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Abstract—MPICH is the most commonly used, freely available group clusters built from PCs, Workstations or SMPs running
implementation of the MPI-1 standard including parts of the MPI- any operating system and communicating vi&ystem area net-

2 standard. It is available for nearly every Unix-based system and \yqrk (SAN) like MEMORY CHANNELS8], Myrinet [9] or the

can use a variety of communication facilities through its low-level g.51aple Coherent Interfac&ClI [10]). Due to the importance
Abstract Device Interface(ADI-2). However, no adaption to the ¢ o availability of standard APIs on a parallel computer, sev-

Scalable Coherent Interfac€SCI) existed so far. This paper pre- .
sents the design and implementation of such an adaption consisting eral efforts have been made to offer MPI or PVM [11] on this

of an ADI-2 device for the current MPICH distribution. The per- platf.or'm: .
formance of this device is compared to other ADI-2 devices of * Digital has adopted MPICH to utilize the MEMORY
MPICH usable on Intel x86 based clusters and also with acommer- ~ CHANNEL SAN to create the commercially distributed

cial MPI implementation for SCI-connected clusters. Digital MPI [12].
* CSAG at the UCSD have implemented PVM and MPI
Keywords—message passing, cluster, SCI, MPI, MPICH, ADI-2 (based on MPICH) [13] on top of their transport layest
Message$14] which uses Myrinet for inter-node communi-
I. INTRODUCTION cation.

Since the presentation of the first standard [1] in 1994, tife Scali AS has created an MPI implementation on top of SCI
Message Passing Interfa¢®PIl) has become one of the most namedScaMPI[lS] WhIC'h they distribute commercially. It is .
commonly used API for parallel computing due to its availabil- US€d for comparison in the performance chapter of this
ity on nearly every parallel computer. Contrariwise, this leads to P2Per- _ .
the necessity to offer MPI for a parallel computer to make it & SCIPVM[16] implements PVM on top of SCI offering the
useful tool for researchers outside the field of computational sci- flexibility of PVM. It does, however, not exploit the full per-

ence. formance potential of the SCI interconnect.
« In the scope of the SISCI project [17]cammon messaging
A. MPICH Implementation layer (CML [18]) has been developed to serve as a basis for

H PVM and MPI implementations [19]. However, no results
for an MPI implementation based on CML have been pub-
lished so far.

The freely available Open-Source implementation MPIC
[2] was very important for this development. MPICH is the
most commonly used, freely distributed implementation of the
MPI-1 standard (including parts of the MPI-2 standard [3]y Motivation
which is also used as a base for commercially distributed MPI . ) ) )
implementations (PateNT MPI by Genias [4] using a port of the !N Spite of all these efforts, the publicly available MPICH dis-
p4 library and others, see below). It is publicly available folribution can still only be utilized Wlth. T_CP/IP for mter.—node
nearly every Unix-based system and can utilize a variety spmmunlcatlon. To use a more sophisticated clu_ster intercon-
communication facilities. The interface through which th8€ctlike SCI, only a commercially developed MPIimplementa-
actual communication facility is accessed is defined as tfi@n can be used (ScaMPI by Scali) which must be purchased
Abstract Device InterfacgADI-2 [5], [6]). The ADI-2 interface and does not come with source code. Suppo_rt of SCI-connected
defines a set of point-to-point send and receive operations whigHSters by MPICH would help to make this platform more
are required by the upper layers of MPICH. This precise@ﬁordable and thug more commonly used. Therefore, we devel-
defined interface lead to the availability of MPI on a wide ranggP€d an ADI-2 device for SCl-adapters.
of platforms, from TCP/IP connected workstations up to sup

%. Organization of the Paper
computers like the Cray T3D/T3E series. 9 P

_ The next chapter informs about the key characteristics of the
B. Message-passing on Clusters SCl-connected cluster on which this research was conducted.

