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Abstract

Collective operations are an important aspect of the cur-
rently most important message-passing programming model
MPI (Message Passing Interface). Many MPI applications
make heavy use of collective operations. Collective oper-
ations involve the active participation of a known group
of processes and are usually implemented on top of MPI
point-to-point message passing. Many optimizations of the
used communication algorithms have been developed, but
the vast majority of those optimizations is still based on
plain MPI point-to-point message passing. While this has
the advantage of portability, it often does not allow for full
exploitation of the underlying interconnection network. In
this paper, we present a low-level, pipeline-based optimiza-
tion of one-to-many and many-to-one collective operations
for the SCI (Scalable Coherent Interface) interconnection
network. The optimizations increase the performance of
some operations by a factor of four if compared with the
generic, tree-based algorithms.

Keywords: collective operations, pipelining, overlap-
ping, MPI, SCI

1 Introduction

The currently most important API definition for paral-
lel programming using the message-passing paradigm is the
Message Passing Interface(MPI [10, 11]). MPI offers nu-
merous variants of the basic point-to-point message passing
functionsMPI Send andMPI Recv . Additionally, it con-
tains a wide range of so-calledcollective operations(CO).
They are designed to performone-to-many(1:N), many-to-
one(N:1) or many-to-many(N:N) data distributions. Typi-
cal examples of such operations areMPI Bcast , which is
a 1:N multicast, andMPI Reduce , which performs a N:1
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data gathering with simultaneous combination of each pro-
cess’ data vector into one result vector. An example for an
N:N operation isMPI Allreduce which can be described
asMPI Reduce followed byMPI Bcast , using the result
of the previous reduction.

A CO for a specified “communicator” (group) ofP pro-
cesses can not complete for allP processes unless all of
them have invoked CO. This inherent characteristic of all
collective operations allows for optimizations which are not
possible for point-to-point communication. The active par-
ticipation of all processes involved in the CO makes it possi-
ble to coordinate the data transfers between the processes to
make optimal use of the underlying communication system.
This mostly concerns the interconnect, but also other com-
munication resources like shared memory on nodes running
more than one process.

In this paper, we present optimizations for the COs men-
tioned above for SCI-MPICH [22]. SCI-MPICH is an
MPI implementation for the SCI interconnect [7] which
is utilized via the SISCI API [19, 2]. The optimizations
constitute a data-transfer protocols which is based on the
pipelining principle. Additionally, they make use of con-
current intra- and inter-node data movements and computa-
tion which leads to a speedup of more than 4 compared to
the generic tree-based algorithms. An overview of related
work in this area is given in Chapter 2. The basic aspects
of intra-node communication using SCI are shown in Chap-
ter 3. Chapter 4 explains our optimization approach and
derives analytical models from the communication opera-
tions. The results of these models are compared with some
experimental results in Chapter 5.

2 Related Work

During the last decade, a much work has been performed
on collective communication in general, and on implemen-
tations of COs in MPI. Mitra et.al. [12] give basic analyti-
cal models of the most common collective operations, with
different algorithms for short and long vectors and consid-
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eration of mesh topologies. Their algorithms contain a vari-
ant of pipelining for long vectors. For short vectors, they
propose an interleaving of communication and computation
(for reduce operations). Their implementation of those al-
gorithms for the Intel Paragon achieved considerable perfor-
mance increases forMPI Bcast and MPI Allreduce
if compared with existing approaches. Despite this early
work, when Luecke [9] evaluated the performance of col-
lective operations on SGI and IBM system four years later,
he found that on each system certain COs did not perform
as well as a reasonable generic algorithm (while others per-
formed better). Likewise, the popular open-source MPI im-
plementation MPICH has just recently integrated a range of
existing generic algorithms for COs to replace the existing
ones and could achieve significant performance increases
on two different platforms [20]. An optimized algorithm
for MPI Reduce andMPI Allreduce , implemented by
Rabenseifner [16], also delivered an increased performance
when integrated into an MPI library for the SCI intercon-
nect [5].

