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Abstract which can be used for read and write accesses with very low

latency and high bandwidth write-access, to create an optimized

The availability of an implementation of the Message Passifgp, implementation named SCI-MPICH [7], part of a cross-plat-
Interface (MPI) is essential for each interconnect designed fg§.y, MPI implementation named MP-MPICH [8]. In this paper
communication in HPC clusters. Using the open-source implge present two new techniques used in SCI-MPICH which make
mentation of MPI, MPICH, and creating a communication deviqese of the special characteristics of SCI and set it apart from
for it based upon the low-level communication libraries of thgiar mPI implementations that we have evaluated.
interconnect, this goal can be achieved quiet easily. Howevefpe first technique is an optimization for sending non-contigu-
optimizing the resulting MPI implementation to make maximugy,q datatypes in MPI. We have implemented an efficient algo-
benefit of the characteristics of the interconnect is a more compl&Xm which allows to omit process-local intermediate copy

task. This paper presents two of the most recent optimizationg,fbrations on the data by exploiting low-latency communication

SCI-MPICH, an MPICH variant for the SCI interconnect, whiclyiy sc|. The local copy operations are usually required to trans-

mak.e use of the global shared memory provided by this intercqgey the disjoint data blocks of a non-contiguous datatype into a
nect: efficient communication with non-contiguous MPI datatypegniguous block of bytes in memory (and vice versa) to transmit
and one-sided communication according to the MPI-2 standaiglen, via the network. The other technique is the way that the
We show that the transparent low-latency communication charqgp|_2 one-sided operations are implemented in SCI-MPICH

teristics of SCI provides these techniques an excellent platformy ich strives to give the best performance possible for each setup
~ of aone-sided communication operation.
Keywords MPI-2, SCI, remote memory access, non-contiguoushe next section gives an overview on the interconnect-related

datatypes, one-sided communication issues when implementing MP!I for SCl-connected cluster. Sec-
tion lll presents thedirect pack ffalgorithm in SCI-MPICH
1. Introduction which allows for efficient communication with non-contiguous

The dominant . del f lel scientifi datatype. After this, we present the implementation of one-sided
€ dominant programming model for parallel SCIentilic ang, , ., nication in SCI-MPICH. We set our results in relation to

technical computing is message passing, usindvitbssage Pass- T : ;
. related work done in this field in section V and summarize our
ing Interface(MPI) standard [1][2]. Therefore, every HPC clustef

. . . . indings in section VI.
platform, of which the interconnect is a crucial component, needs
to offer an implementation of MPI for it. This implementatiorP. MP| via SCI
should make optimal use of the characteristics of the interconnect.

This goal can usually not be achieved when using a legacy prat -ommunication between nodes in an S_Cl-cqnnected cluster can
£ performed via load and store operations issued by the CPU,

col like TCP/IP which includes a very high software overhead, ba ted at ; ts which ¢ "
requires the adaption of the MPI implementation to the interco rected at remote memory segments which are transparently

nect-specific low-level protocols mapped into the process’ address space. This means that an MPI
' implementation on top of SCI is basically a shared-memory MPI

Examples for such potential optimizations are utilizing hard- o ) .
ware-supported broadcast messages (like the Quadrics inter fact, the initial version of SCI-MPICH was bas‘?d on a native
ared-memory device). The performance charts in figure 1 show

nect [3][4]) or moving parts of the MPI protocols onto thé i
[31(41) ving b P memory performance of SCI remote memory for a typical

interconnect adapter if it is equipped with a general-purpose pFB? .
cessing unit (as found on the Myrinet adapter boards [5], and afefrent-generation cluster nddét shows the latency and band-

on Quadrics). These are options for ,smart" interconnect adapt édtgF?LfJ PIO dtrSR/iZ\e{% (tra;nsparenft remgti merS('\)/er access by
However, for a ,dumb®, but nevertheless efficient interconnect lik8e ) an ransfers (performed by a engine on

shared memory, other options arise. Bmalable Coherent Inter- the PCI-SCI adapter). However, there are certain differences

face(SCI [6]) provides a global shared memory space between all

nodes of a cluster. We have exploited this shared memory space;. For this work, Dual Pentium-Ill 800MHz, ServerWorks ServerSet
11l LE based motherboard with 64bit/f66MHz PCI, Dolphin D330

PCI-SCI Adapter are used.

2. The bandwidth reduction for PIO-transfers beyond 128kiB is caused
by the limited local memory bandwidth and doesn’t show up for
chipsets with higher memory performance like the HE variant of the
ServerSet Il chipset.

All authors are with the Lehrstuhl fur Betriebssysteme, RWTH Aachen, Koperni-
kusstr. 16, D-52056 Aachen, Germany.
e-mail: joachim@Ifbs.rwth-aachen.de, WWW: http://www.Ifbs.rwth-aachen.de .
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Figure 1. Raw SCI communication performance (intra-node

guaranteed that data appears at the receiver in the same order as
it was written on the sender. Again, a store-barrier ensures that
the data has arrived completely the moment the calling process
returns from the barrier.

* In a cluster environment with physically distributed nodes, the
SCl interconnect is based on cable connections. Thus, although
a shared address space is provided, SCI is still a network in
which single nodes may fail or physical connections may be dis-
turbed (i.e. by plugging a cable). This makes a connection mon-
itoring and transfer checking necessary, which is not required
for intra-node shared memory communication.