In the last few years, a new class of parallel platforms corhapter l1l. presents details of the implementation of the device
monly referred to aslusters has arised. Following the classifi-iFselfv while chapter IV. gives a theoretical performance calcula-

cation given in [7], we refer to homogenous, high-performandion. an overview over the performance of the current imple-
mentation and a comparison to other solutions. The final

chapter summarizes the results and gives options for further
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Il. SCI CLUSTER PLATFORM
MPI API
A. Hardware
MPIP
The development of the presented work took place on a clus- Profiling Interface
ter of SMPs. The SMP nodes are dual Intel Pentiumil MPIR
(450MHz) boards with 256 MB memory and the Intel BX- Runtime Library
chipset. The SCI interconnect is realized with PCI-SCI (32 bit, MPID
33 MHz PCI bus) adapters from Dolphin Interconnect Solutions ADI-2 Device
equipped with the LC2 version of the SCI link chip and revision
D of the PSB. The Dolphin drivers were configured to enable System specific
speculative reads for a higher remote read performance. Addi- Communication Facilities
tionally, they are slightly modified to map SCI memory seg- (System Librarics, Network, Memery)
ments to predefined addresses. The nodes are also connected via

a switched 100 MBit full-duplex Ethernet using 3COM NICs. Fig. 1. Layered design of generic MPICH

The key performance values latency and bandwidth on this plat-

form for remote memory access via SCI are shown in figure 2!SCI API [22] and the IRM driver of the Dolphin PCI-SCI
adapter. However, three phases have to be distinguished regard-

B. Software ing these software layers:

To ease the development of efficient parallel programs usihglnitialization: Only during tr_le initialization (and thg fiqaliza—
the shared-memory model provided by SCI, a complex library i0n) Of the processes which form the MPI application, the
has been developed on top of the vendor supplied driver and>™! library and the SISCI APl and the IRM driver are
programming AP titled theShared Memory Interfacé20] required .to establish glot')ally shared SCI memory segments
(SMI). It currently supports Unix (Solaris and Linux) on Intel mapPed I _the Processs gddress Space. o
and Sparc platforms as well as Windows NT on Intel platfornis S€rvices During the execution of the MPI application, the

and offers a C and Fortran 77 binding. From the many servicesch—SMi device uses services offered by the SMI library. The
offered by the SMI library, the implementation of the MPICH most commonly used services are dynamic memory manage-
device relies just on a small selection: ment of shared memory and barrier synchronization.

« Initial configuration of the processes on the cluster, delivefy COmmunicationMost of the time, the ch_smi device handles

of topology information and finalization of the environment ~POint-to-point communication. For this purpose, no underly-

« Allocation of globally shared memory regions with different g Software layers have to be utilized, but only direct
physical distributions to account for the NUMA (non-uni- accesses to the user address space of the process are required.

form memory access) performance characteristic. This mode of operation (which is a typical characteristic of

« Dynamic memory allocation within globally shared memory SCI) allows for exceptional low communication latencies.
regions. The development of the ch_smi device is based on the

« Synchronization services (barriers). ch_shmengshared memory) device which is part of the MPICH

Because of the availability of the SMI library on Windowdlistribution. The ch_shmem device is designed for use on multi-
NT, Solaris and Linux, all these three platforms have been ud¥@cessor SMP systems featuring an UMA architectuire a
for development, and in fact SCI-MPICH is available on all djrst attempt of running MPICH on our SCI-Cluster, the funcyon
these platforms. With the SMI library, SCI-MPICH has beefi@!ls of ch_shmem to allocate shared memory were simply
ported to Windows NT in a very short time [21]. The primary
development platform, however, is Solar_is x86 which also was MPI API
used for the benchmarks presented in this paper.