These achievements show that even generic algorithms,
using message-based point-to-point communication, can in-
crease performance if they are carefully adjusted to the
characteristics of an interconnect. However, an even higher
performance can be achieved if special capabilities of an
interconnect are exploited by means which are not accessi-
ble through message-based point-to-point communication.
Fleischmann [3] did so by using direct shared-memory
communication on the Convex, a cc-NUMA SMP system,
considering the different performance levels of local and re-
mote memory. For clusters with message-based intercon-
nects, it is necessary to perform low-level accesses to the
network adapter like Bhoedjand et.al. [1] did for Myrinet
and Petrini et.al. [15] for Quadrics. Both implementations
have limitations, though: for Myrinet, a custom firmware
(Myrinet Control Program) is required, which many user
hesitate to use. For Quadrics, the applicability of the low-
level COs depends on the placement of the processes in the
network. It is not known if Petrini’s work is applied to the
MPI implementation for Quadrics.

Oral and George [13] evaluated different communication
topologies for multicast operations in a two-dimensional
SCI torus. They achieve the best results for with multiple
sequential trees along one dimension of the torus. How-
ever, they do only consider broadcast operations (no reduc-
tion operations), operate on a lower level than MPI, and do
not use DMA transfers. The completion latency achieved
for a broadcast of 512KB across 8 nodes is about twice as
high as the performance of the approach presented in this
paper. The hardware configuration of the test systems is
identical to the setup used in this paper, except for slightly
faster CPUs.

Sanders [17] theoretically describes a communication al-

gorithm termed ”fractional tree” for broadcast and reduction
operations. It is an hybrid of a linear pipeline and a binary
tree and thus is suited to alleviate the scaling problem of the
linear pipelining which will show up with the performance
modelling in chapter 5.3.

3 SCI Communication

An SCI interconnect [7] between a number of nodes is
based on PCI-SCI adapter boards (PSA [8]) which commu-
nicate via a switched fabric of point-to-point connections.
This way, the fabric can have virtually any topology. Typ-
ical topologies arestar (using a central switch) andk-ary
n-cubes(typically two- or three-dimensional tori).

The PSA boards contain a PCI-to-PCI bridge and trans-
late accesses to certain parts of the node-local PCI address
space into accesses to the global SCI address space of all
nodes. Likewise, a PSA also translates accesses to the
global SCI address space (which come in as packets via the
switched fabric) back to the local PCI address space if the
local PCI-SCI address mapping indicates this. Furthermore,
packets are routed through the PSAs on the fabric on their
way from the source to the destination node.

Using a current-generation SCI interconnect, commu-
nication between processes on different nodes can be per-
formed in two different ways:

PIO By mapping remote memory segments into the local
process address space, it is possible to write or read
from remote memory the same way as it is done from
local memory. This means, the CPU can perform arbi-
trary load and store operations as the mapping is fully
transparent. However, the latency for the accesses to
remote memory is higher than for local memory. Next
to this, different consistency semantics apply for re-
mote memory due to additional buffering on the PCI-
SCI adapters and the lack of cache-coherence for re-
mote memory. This requires explicit memory syn-
chronization like flushing local write buffers (flush),
reloading local read buffers (load barrier) or waiting
for completion of outstanding write operations (store
barrier) to ensure certain memory states.

DMA The PSA has an integrated DMA engine which al-
lows for data transfers with very little CPU activity.
Once the description of the desired transfer is loaded
into the DMA engine, all data transfers are executed
independently from CPU activity. For DMA into re-
mote memory, the remote memory segment does not
need to be mapped into the address space, but only
needs to be “connected” as the transfers are based on
physical (not virtual) addresses. Both the source and
the target buffer need to be allocated via the SCI driver,
or must have beenregisteredfor SCI usage1.