All these issues make an efficient implementation of MPI on top
of SCI more complex than an MPI for intra-node shared memory,
although the communication principles and basic architectures are
very similar [7]. On the other hand, SCI offers more than intra-
node shared memory, i.e. DMA transfers and most of all, easier
scalability and thus cost-efficiency for the kind of applications
covered in this paper.

Throughout the paper, all SCl-related performance measure-
ments are performed on a cluster of 8 of such nodes connected via
a single SClI ringlet.

3. Communication of Non-contiguous Data

In typical MPI applications, the data that the processes do
exchange is part of the global data structures representing the
problem domain to be solved. In many cases, i.e. if the global data
structure is a multi-dimensional array, the data to be exchanged is
not a single block of memorycontiguous datp but is made up of
multiple blocks of contiguous data, separated by gapos-{con-
tiguous datd. A typical example of such an application are ocean
models in which the decomposition of the simulation volume is
done along the two horizontal dimensions [9]. For the exchange of
the boundary data, this leads to strided or even double-strided data

communication) top: small data latency bottom: bandwidth

between intra-node and SCI shared memory next to the access

(see figure 2).

latency which make a number of adaptions necessary to achieve

good performance:

» The performance of remote reads is only a fraction of the write
performance due to the fact that the CPU stalls until requested
data is available, while writing to remote memory is performed
in a write-and-forget fashion. However, remote-reads of small

o

AL J,K)

W

North-South boundary exchange: single strided
I T e

East-west boundary exchange: double strided
INNN TN  WENNN  WNNE

data units still have a relatively low latency.

* Achieving maximum performance for remote writes requires E
accessing strictly sequential, contiguous, ascending addresses to
make best use of thetream bufferon the PCI-SCI adapters.

N S

These buffers gather consecutive transactions and can in tupyure 2. Decomposition of on ocean model and resulting
generate bigger SCI transactions which have a higher efficiencyon-contiguous data for boundary exchanges (from [10])
Also, for small accesses, aligning data access granularity to SCI

transaction sizes delivers higher bandwidth.

Different ways exist to transfer such non-contiguous data via

« The fact that data is written out by the CPU does not incur thanitessages in MPI:
has arrived at the receiver in this moment of time. It may still be  Send one message for each contiguous block of data.
buffered in the network. Store-barriers are required to ensute Copy all contiguous data blocks into a separate buffer to build
complete delivery of all data written at a certain moment of one single block of contiguous data to be send with one mes-

time.

sage (this operation is callgzhcking) The receiver needs to

* Due to retried transfers after a transmission error, it can not be unpackthe data again.



3. Define anMPI datatypewhich represents the non-contiguouslata is to pack data before transmitting it, and unpacking it when it
data and send a single message using this datatype. has arrived. Depending on the type of communication interface
Technique 1 reduces the communication performance becaasd the MPI implementation, this introduces one or two additional
the message startup costs occur for each message. Technigoepg operations.
requires at least one additional copy operation and thus reduces
the communication performance, too.

With technique 3, the decision on how to transmit the data is
made by the MPI library which thus can choose the optimal way.
We will show how MPI datatypes can be constructed and explain
the generic solution to send non-contiguous data defined by an
MPI datatype. We will then present our new technique to perform
this task and evaluate the effects it has on the communication per-
formance.

Sender Receiver

Copy Buffer

Userbuffer Memory Userbuffer

3.1 MPI Datatypes

All data specifications in MPI are based on datatypes. MPI pro-
vides basic datatypes which are essentially the datatypes which [ sender Recaiver
exist in the C and Fortran programming languages. To represent
more complex data structures (lik&ructsin C) or to group vari-
ous data elements into one datatype to simplify communication,
MPI supports user-defined datatypes. These datatypes can be
defined using a variety of MPI API functions. All these functions
basically do the same thing; they are designed to facilitate the
mapping of common data arrangements in an application to a new
MPI datatype. Such new MPI datatypes may in turn be used to shared
create other datatypes. Figure 3 gives an example for a non-con- Memory
tiguous datatype which is constructed as a vector of a structure,
which in turn is made up from ainteger , an array okhar and  Figure 4. Transmission of non-contiguous data.  Top:
two gaps. Each type is specified by combination of the parameteggneric  technique  (i.e. generic  MPICH). Bottom:
blocklen count extendandstride (see [1]). Before a datatype can direct_pack_ff technique (SCI-MPICH)

_bef usedhfor coTbmunic:tior;],_ itd needs to_”b;: com(rjnfitted, WhIC\ communication interface that can transmit data blocks of arbi-
informs the MP! library that this datatype will be used for commuz ., |ength (stream-oriented interfaces like sockets) can transmit

hication. Itis at this moment that the library may generate an opli; -h \p| message with a single invocation of a transfer operation.

mized representation of the datatype. The internal representajioiis case, only one additional copy is needed for transmitting
of a datatype is up to each MPI implementation. Usually, a r&gs_contiguous data. However, because these interfaces need to
based representauon is choosen._ Figure 3 also illustrates the INiGkrer internally, they are generally less efficient on high-perfor-
nal tree-like datatype representation of MPICH [11]. mance interconnects. Non-buffering interfaces (like shared-mem-
ory, which is always limited in size) need to split large MPI
message in parts which are transferred separately. For such an
= interface, two additional copy operations are required (figuyre 4
I EEEE top), which may however overlap.

