference, Munich, Septemb
2000.

[15] Maciej Golebiewski, Jesper Larsson Träff.MPI-2 One-sided Communica-
tions on a Giganet SMP Cluster.In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 8th European PVM/MPI Us
Group Meeting, volume 2131 of Lecture Notes in Computer Science, pa
16-23,2001 (to appear).

[16] Jesper Larsson Träff, Hubert Ritzdorf, Rolf Hempel.The Implementation of
MPI-2 One-Sided Communication for the NEC SX-5.In Proc. Supercomput-
ing 2000 Conference, Dallas, USA, November 2000.

[17] Stephen Booth, Elson Mourao:Single sided MPI implementations for SUN
MPI. In Proc. Supercomputing 2000 Conference, Dallas, USA, Novemb
2000.

[18] Elson Mourao, Stephen Booth:Single Sided Communications in Multi-Pro-
tocol MPI. J.Dongarra et al. (Eds.): EuroPVM/MPI 2000, LNCS 1908, pp
176-183, Springer-Verlag Berlin Heidelberg 2000.

[19] Jarek Nieplocha, Jialin Ju, and Edoardo Apra:One-sided Communication on
the Myrinet-based SMP Clusters using the GM Message-Passing Libra
Workshop on Communication Architecture for Clusters (CAC ‘01), in con
junction with Int’l Parallel and Distributed Processing Symposium (IPDP
’01), San Francisco, April 2001

[20] Myricon Inc.:The GM API.Online documentation of the GM API specifica-
tin. Last update October 30th, 2000.
URL: http://www.myri.com/scs/GM/doc/gm_toc.html

[21] William Gropp, Ewing Lusk, and Deborah Swider:Improving the Perfor-
mance of MPI Derived Datatypes.Message Passing Interface Developer
and User’s Conference (MPIDC ’99), Atlanta, USA, March 9-12,999.

[22] David Sitsky, David Walsh, and Chris Johnson:An efficient implementation
of the message passing interface (MPI) on the Fujitsu AP1000.In Mitsuo
Ishii (Eds), Proceedings of the Third Parallel Computing Worksho
Kawasaki, Japan, November 1994..
URL: http://cap.anu.edu.au/cap/projects/mpi/mpi.html

[23] Sun Microsystems Inc.:Sun HPC ClusterTools" 3.1 Performance Guide.
Rev. A,Palo Alto, CA, March 2000

[24] Ralf Reussner, Jesper Larsson Träff, Gunnar Hunzelmann.A Benchmark for
MPI Derived Datatypes.In Recent Advances in Parallel Virtual Machine
and Message Passing Interface. 7th European PVM/MPI Users’ Gro
Meeting, volume 1908 of Lecture Notes in Computer Science, pages 10
2000.

[25] Compaq, Intel and Microsoft Corporations:The Virtual Interface Specifi-
cation.Version 1.0. Dec 16, 1997.
URL: http://www.viarch.org

[26] M. Dormanns, W. Sprangers, H. Ertl, T. Bemmerl:A Programming Interface
for NUMA Shared-Memory Clusters.Proc. High Performance Computing
and Networking (HPCN), pp. 608-707, LNCS 1225, Springer, 1997
URL: http://www.lfbs.rwth-aachen.de/users/joachim/SMI

	1. Introduction
	2. MPI via SCI
	Figure 1. Raw SCI communication performance (intra-node communication) top: small data latency bo...

	3. Communication of Non-contiguous Data
	Figure 2. Decomposition of on ocean model and resulting non-contiguous data for boundary exchange...
	3.1 MPI Datatypes
	Figure 3. Datatype representation in memory and internal tree structure

	3.2 Non-Contiguous Data Transmission
	Figure 4. Transmission of non-contiguous data.Top: generic technique (i.e. generic MPICH). Bottom...

	3.3 direct_pack_ff-Algorithm
	3.3.1 Building the stack
	Figure 5. Internal datatype representation (of the type given in figure 3) with direct_pack_ff-Al...

	3.3.2 Sending non-contiguous data

	3.4 Performance Evaluation
	Figure 7. Performance of non-contiguous data transfers in SCI-MPICH (generic vs. direct_pack_ff) ...

	4. One-Sided Communication
	4.1 MPI-2 One-Sided Communication
	4.2 Issues with Single-Sided Communication on SCI
	4.3 Performance Evaluation
	Figure 9. Performance of MPI_Get() and MPI_Put() in SCI- MPICH (sparse micro-benchmark, strided a...

	5. Related Work & Performance Comparison
	5.1 Non-contiguous Datatype Communication
	5.2 One-Sided Communication
	5.3 Performance Comparison
	Table 1. Cluster platforms for evaluation of MPI performance
	Figure 10. Non-contiguous datatype communication: bandwidth for strided vector (nc) and equivalen...
	Figure 11. Performance for single-sided communication in sparse micro-benchmark
	Figure 12. Scaling of one-sided strided communication (sparse benchmark, MPI_Put()) on platforms ...
	Table 2. Scalibility for different segment utilization levels (the p. node and acc. columns show ...

	6. Conclusions & Outlook
	7. Acknowledgements
	References