All benchmarks in this paper were performed on a clus-
ter of 8 identical nodes. Each node has two PentiumIII
CPUs, 512MB of RAM and a ServerWorks ServerSet III-
LE chipset, which offers a64 Bit, 66 MHz PCI bus.

Benchmarks for this platform show that the minimal la-
tency of PIO transfers of1.5µs (for a 4 Byte write) is
much lower than for DMA which starts at about30µs
(for a 64 Byte write). Likewise, the bandwidth for PIO
reaches 90% of peak bandwidth for blocksizes less than
512 Byte. With DMA, a blocksize of128 KB is required
for 90% of peak bandwidth. However, the peak bandwidth
of PIO transfers (170 MB/s) is lower than for DMA trans-
fers (250 MB/s). Additionally, the bandwidth of PIO trans-
fers depends on the implementation of the interface between
CPU bus and PCI bus (the “chipset”) and also on the mem-
ory access performance. The latter leads to a performance
decrease for blocksizes beyond128 KB (50% of the CPU
cache size) on our platform. On more recent platforms, a
non-decreasing peak PIO bandwidth of260 MB/s has been
observed. The DMA bandwidth, in contrast, is independent
from the mentioned interface, CPU performance and any
cache effects.

4 Employing Efficient Pipelining

Pipelining is a well known technique to reduce the pro-
cessing timeT ofNt tasks which have to pass a numberNs
of sequential stages with identical processing latenciesls

2.
Naive sequential processing would lead to

Tseq = ls ·Ns ·Nt

with only 1 active stage at a time. Pipelined processing re-
sults in

Tpipe = ls · (Ns +Nt) (1)

for total processing time, with more than one (up to all)
stage being active except for the very first and last process-
ing step. In (1),Ns identifies the stages which fill up the
pipeline, whileNt stages are processed in parallel. For
pipelining a single task (like broadcasting a given amount
of data), it is necessary to split it into sub-tasks which can
be processed independently. In this case, the impact ofls
increases as it does not occur only1 ·Ns times, butNt ·Ns
times. Asls also contains a certain amount of overhead (the
communication startup latency), this may result in reduced
performance.

Therefore, when COs are based onMPI Send and
MPI Recv , using pipelining is usually less efficient than

1The registeringfunctionality is not yet included in the standard SCI
driver, but only in a development branch.

2If the phases have different processing latencies, the maximal latency
will dominate except for the filling of the pipeline.

using other communication topologies. For maximal per-
formance of collective operations, it is crucial to achieve
high concurrency of all stages. With all stages doing the
same work independently from each other, this can also
be achieved by using other processing schedules, especially
tree-oriented topologies. A binary tree has the advantage of
reaching maximal communication parallelism inO(ld(N))
instead ofO(N) steps. Additionally, the total number of
communication steps is lower than for pipelining. The
bandwidth of a 1:N- or N:1-style CO for a vector of size
Dv can be defined asBCO = Dv

TCO
, with TCO being the

time difference between the first call and the last exit of the
collective function by any process involved.

This shows that the applicability of pipelining for the im-
plementation of COs is limited. However, with the low-
latency communication characteristics of SCI it is possi-
ble to define communication protocols in whichls contains
very little overhead. Together with concurrent intra- and
inter-node communication, efficient pipelining is possible
as we will show below.

4.1 Generic Principle

To pipeline a single CO, the vector on which this opera-
tion is to be performed needs to be split intoNt parts. Each
of these parts should be transfered with minimal overhead
to ensure efficiency of the pipeline. This requirement also
applies to the flow control needed to avoid data corruption.
With SCI, the most efficient data transfer betweenP = 2
processes on remote nodes is to use aring buffer of Dring

bytes of SCI shared memory at the receiving process. The
sending process writes data into the ring buffer,Db bytes
at a time. The receiving process reads the data with the
same granularity. The flow control is realized via two addi-
tional locations in shared memory which are updated by the
processes according to the position in the ring buffer up to
which they have written or read data. This technique has the
potential disadvantage that only one transfer can be handled
at a time. For COs this is not a problem as MPI does not
allow concurrent COs.