direct_unpack_ff

Userbuffer

Memory L ayout

count=1 count = 5,

3.3 direct_pack_ff-Algorithm

To eliminate these superfluous copy operations, we implemented
a packing algorithm that can be used to pack the non-contiguous
distributed data directly into the SCI shared memory as shown in
figure 4,bottom This requires that the discrete pieces of the non-
contiguous datatype are transferred individually into the receive
Figure 3. Datatype representation in memory and internal buffer. With SCI, these kinds of transfers can be performed via
tree structure transparent remote writes by the origin CPU with a reasonable
bandwidth (see figure 1) even for small block sizes, provided they
are written into a consecutive manner (see chapter Il, point 2).

Because many communication interfaces do only offer the traff$is condition means that directly writing the data into the user
mission of contiguous data blocks, defined by a memory addréssfer, even it would be exported to shared memory, would not be
and the length, a generic technique to transmit non-contiguafficient for small block sizes.

Type Definitions

Struct:
indices=[0,6] blocklens=[1,5]
oldtypes=[int,char]

Vector:
count=n blocklen=1 stride=16|
oldtype=Struct

3.2 Non-Contiguous Data Transmission



The algorithm is derived from the ‘flattening on the fly’-techdatatype, thalirect_pack_ff function is used and the list of
nigue presented in [12] and thus calldidect_pack ffOne main basic blocks is scanned. For each basic block, the corresponding
requirement this algorithm needs to fulfill is the ability to packtack is used to pack the data directly into SCI shared memory.
only parts of the data starting at an arbitrary point in the structufbere is some additional functionality for the handling of split
and having no constraints about the length of the data to pack.blocks, which is not described here in detail. The top function

When examining the derived datatype structure, one may notitect_pack_ff is shown in figure 6.
that a derived datatype can be interpreted as a tree with basic CONny« fing initial position for partial sends *
tiguous datatypes as the leaves. The path from the root to a sptaf = find_position(byte_offset);
cific leaf describes the repeat pattern of this basic datatype in th/@Co . .

) N . i ) py the rest of a split block */
user-buffer. This pattern is defined by two informations on eachpy spiit_block():
level of the datatype tree: threplication countand theextent of
the data(including a stride between items). The total size for each /" raverse the list of leaves */

K . . while (sufficient space in target buffer) {

level is also used to speed up some operations, although it is not  copy |eaf basic (leaf):
essential for the algorithm. With this information, it is now possi-  leaf = leaf->next;
ble to build up a stack for eadbasic block(contiguous entities }
which can be transferred in one copy operation), describing therigyre 6. Top-level loop of the direct_pack_ff algorithm.
arrangement of the data in a very compact way, without losing
information which can be used for the optimization of the copyl'he function find_position is used to resume after a part of
process. For each of the different MPI type constructors (vectdr, large message block was already sent up to position
hvector, indexed, hindexed, struct and contiguous), there is a gpde_offset . It also uses the ff-stack information of the
cial way to place the information on the stack. datatype and completes in a maximum time of O(N) + O(D),
3.3.1 Building the stack where N is the number of basic blocks and D the maximum depth

, of the datatype tree.
A suitable data structure to store and access the type constructi®fe girect pack_fialgorithm itself is implemented in

information is a list of stacks, because it can be traversed in a nggﬁy leaf basic . This function copies the data for one leaf in

recursive manner (for a detailed description of this concept $gg gatatype tree by evaluating the repeat pattern stored in the cor-
[12]). These stacks are build up when committing the datatype, 3@,nding stack. On the receiving side, the same function is used
it is not exactly 'on the fly’. But as the memory consumption gf;st py swapping the direction of the copy operation. This new
the stacks is very low, it can be tolerated for an even faster pacKfigtking algorithm has two main advantages over the old recursive
operation. When committing a new datatype, a list is added to fig;|ementation. First, it replaces the time consuming repeated
internal structure. This list represents the datatype as it holds @B, rsjve transversal of the datatype tree by two nested loops with
item for each_ !eaf. This item consists of_the contiguous size of tBﬁIy simple stack (array) operations. Second, it is able to copy
leaf, the position where the first block is to be found in the USBLia| blocks of arbitrary length within the data structure. Now it

buffer and the stack describing the repeat pattern. is possible to pack directly into the remote shared memory, avoid-
FE Datastructure merging FF Datastructure ing two copies into local buffers and thus speeding up communi-

st i — — : — — cation between nodes.
" list_| contig_size=4 contig_size=1 }_| leaf_list_| contig_size=4 H contig_size=5 }_|
pos=0 pos=6 pos=0 pos=6 It must be noted that the memory accesses offilext pack ff

Stack Stack Stack Stack . . . . .
aaop_| exena oterl | sockop  sakop,_| exen e algorithm are no longer perfqrmed Wlth strlctly_ increasing
Ta=s Szt T B beant ss T addresses for datatypes with differently sized basic blocks. To

po— l/ edent=5 Stack for Stack for avoid cacheline thrashing in these cases, the amount of data cop-
ol | onbe | oot INT CHAR ied in one handshake cycle of thendez-vous protocdksee [7])