For a pipelined transfer withP > 2 processes, each pro-
cesspj which has to receive data allocates an inbound ring
buffer in its local SCI shared memory and tells processpj−1

how to access this buffer. Once it has received such infor-
mation from processpj+1 (which is the next stage in the
pipeline) for the outbound buffer, it polls the inbound buffer
for data to arrive. Once this data arrives, it processes it lo-
cally as required (i.e. copying it into the local receive buffer
that is provided by the user) and writes another block of
data into the outbound buffer. Using PIO transfers, these
two operations are serialized. Only when using DMA for
outbound data transfers, it is possible to overlap local pro-
cessing of the data and the outbound data transfer. The next



chapters will explain how this is realized for the different
COs.

The following parameters are required for the analytical
models presented in the next chapters:

P number of processes which take part in the CO
Dv size of vector to be communicated
Db size of data block to be transfered without

flow-control
lPIO(d) latency of a PIO write operation ford bytes

into remote memory
lDMA(d) latency of a DMA write operation ford bytes

into remote memory
lcpy(d) latency of a copy operation ford bytes in

local memory
lcmb(d) latency of a combine computation ford bytes
lsb latency of a store barrier

Each 1:N- or N:1-CO has a root process. For 1:N, it is
the process which owns the data for all processes before
the CO is performed. Likewise, with N:1, it is the process
which receives data from all processes, including itself. For
simplicity, we assume that the root process always has rank
0. A simple rank transformation is required to satisfy this
condition for arbitrary root processes.

4.2 Pipelined Broadcast Operation

From the generic principle, we derived thepcast-
protocol which is explained in Figure 1. It illustrates an
MPI Bcast for P = 3 with processp0 being the root pro-
cess sending its data top1 and p2. They have allocated
ring buffers of sizeDring , divided intoNb = Dring/Db

blocks. Likewise, the vector will be transfered through the
pipeline inNt = Dv/Db pieces. All pipelined protocols
presented in this paper use not only flow control within the
single pipeline, but also between different subsequent calls
to distinct CO’s. This situation can occur as one process at
the start of the pipeline may already be done with its trans-
missions while other processes at the end are still busy.

We can see thatp0 only needs to send its data into the
current incoming block of the ring buffer ofp1 using PIO
transfers (action 1). The reason why PIO and not DMA is
used for this transfer is that the user-supplied send buffer
would need to bepinnedto use it as a DMA source buffer.
This functionality is not yet implemented in the standard
SCI driver, although experimental work has shown that it is
possible to do this with little overhead [18, 23], and the pro-
tocol is prepared to make use of this functionality once it is
available. p1 in turn has to transfer the data from the for-
ward block (which was the incoming block in the previous
step) into the receive buffer (action 2) using PIO transfers,
too. Concurrently, it forwards the same data top2 , using

s e n d  b u f f e r r e c e i v e  b u f f e r r e c e i v e  b u f f e r

r i n g  b u f f e rr i n g  b u f f e r

p r o c e s s  1p r o c e s s  0  ( r o o t ) p r o c e s s  2

P I O  t r a n s f e r

D M A   t r a n s f e r

f o r w a r d  b l o c k

i n c o m i n g  b l o c k

1

3
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Figure 1. Data flow for the pcastprotocol using
concurrent PIO and DMA transfers

a DMA transfer (action 3). This is the same task for all
pk , 0 < k < P − 1. The last process in the pipeline,p2 in
this example, only needs to copy the incoming data into the
user buffer (action 4).

For thepcastprotocol,Tbcast can be calculated accord-
ing to (1):

Tbcast(Dv ) = (P+
Dv

Db
)·(lDMA(Db)+lPIO(4)+lsb) (2)

4.3 Pipelined Reduce Operations

Similar to thepcastprotocol, therpipe protocol was de-
fined and implemented to perform pipelined reduction op-
erations. The data flow of the reduce pipeline is more com-
plex (relative to the broadcast pipeline) as the data is not
only forwarded, but also modified by each process. This
modification (the combine operation) requires that at each
processpj , 0 < j < P − 1, has not only one, but two active
blocks in its local ring buffer:

combine block: The data contained in thecombine block
is currently combined with the matching block of data
of the local vector, stored in the send buffer.

forward block: The block that is thecombine blockin step
s of the pipeline becomes theforward block in step
s+ 1 and is forwarded to processpj+1 .

Figure 2 shows the data flow of therpipeprotocol forP = 3
processes. The pipeline starts at processp1 which writes
the data via PIO into the current incoming block of the ring
buffer of pP−1 (action 1). At the same time,p2 combines
the related data of its local send vector with the data in the
combine block (action 2), and forwards data from the for-
ward block top0 (action 3). At the end of the pipeline,p0

combines the data from the combine block and its local send
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Figure 2. Data flow for the rpipeprotocol using
concurrent PIO and DMA transfers

vector (action 4) and stores the result in the receive buffer
(action 5).

The transfer timeTreduce of the rpipe protocol can be
determined as

Treduce(Dv ) = lPIO(Db) + lcmb(Db) + lcpy(Db)
+ (P − 2) · (lcmb(Db) + lDMA(Db) + lPIO(4) + lrw )

+ (
Dv

Db
− 1) · (max(lcmb(Db), lDMA(Db))

+ lPIO(4) + lrw ) (3)

The first two lines in (3) describe the fill time of the pipeline
(atp1 , p0 and theP−2 other processes). This time is longer
than for thepcastprotocol as there are nearly twice as many
stages. Additionally, these stages perform two different op-
erations. The remaining lines relate to the overlapped pro-
cessing of the data blocks once the pipeline is filled: only
the maximum of the two times (transfer via DMA or com-
bine operation by the CPU) is relevant.

Closely related toMPI Reduce is MPI Scan , a non-
exclusive prefix reduction. In contrast to a plain reduction,
every processpj will have the combined vectors of all pro-
cessespk , k ≤ j. This operation is also performed via
the rpipe protocol. The only difference is that each com-
bine block is not only forwarded to the next process, but is
also copied into the local receive buffer. Therefore,Tscan

is identical toTreduce except for the addition oflcpy(Db)
to the factor of copy operation latencies for the full pipeline
operation. This results in an execution timeTscan of

Tscan(Dv ) = lPIO(Db) + lcmb(Db) + lcpy(Db)
+ (P − 2) · (lcmb(Db) + lDMA(Db) + lPIO(4) + lrw )

+ (
Dv

Db
− 1) · (max(lcmb(Db), lDMA(Db) + lcpy(Db))

+ lPIO(4) + lrw ) (4)

4.4 Pipelined Global Reduce Operation

A global reduce operation (MPI Allreduce ) can
be performed by callingMPI Reduce followed by
MPI Bcast . In case this is done with the pipelined im-
plementations, two pipeline fill operations will occur. In
contrast, an algorithm as implemented by Rabenseifner runs
“continuously” but without overlapping of combine and
communication operations.

It is possible to define a single-pipeline protocol for
MPI Allreduce by running thepcastpipeline directly af-
ter therpipe pipeline. This would remove one of the cur-
rently two pipeline fill times. However, such a protocol
would either require to pass the data two times through each
node (at the same time) or to buffer the complete vector at
the root. For the first variant, the single DMA engine on the
PSA will be a bottleneck. The second variant seems more
worthwhile, but has not yet been implemented.

5 Performance Evaluation

Firstly, we evaluate the implementation of these proto-
cols and compare the results with the generic algorithms.
We will then evaluate certain characteristics of the pipeline
protocols by applying our models.