=16 | Sy | S - B should be kept below the size of the 2nd level cache. This can eas-
courzn couni=n | et it oo, sve= 5 ily be assured by setting the protocol parameters accordingly. On
Stadk for Stack for the other hand, thelirect_pack_ffalgorithm avoids cache pollu-

Figure 5. Internal datatype representation (of the type tion as it does not perform any local copy operations.

given in figure 3) with  direct_pack_ff -Algorithm 3.4 Performance Evaluation
After the stack for a leaf is built, it will benergedit often is pos-  For every communication channel with a non-zero startup
sible to build up larger blocks of adjacent basic blocks. Additiotatency, transfers of smaller blocks are less efficient than transfers
ally, stack items with a replication count of 1 which are not thef big blocks. To evaluate the influence of the blocksize, we would
only element in the stack can be deleted as they don't represeegd to do tests with increasing blocksizes. The complexity of the
any effective replication. Figure 5 shows the application of thiatatype should have little influence on the performance of our
algorithm to the vector-of-structs datatype given in figure 3.  optimization, since the algorithm is generic. However, we wanted
3.3.2 Sending non-contiguous data to verify this, too. Therefore, we designed a micro-benchmark

When performing a send operation with a non-conti uononc:ontigwhich transmits a simple single-strided vector datatype.
P 9 P 9UOURis blocksize of this vector is increased from 8 byte (a single



double element) up to 128 kiB throughout the test The stridéion which needs a matching send operation to succeed. However,
between two blocks is twice the blocksize, creating an equal-sizaeral application areas with irregularly distributed data (e.g.
sequence of data and gaps in memory. Teneric and the sparse matrices) or which require dynamic load balancing with
direct_pack_fftransfers are compared, with the bandwidth of astrongly varying task sizes (e.g. in computational chemistry) are
equivalentcontiguousdata transfer as reference. Each transfaard to implement with this model of communication: to enable
transmits the same amount of data, which is 256kiB for this casgbitrary access to local data by remote processes with two-sided
communication, all processes need to repeatedly perform global

120 A ™ S

b . y -4~-X---e--f-{‘f-::----,‘.-‘z>:---4;‘%7‘«;-‘,-; computation or poll explicitly for incoming requestRemote
10090 """""""" Rz memory acceséRMA) would make these accesses much easier.
3 & 1 The MPI-2 standard has defined RMA ase-sided communica-

1 tion in which all parameters for a communication are supplied by
] one process only

o]
o

\XQ

4.1 MPI-2 One-Sided Communication

60 b
o ﬁ i The concept of one-sided communication as defined in the MPI-
L2 o—o SCI: generic

oo SCI. direkt pack_ff | | 2 standard is based amindows.A window defines a contiguous
v -~ SCI: contiguous | memory area of each process in a group which is made accessible
20] e e ok to all other processes of the group. The process may have allo-
L -+-- shmem: contiguous | | cated this memory area in a random way; however, MPI-2 defines
Y Y Y S A a special memory allocation function to let the MPI library allo-
16 32 64 128 256 512 1k 2k 4k 8k 16k 33k 66k 131k . . . . . .
contiguous blocksize [bytes] cate memory with special attributes to increase communication

Figure 7. Performance of non-contiguous data transfers in performance. Once a window has been created, the_ data within
SCI-MPICH (generic vs. direct_pack_ff ) for inter- and intra- (located at thearget processjnay be accessed by anyigin pro-

node communication, using SCI and shared memory cessvia three functions:
* MPI_Put : move data from the origin to the target (write access)

The results given in figure 7 show that the bandwidth for nog-pp|_get : move data from the target to the origin (read access)
contiguous transfer using trairect_pack_fftransport technique . yp|_accumulate : move data from the origin to the target and
approximates the bandwidth for contiguous transfers, and alreadyompine it with the existing data at the specified location.
reaches 90% of it for blocksizes of 128 byte. It delivers alreadyifferent synchronization and consistency schemes can be used
twice the bandwidth of the generic algorithm for a blocksize of 1§ coordinate accesses of multiple origins towards one target and
bytes and above. Only for the case of 8 byte-blocksizes, Respecify the point in time in which the transaction are visible to
generic technique proves to be faster for inter-node communigg- other processes. These relaxed consistency schemes allow
tion, due to the relatively high latency of remote memory accessfhlementations to optimize transfers by delaying and possibly

with 8 byte granularit. . athering multiple requests up to the synchronization point.
Interestingly, the performance of the non-contiguous transfer

with direct_pack_ffria shared memory can surpass the bandwidth2 Issues with Single-Sided Communication on SCI

of the equivalent transfer of contiguous data. We have observeg e g its nature as a memory-coupling interconnect, SCI is well
this not only on the Pentium-Ill platform used for the testingiieq for efficient single-sided communication. However, some
above, but also for a Sun UltraSparc I1. The block sizes for whiGBgyictions need to be taken into account when implementing
non-contiguous transfer is faster than contiguous transfer are gjp|_» single-sided communication on top of SCI.