5.1 Experimental Results

We have measured the optimized collective operations
by running the Pallas MPI Benchmark3 [14] on the test clus-
ter described above. The topology of the SCI interconnect
used in this cluster is a single ring. However, the topology is
not relevant for the performance of the presented pipelined
data transfer protocols as each node does only communicate
with its direct neighbor. This means that for each inter-node
communication, a different, independent SCI link segment
is used.

For each type of collective operation, we compare the
pipelined version with the generic algorithm found in
MPICH [4]4. The generic algorithms use PIO-based point-
to-point communication and tree-oriented communication
topologies like binary or binomial trees which give a scal-
ing property ofO(log(N)). The results are depicted in
Figure 3 and 4. The charts show the effective bandwidth
per processB for different vector sizesDv and process
countsP . Per default, the pipelined protocols are used for
Dv ≥ 32KB; we also show the results for shorter vectors

3We modified the benchmark to allow a more fine-grained measure-
ment concerning the number of processes and message sizes for which the
tests are performed.

4SCI-MPICH is based on MPICH, version 1.2.0.
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Figure 3. Experimental performance comparison between generic (left) and pipelined (right) collective
operations: MPI Bcast , MPI Reduce and MPI Scan (from top to bottom)



(using the generic algorithm) to see if this threshold is valid
for all COs.

The results forMPI Bcast show that the performance
of the generic algorithm decreases with every new level of
the binary tree used as communication topology (steps at
P = 3 andP = 5). ForP = 8 andDv = 4 MB, a value
of BP=8 = 43, 7 MB/s is achieved. Using thepcastproto-
col, the corresponding performance decreases only slightly
for increasing values fromBP=3 = 103, 9 MB/s down to
BP=3 = 93, 7 MB/s. The performance of thepcastpro-
tocol is higher than for the generic algorithm for all tests
performed, even for small values ofP andDv. Depending
on the vector length, therpipe protocol is observed to be
between 20% and more than 100% faster.

We observe the highest bandwidth values forP = 2 for
both protocol variants. For the generic algorithm,BP=2 '
2 ·BP=3 applies because forP = 3, two instead of just one
serialized transfers of the complete message have to be per-
formed. In contrast, thepcastprotocol performs a pipelined
transfer (in this case, between just two processes) and by
this achieves a bandwidth which is about 10% higher than
for the generic algorithm. The significant performance de-
crease of about 25% for the transition fromP = 2 toP = 3
shows that the bottleneck of thepcastprotocol is not the
first or last process in the pipeline, but the processes which
need to forward the data. This applies if a value ofDb is
chosen which has a lower transfer bandwidth for DMA than
for PIO. IncreasingDb might reduce this effect, but leads to
longer pipeline fill delays. This will be further evaluated by
the results of the models presented in Chapter 5.3.

Finally, the performance ofpcastprotocol increases with
the vector lengthDv. This can be expected from pipeline
processing: the impact of theP pipeline processing phases
for the fill time decreases relatively to the number of the
end-to-end data throughput stagesDv/Db (see (2), first fac-
tor).

The bandwidthMPI Reduce for the generic algorithm
is about 50% of the bandwidth for the genericMPI Bcast ,
but the run of the curve looks similar. This shows that
the amount of time for sending the vector is about equal
to the time needed to combine the two vectors. For the
rpipe protocol, the run of the curve looks different. For
Dv = 4 MB, the bandwidth is reduced by about 15%. How-
ever, forDv < 2 MB, MPI Reduce achieves even slightly
higher performance thanMPI Bcast , with a maximum at
Dv = 1.8 MB. This shows that the overlapping of com-
putation and communication works well. The reason for
the performance decrease for long vectors requires further
evaluation, as it does not match with the general pipelin-
ing characteristics and there is no obvious reason for the
communication or computation performance to decrease for
Dv > 2 MB. The maximal performance ratio between the
rpipe protocol and the generic algorithm is 4 (observed for
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Figure 4. Experimental performance compari-
son of different MPI Allreduce implementa-
tions: generic algorithm, Rabenseifner algo-
rithm and rpipe-protocol (from top to bottom)



P = 8 andDv = 1.8 MB). The average ratio is about 3.
The results forMPI Scan are similar to the results for

MPI Reduce for both protocols. However, due to the ad-
ditional local copy operation, both protocols suffer a 25 to
33% performance decrease relative toMPI Reduce . The
peak performance ratio exceeds 4 forP = 8 andDv =
640 KB: therpipeprotocol achieves70.5 MB/s while only
15.7 MB/s can be delivered by the generic algorithm.