ferent on these two platforms, but the effect is fully reproducibIeFirst' with SCI as it can be used in commodity clusters by PCI-
We suspect that dqe to the different access pattern of _the_st 1 adapters, only parts of the address spaces can be shared
storage used by thairect_pack_ftechnique, the cache utilizationyenyeen processes for direct remote access. Usually, the memory
can improve for certain blocksizes. This assumption is based @ ihese parts (thehared regionsmust have been allocated via
the fact that this effect does not occur for blocksizes bigger tha{l sc| kernel driver. For this purpose, the MPI-2 memory alloca-
the 1st or 2nd level caches. A detailed survey is beyond the SCQB8 functionMPI Alloc mem() has been implemented to allo-

of this paper, considering the marginal effect this behavior hasdfye memory from such shared regions. Recent developments for

practice. the SCI driver will make it possible to dynamically use arbitrary
4. One-Sided Communication user-allocated memory regions for r(_emote access via S_CI [13]. In
_ _ ~_any case, a complete implementation needs to provide remote
~The MPI-1 standard does only define two-sided communicatiqgscess for arbitrary memory regions, shared or private. On the cre-
in which every communication is made up from a receive opergton of a window for single-sided communication (MPI-2 call
MPI_Win_create ), SCI-MPICH remembers which parts of the
1. This can be controlled by specifying a minimal block size for the global window are SCI shared memory and thus can be accessed
direct_pack_ff algorithm; we have set this to zero for this experiment directly. Accessing d_ata from such areas can be done trz_insparently
to do a full comparison. by the CPU, potentially followed by #ad or store barrier to

bandwidth [MiB/s]

IS
(=)




ensure the completion of all ongoing transactions (which meatalls. All processes synchronize after having posted all communi-
that the data has arrived at the destination). To access the remeation calls by callingiPI_win_fence .
ing parts, internal control messages in conjunction with a remotge, i create (... winsize, ..
interrupt are used to invoke a remote handler on a process {® (increasing values of access_cnt) {
accept or deliver data using the standard transfer protocols (so-ffset=0 _
calledemulationbecause the direct access is emulated). i cacnog o Sizect(dataype)
Secondly, the bandwidth for remote read access via SCI is muchtime = MPI_wiime()
lower than for remote write (see figure 1). This means that direct while (offset + access_size < winsize) {
reading will only be effective up to a certain amount of data, from ?ﬁigiegfi’;‘;‘;smde pariner ., offset, access._ent, )
which on a so-calledemote-put in which the target process
writes the data into the origin process’ address space, will be MPLWin_fence(..)
faster. Such aemote-putis also triggered by the target process, time = MPI_Wme() - time
calling a remote handler at the origin process as described above.
The required mutual exclusion for passive and active target syn-  Figure 8. Pseudo-code for micro-benchmark  sparse

chroniza_tion (sge below)_ s performgd Vi‘.”‘ shared memory I(?Ckéther synchronization techniques could also be used, but due to
and barriers, using techniques described in [14]. These technlq{.h%s

. . L . collective nature of the operation, active target synchronization
provide a very low latency for scenarios with little contention. F L appropriate, and the fence-synchronization causes the least

large-scale clusters and contention, other distributed lOCkiBQerhea&I Depending on the implementation, the required com-
mechanisms based on control messages will probably perf nication operations for each communic,ation call may be

better. Generally, access patterns with lock contention (multi 8Iayed until this synchronization point. The pseudo-code in fig-

grocesieslgobmpetlr_\g (;o?tmuom:sly to write Into one process Wlike 8 illustrates this benchmark. For our experiments, we used a
ow) should be avoided for performance reasons. stride of 2, which means after each data element, a gap of the same

The results of this benchmark, expressed as latency for each

The evaluation of the performance of MPI-2 one-sided commgsmmynication call and overall bandwidth for all accesses, are
nication is difficult because neither recognized application benctown in figure 9 for two processes located on distinct nodes.
marks nor micro-benchmarks do exist. Also, for microgq gata directions, get and put, are performed with the commu-
benchmarks, many different acceptable performance metrics fl0tion window located irshared SCI memory (direct remote
exist du@T to_the various con3|§tency modes in MPI-2 O”e_'s'dggcess possible) or jorivate process memory (which means that
communication. Accesses to windows need to be synchronized,i <5 is performed via message exchange).

MPI'Z_ for two reasons: . The results for the bandwidth with direct access to remote SCI
¢ Avoid race conditions bet_ween concurrent accesses of d'ﬁer%mory show a relatively low bandwidth for small access sizes,
processes to the same window. somewhat below the raw SCI performance as given in figure 1. We
* Letthe MPI library know when accesses start and when they &g pected the strided access to be the reason for the problems,
due to have completed to allow for optimizations like gatheringpich proved to be true after we evaluated the performance of
multiple small accesses into a single large access. strided remote write access by another (low-level) benchmark
To satisfy the requirements of different data access scenarigich performed remote writes with various access and stride
MPI-2 defines three synchronization techniques, based on two dies. The numbers we got bthrough this test show a strong depen-
ferent models, which the application designer can choose fromgency of the effective bandwidth from the stride of the accesses,
* active target both processes (source and target of the tra”S(%{rying between 5and 28 MiB/s for 8 byte access size, or 7 and
operation) are explicitly involved in the synchronization. Thiggs \jig/s for 256 byte access size. The values for strides which
can be achieved either by using a barrier-like operatioier the maximum performance are multiples of 32, which is
MPI_Win_fence or by defining exposure (at the target procesfe sjze of the write-combine buffer in the CPU. The reason for
via MPI_win_post = andMPI_Win_wait ) and access epochs (aihe sensitivity of the performance to the stride is the userite-
the  origin  process  via MPI_Win_start and  combining for accesses directed towards the remote SCI
MPI_Win_complete ). _ _addresses, imported via the PCI bus. The write-combining buffer
passive target the origin process acquires a lock (Vigyihe pentium-Iil CPU is 32 bytes big, and does not perform well
MPI_Win_Lock ), guaranteeing exclusive access for a windoyy, mis aligned accesses. Disabling the write-combining avoids

located at the target process. The target process does not {gkeperformance drops, but lowers the overall bandwidth about
any action. 50%

We have designed a micro-benchmark cabpdrse(see figure e latency foMPI_Get from shared memory is increasing rap-

8) which measures fine-grained read and write accesses to rem@ie \yhich is also due to the strided access pattern. The spike for

memory as they are likely to occur in sparse matrix operationgcessing 3 elements (24 bytes) is reproducible and could not yet
With a fixed access size and a stride bigger than this size (to create

non-con,tlguous accesses), e_aCh proc_ess iterates through a”Oth‘i.r For the given benchmark, the performance for exposure/access epoch
process’ part of the global window usingPI_Put or MPI_Get style synchronization is nearly identical for the SCI platform.




1000, - - S - ware support for strided memory transfers. An library-internal
optimization for the handling of non-contiguous vector types is
presented in [21]. However, direct packing including communica-
tion (to avoid local packing) is not performed in either case.

[22] mentions the possibility of optimizing non-contiguous
datatype communication with hardware support, but no results of
. such an optimization have been published.

e A quite complete, but slightly outdated overview of performance
e for non-contiguous datatype communication is given in [9]. It

100, Qs o

latency [ps]

i — SClI get private
100 - SClI gutgrivate shows that no MPI implementation on any interconnect could
S SRk S deliver reasonable performance for the non-contiguous case, com-
3 1 pared with the contiguous case. Our performance evaluation
I shows that this has not changed very much.
107 — — T S Also for other platforms, like NEC SX-5 or IBM SP2, the results
number elements [MPI_DOUBLE] published in [24] show a significantly reduced performance for

non-contiguous datatypes opposed to the contiguous equivalent.
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5.2 One-Sided Communication

100,0] e
Much more work has been done regarding the implementation of

/ one-sided communication because it is an obvious characteristics
of an MPI implementation to support one-sided communication or

T T T
1 o !

2 100 E not. Many vendor MPI implementations (like SGI, Cray, Hitachi,
g o ] HP, IBM) support one-sided communication using the custom
é [ 1 interconnect of the respective machine, but very little information
3 ' e p:z:: on implementation and performance is publicly available.

WOp . SO et hared The MPI implementation for the NEC SX-5 features one-sided

- SClput shareg communication as described in [16]. Like an SCI-connected clus-

ter, the SX-5 knows global shared memory and process local
N A R R N R I memory. For large data blocks, the one-sided communication via
"1 8 64 512 33k 262k global shared memory is considerably faster then via process local
number elements [MPI_DOUBLE] . . . . .
memory, especially when communication is performed with more
Figure 9. Performance of MPI_Get() and MPI_Put() in SCI- than one partner in a single synchronization phase. In [15], the
';g;!?;érs]é’;ii tt”;go'é’ae:gnggk' strided access) SX-5 implementation of one-sided communication has been
‘ ’ ported to a SMP-cluster with VIA [25] communication mecha-
be specified. The latencies for accessing remote private memeigms, which only features write-access to remote memory. Due to
are high due to the required signalling of the remote process ahd required explicit synchronization, one-sided communication in
the message exchange involved. Signalling could be omitted fas@th of these implementations has considerably higher latencies
polling remote thread, but this is would only increase benchmatkan the equivalent two-sided send-recv construct.
numbers; real applications would probably suffer even highef17] and [18] describe the implementation of one-sided commu-
latencies. nication for generic interconnects (including TCP/IP and shared
The bandwidth numbers for accessing remote private memaengmory), SMP shared-memory and a combination of both. The
and reading remote shared memory become very similar for bigsults show that only for the specialized shared-memory imple-
ger access sizes as they are all performed via message exchangentation, one-sided communication can achieve lower latencies
. than the equivalent two-sided communication. It must be noted
>. Related Work & Performance Comparison that the authors used ping-pong communication without synchro-
A large number of MPI implementations does exist, freely availization to evaluate the performance, which is not at all a typical
able open-source implementations as well as undisclosed verg@nmunication pattern of one-sided communication.
implementations. The internal architecture of some open-sourdd [19], the implementation of one-sided communication for
implementations is documented to a certain degree, while tdgrinet-connected SMP nodes is presented. This is not MPI-2,
internal architecture of most vendor implementations is not pubdt a custom APARMCIwhich can operate next to MPI (or serve

T T T T TITIT
Lo i

licly documented in most cases. to implement MPI-2 on top of it). The Myrinet interconnect is
) o used via the GM API [20]. As with Myrinet, remote memory
5.1 Non-contiguous Datatype Communication access does always need to be performed via the DMA engine of

The handling of non-contiguous datatypes is rarely documentgg PCI adapter, the latency is considerably higher then with SCI.
at all. [12] describes an optimized packing algorithm, especiailj?® authors have put a lot of effort into the implementation to
well-suited for the NEC SX-5 parallel vector computer with hardncrease the performance, especially for non-contiguous data.