The last CO that was improved via pipelining is
MPI Allreduce which uses both protocols,rpipe fol-
lowed bypcast. In Figure 4, we do not only show the re-
sults for the generic algorithm and the pipelined protocols,
but also include the results for the improved generic algo-
rithm as proposed by Rabenseifner. The numbers for both,
the generic algorithm and the pipelined protocols, reflect
the serialized execution ofMPI Reduce andMPI Bcast
which results in

Ballreduce =
1

1
Breduce

+ 1
Bbcast

.

The results for the Rabenseifner implementation look
differently. As it uses a binary exchange pattern to create a
higher parallelism for the combine operation, it works best
for process counts which are an exponent of 2. For other
process counts, the performance decreases significantly as
extra communication steps are required. Compared with
the generic algorithm using a tree-topology, this leads to
about a 100% performance increase forP = 2n , but to
only slightly better performance for other values ofP . For
P = 2n , the pipelined protocols deliver a performance up
to 33% higher than Rabenseifner forDv > 256 MB. Be-
low this threshold, Rabenseifner’s implementation is about
20% faster. For other values ofP , however, the pipelined
protocols are always faster than Rabenseifner and deliver a
performance which is up to twice as high.

5.2 Comparison with ScaMPI

Next to the comparison with the generic algorithms, it
is worthwhile to compare the new pipelined protocols of
SCI-MPICH with ScaMPI’s performance for the same op-
erations. ScaMPI [6]is a commercial MPI implementation
for the SCI interconnect. We could run a direct compar-
ison on a Cluster of Pentium 4 systems with Intel i860
chipset. This experiment took place in March 2002, using
the most current version of ScaMPI at this time. Due to
space limitations, we can only give the key performance val-
ues shown in Table 1 (the complete comparison is available
at http://www.mp-mpich.de). Although, the test platform
has a low DMA performance of only150 MB/s, it shows
that SCI-MPICH performs better than ScaMPI with respect
to the duration of the operations for this test. The relatively

ScaMPI SCI-MPICH
MPI Bcast 77,4 53,4

MPI Reduce 96,2 44,8
MPI Allreduce 98,1 86,0

Table 1. Comparison of the performance of
ScaMPI and SCI-MPICH (duration of the com-
plete operation in ms for 8 processes and 4MB
vector length)

small performance advantage forMPI Allreduce is re-
lated to ScaMPI’s use of the Rabenseifner algorithm [REF].
However, it has been shown that this algorithm does only
perform well for process numbers2n.

5.3 Results from Modeling

The modeling of the pipeline protocols opens a wide
range of possible explorations for performance effects of
varied runtime parameters and validation of the implemen-
tation. For this paper, we confine ourself to the following
questions as they can not easily be answered by experiments
on the available hardware:

• How relevant is the pipeline block sizeDb for the ef-
fective performance? We varyDb overP for different
vector sizesDv . This will show us if a single value for
Db is sufficient, or how it may be chosen dynamically.

• How does the performance develop for increasing val-
ues ofP? We simulate this for different vector sizes
Dv . We also compare the performance of the pipelined
protocol with the generic algorithm. This will show us
if switching points between these protocols should be
established.

• Which influence does the flow control have on the
achieved performance? This will give us a hint if other
flow control techniques can be used efficiently.

We have performed the simulation for thepcastproto-
col as a first approach of evaluation of the characteristics
of pipelined transfers, using the more simple model. Fig-
ure 5 shows three charts with the results which we will use
to answer the three questions above.