Machine Interconnect MPI OsC| ID 400 T T T T
_ BT
Cray T3E-1200 custom Cray yes C 200} S o o
Sun Fire 6800 Gigabit Etherne{ Sun HPC 3.1| no? | F-G B S . @/frr A \?’{
24-way SMP, 750 MH] shared memory 64 bit PCl | yes | F-s § -~ g@gfz
Pentiumlll Dual SMP SCI MP-MPICH| vyes M-S % = Efé;ngi
800 MHz, 64 bit PCI| shared memoty 1.2.1 betp yes M-s§ %Eiﬁ;
Pentium Il Xeon fast ethernet | LAM6.5.4 | yes | X-f Méfﬁc
Quad SMP, 550 MHz shared memory yed | X-s S
Pentium Il Dual SMP|  Myrinet 1280] SCore 241l o S-M 6 6T e S 1 9k 4% 6K 6k Sk ok 1aik
400 MHz, 32 bit PCI| shared memoty no S-s

Figure 10.Non-contiguous datatype communication: band-
width for strided vector (nc) and equivalent contiguous
vector (c)

a. Myrinet installed, but not yet available (does also not support
one-sided communcation with Sun MPI)
b. only MPI_Get(), MPI_Put() deadlocked
Table 1. Cluster platforms for evaluation of MPI performance memory communication, while it does not yet support one-sided
) ) ] ) communication for inter-node communication, neither via Ether-
However, the peak bandwidth is not reached until the size of thg; nor via Myrinet. Cray T3E also shows good performance
blocks to transfer is bigger than 700 kiB - a lot of performancgyich is in the same range as the performance of SCI-MPICH for
degradation is due to the slow registering of DMA memory by th§c| remote shared memory. LAM-MPI is one of the few freely
GM driver. If registering is omitted, two additional memory Copy,yajlable MPI implementations to offer one-sided communication.
operations are required to transfer data from and to pinned MexR-expected, it has very high latencies and gives a maximum of
ory for DMA. Adapting this library to the SCI interconnect, as iti§ 5 \jig bandwidth via fast ethernet. Surprisingly, the performance
planned by the authors, will allow interesting comparisons. ¢ the shared memory implementation is a little bit lower than
SCI-MPICH via SCI. One-sided communication using a VIA-
) ] o interface as presented in [15] shows significantly higher latencies:
The lack of hard information on the communication characterigs; 1024 bytes, it's about a factor 3 (compared with one-sided
tics for non-contiguous datatypes and one-sided communicatinmunication via messages on SCI) up to a factor of 15 (com-

made it necessary to do evaluate them ourselves. We had acceggfigd with direct SCI put) slower than using the presented solu-
a number of MPI platforms, including an MPP and clusters of 24y, via SCI.

way, 4-way and 2-way SMPs, connected via Myrinet, SCI, Gig
bit Ethernet or Fast Ethernet (see table 1). The overview table li F ;
the hardware platform, the interconnect used for message pas I N T —————
and the MPI implementation (and whether it supports one-sid  '%°° ' e
communication). Each configuration is given an ID for easier re
erence in the following figures.

We performed the non-contiguous benchmark for the simg
vector type on all of these configurations. .

The results are shown in figure 10 and show that obviously nc
of the tested MPI implementations has a consistent technique
optimize non-contiguous data transfers. The Cray T3E reaches
efficiency of about 1 for blocksizes between 8 and 32 kiB, but h
a very low efficiency for very small (< 4 kiB) and big (> 32 kiB) .
blocksizes. Sun MPI for shared memory shows a very consti 0,1l ol ol ol el

_ . . . 1 64 512 4k 33k 262 k
efficiency, which jumps from 0.5 to 1 for blocksizes of 16k an number elements [MPI_DOUBLE]
above, which indicates that a simple optimization has been imp Figure 11.Performance for single-sided communication in
mented. However, no information is available concerning this feasparse micro-benchmark

ture [23]. All other implementations seem to use the generic pack-

and-send technique for intra- and inter-node communication a&’e have compared the scaling behavior for one-sided communi-
well. cation on all of the platforms with hardware-supported (shared

The configurations supporting one-sided communication also fAgMOry; SCI or Cray interconnect) one-sided communication as
the sparsemicro-benchmark with the results given in figure 11. illustrated in figure 12. As expected, the shared-memory platforms
Obviously, Sun MP!I delivers very good performance for shar&fhibit a much higher bandwidth for fine-grained accesses. How-

5.3 Performance Comparison
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of concurrent data transfers running over each segnsegnfent
utilization). The topology of the cluster used for these experiments
is a single ring of 8 nodes. For the experiment above, we have cho-
sen an average scenario in which each segment is utilized by 4
transfers. The maximal utilization of a segment with this topology
is 8 transfers, while the minimal utilization is of course a single
transfer from one node to the next one. The results for these two
extremes are given in table 2. They show that for the minimal seg-
ment utilization, the bandwidth per node remains constant at 120
MiB/s, although the overall traffic on the ring rises due to flow
control packets sent back for each data packet received by a node.
With a segment utilization of 8, the per node bandwidth declines
as the ring becomes saturated. To check for saturation effects, we
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R I T R T T P calculated the relative ring load (output traffic of nodes relative to

umber efements [MP1L_DOUBLE] nominal ring bandwidth) and the ring efficiency (ratio of accumu-

Figure 12.Scaling of one-sided strided communication lated bandwidth to nominal ring bandwidth). The efficiency
(sparse benchmark, MPI_Put() ) on platforms with hard- 79.3% for a load of 152.5% indicates that little congestion is
ware-support for this operation. On the Xeon platform, present.
SCI-MPICH is used for intra-node shared memory commu- However, it is obvious hat the link bandwidth needs to be
nication. Bandwidth shown is the mininum of the per-pro- increased for ringlets with more than 6 nodes. We did do so by
cess maximum bandwidths achieved. increasing the link frequency up to 200 MHz (by software), result-
mg in a nominal link bandwidth of 762 MiB/s. The measured
B dwidth for the worst case scenario (8 sending nodes with seg-
ent utilization of 8) increased linearly with the ring bandwidth

erformance d hiah-cost) shared-memory desi of th jcating that this is t.he nex_t stc_ap to go for inpreased scalability.
performance (and high-cost) shar fy cesigns © L‘E“shows that for this application, the SCI interconnect offers

Fire system scale better, but even it's bandwidth declines notable :
for more than 6 active processes. On the other hand, the distﬁwj'lar performance for commodity clusters as the custom Cray

uted memory architectures with hardware-supported remote mdperconnect does deliver in the T3E. With the increased link fre-

ory access scale significantly better. The Cray T3E keeps fency, a limit of 8 nodes per ringlet seems reasonable, which

uneven, but regular bandwidth characteristics constant for up toH¥Fs a 512 nodes system when using 3D-torus topology.

processes. _ _ ~ 6. Conclusions & Outlook
The SCI interconnect has a considerably higher bandwidth for

single-element accesses and a constant peak bandwidth of 199" results show that global shared memory as implemented by
MiB/s for up to 5 nodes. For more than 5 nodes, the single sef| offers possibilities for optimization of cluster communication
ringlet used in this tests does not supply sufficient bandwid®$ demonstrated for the MPI implementation SCI-MPICH. Such
using the default link frequency of 166MHz, the ring bandwidth #&chniques are not easily possible with cluster interconnects not
at 633 MiB/s. and the peak bandwidth declines accordingly doHPPOrting transparent load and store operations. However, it once
to 71.8 MiB/s for 8 nodes. However, as SCI is based on mdep@fgain became clear that SCI as implemented for clusters (via the
dent point-to-point connectionsdgments)the effective band- PCI bus) isnot shared memory, but 1/0-access which is very sen-

width for such a communication scenario depends on the numpiive concemingiow data is passed onto the bus and from there
onto the PCI-SCI adapter. Proper alignment is very important,

which sometimes may severely limit the efficiency of transparent
Nodes remote accesses, if not intercepted by software. The performance
p.node| acc. | p.node| acc. load eff.  numbers achieved are already satisfying, although some aspects as
12294 | 491.8 | 120.70| 482.8| 76.3% 76.3% the MPI_Put() on shared memory leave room for improvement.
An interesting side effect is that all of the work presented for the
SCI interconnect can equally be applied to intra-node shared
120.88 | 725.3 | 97.75| 586.5| 114,4% 92.7% memory communication thanks to the abstraction of the SMI
12066 | 8446 793 555.1| 1335% 87.7% library (Shared Memory Interfac6]), as shown for the perfor-
mance measurements.
120.83| 966.6 | 62.78 | 5022 152.5% 79.3% |t will be interesting to evaluate the possibilities of non-contigu-
ous data transfers with DMA-based interconnects. This can be
Table 2. Scalibility for different segment utiliz_atio_n Iev_els (the done with the DMA-engine of the PCI-SCI adapters, but also with
p. node and acc. columns show the bandwidth in MiB/s). The ,Smart" interconnect adapters like Myrinet. Also, true single-sided
eff. column gives the effiency of the utilization of the avail- communication (without a software handler at the target process)
able bandwitdth for the worst case setup (link saturation). . . . . . .
should be possible with such interconnects. It is also included in

ever, platforms with an inferior memory system design like the
way Xeon SMP scale very badly for coarse-grained accesses
deliver a bandwidth below the SCI-connected system. The hi

Active |1 transf. / segmen 8 transfers / segment

120.69| 603.5 | 115.80| 579.0 95.39 91.5%

[ N O O] &




the VIA specifications, but since it is optional, it is rarely imple-
mented. It probably is the higher complexity involved in such &0
solution which has hindered implementations so far.

Generally, if synchronization is considered, one-sided communi-
cation does usually not provide lower latencies if compareti]
directly with two-sided communication using micro-benchmarks.
However, all these numbers do not, and can not, include the poten-
tial synchronization delay included when using two-sided commi?
nication in a global exchange phase. Because the communication
models are so different (one-sided vs. two-sided and also the dif-
ferent one-sided synchronization schemes), ping-pong-like com-
parisons are not really meaningful, but can give an upper limit Bf!
performance. Only comparing the performance and algorithmic
complexity of applications solving a given problem with one- Q4]
two-sided communication will allow to decide for one or the other
technique. Such benchmarks are not yet commonly available; but
we expect SCI to support these communication models well.

The complete source of the software packages discussed in s
paper, including the benchmarks used, is freely available at [8].
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