The top chart shows the bandwidth per processBpcast

for Dv = 1 MB overDb for different process countsP .
We can see that the choice ofDb has a significant impact
onBpcast . The optimal value ofDb for the evaluated pro-
cess counts varies between20 KB for P = 8 and 4 KB
for P = 256. Additionally, it shows that the range ofDb,
in which it delivers nearly optimal performance, decreases
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Figure 5. Simulated performance comparison
of pcastprotocols, varied over pipeline block
size, process count, and flow control delays
(from top to bottom)

from about50 KB down to4 KB if 256 instead of 8 pro-
cesses are used. This means that choosing the value for
Db becomes more important the more processes are used as
the negative performance impacts for the same absolute de-
viance from the optimal value forDb increase. Therefore,
Db needs to be chosen dynamically for each MPI commu-
nicator, depending on the number of processes in this com-
municator. SCI-MPICH does this currently using a sim-
ple approximation via a linear equation; more sophisticated
methods are possible.

The middle chart compares the bandwidth per process
Bbcast of thepcastprotocol with the generic algorithm for
different vector lengthsDv, varying over the process count
P . For the generic algorithm,Bbcast remains nearly con-
stant for different value ofDv because the point-to-point
message bandwidth is nearly constant for the chosen values
of Dv, too. In contrast, the performance of thepcastpro-
tocol depends heavily on both the process countP and the
vector lengthDv. This difference in the scaling characteris-
tics doesn’t come suprising as the generic algorithm scales
with O(logP ), while thepcastprotocol scales withO(P ).
Again, it depends on the performance characteristics of the
specific platform which algorithm is suited better for given
values ofP andDv. For the shown platform, thepcastpro-
tocol should be chosen forDv > 64 KB.

The bottom chart answers the last of our questions by
showingBpcast overDb for different flow control delays
tfc between each transfered block forDv = 1 MB. On the
tested platform,tfc = 5µs applies. We can see that for
the optimal block sizeDb = 8 KB, the achieved bandwidth
by about 20% if the flow control delay is increased by a
factor of 4. This indicates that it is feasible, but not without
impact, to use less efficient means of flow control.

6 Summary and Outlook

We have shown that it is possible to efficiently imple-
ment a number of collective operations in MPI by overlap-
ping CPU-driven data transfer and combine operations in-
side a node and DMA-driven data transfers between nodes.
Using theses transfers, we could employ new communica-
tion protocols for pipelined 1:N- and N:1-operations like
MPI Bcast , MPI Reduce and MPI Scan . Even for
the N:N-operationMPI Allreduce , we could achieve
improvements in comparison with highly optimized non-
pipelined algorithms. This shows most significantly for pro-
cess numbers which are not a power of two.

Next to the experiments with the implementation of the
pipelining protocols for MPI collective operations, we pre-
sented a model of these protocols which allows to predict
the throughput for arbitrary process counts and data trans-
fer performance settings. This way, we could estimate for
which cases pipelining will be more efficient than the con-



ventional tree-based algorithm. However, the wide range
of parameters which influence the performance and their
mutual dependencies make it difficult to determine the best
choice as the underlying performance characteristics vary
between the platforms. An approach of automatically tun-
ing as presented by Vadhiyar et.al. [21] seems to be a solu-
tion for this problem.

For large process counts, the concept of a single lin-
ear pipeline was shown to be less efficient than the tree-
based algorithms if the vector length is not big enough. It
might be worthwile to switch to more complex pipeline con-
cepts which combine the advantages of pipelined transfers
and reduced communication steps by splitting up the sin-
gle pipeline into multiple sub-pipelines as it is done in the
”fractional tree” algorithm proposed in [17].

While our implementation is based on SCI, the concept
can be transfered to other high-speed interconnects with re-
mote memory access (RDMA) capabilities. The complete
source of the software used to achieve the results presented
in this paper is available at http://www.mp-mpich.de.
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