MPIP
[ll. | MPLEMENTATION OF SCI-MPICH Profiling Interface
The basic layered design of MPICH is shown in figure 1, MPIR
together with the design of SCI-MPICH in figure 2. Located on Runtime Library
top is the MPI API, with the profiling interface below. The Initialization sevices  ch_smi
MPIR layer is responsible for the transformation of the complex ’ v o
MPI functions into point-to-point communications. These com- SMI Library | “™"|™"
munications are performed by the MPID layer (the ADI-2 SISCI [ Address Space |
device) situated below. An adaption of MPICH to a specific |SClmapped_| locally mapped | USCT SPAce
platform is limited to the MPID layer, all the layers above IRM kernel space

remain untouched.

A. ADI-2 Device ch_smi

The implementation of the SCl-specific ADI-2 device 1. All ADI-2 devices are named beginning with_(for

ch_smt is based on the SMI library which in turn uses the channel) followed by the name of the underlying commu-
- nication facility.

Fig. 2. Layered design of the SCI-MPICH implemenation




translated to the corresponding functions of the SMI librarg, for the case of sending short messages from process 0 to pro-
while all protocols and data structures remained the same. Tééss 1. The critical point, the synchronization, is done using the
adaption was done in one hour and provided a correctly workitast byte of the packet. As the control packet is transferred in a
ADI-2 device. However, with the strong NUMA characteristisingle SCI transaction, this byte is guaranteed to be the last byte
of the SCl-cluster, the performance was very low due to tlod the packet to be written in the remote memory. It contains the
UMA (uniform memory access)-oriented design of ch_shmemmessage identifier, on which the receiver is polling. This identi-
Obviously, a complete redesign of the protocols and tlfier is calculated the same way by both, sender and receiver, via
according data-structures was necessary to achieve performanogodulo operation. It is ensured that one single slot of a ring
values in the proximity of the raw memory transfers over thauffer never uses the same message identifier for two consecu-
SCI network. A couple of key characteristics of the SCI netwotkve messages.
had to be considered:
Remote write accesses achieve a bandwidth which is 8r? Eager
times higher than the maximum bandwidth of remote read The eager protocol lets the sender transmit a message without
accesses the receiver requesting it. For this purpose, each process keeps a
The reason for the better write performance is the more effiumber of buffers in local shared memory (memory within an
cient use of the stream buffers on the SCI boards by the PGIEI shared segment which is physically located on the local
bridge. The PCI-bridge supports write gathering to write a®de) towards each other process. To manage the eager buffers
much data in one PCI transaction as possible. Howeverpft another process, a ring buffer of pointers pointing to the
triggers a PCI transaction for each read operation of the CPA¢cording buffers on the receiving process is stored in local
To take full advantage of the stream buffers for write operahared memory. The transmission of an eager message consists
tions, remote memory accesses must be scheduled in a oéreopying the message data to an available remote buffer and
tain consecutive way to cause as few SCI transactionsiagicating the new message by a control packet. The maximum
possible. message size for the eager protocol is typical in the range of a
The use of the stream buffers has the dangerous side effediesf kB, but can be adjusted to the amount of memory available.
creating inconsistent memory states between different nodes.

This must be taken into account and, if necessary, has to be

process 0

process 1

process 2

avoided.

B. Message transfer protocols

Depending on the length of the message, MPICH chooses
between three different protocols (hanmstbrt eagerandren-
dez-vouy to transfer a message from one process to another.
This allows to find an optimized trade-off between performance
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messages sent
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ptr to message
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ptr to msg counter

private local mem

64 byte control packet/
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(1 byte)
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data

and resource usage.

B.1 Short = write access pir readcounter 0
. . . | incoming ringbuffer 2
The short protocol is suitable for messages which are small| | = readaccess pr | [I:glfI:EI:I:D
enough to fit into a control packet. The gross size of control .,
| [

shared SCI memory segment incoming ringbuffer 0

(47 byte)

l

—

packets in SCI-MPICH is 64 byte. This size was chosen becaus
this amount of data makes optimal use of the stream buffers,
requires no explicit flushing of the stream buffers and can be
transferred in one single SCI transaction. This results in a very

SendShortMessage:
/I calculate next message id
msgid := (msgid + 1) modulo ID_WRAP
/I get a free message slot

low latency (see figure 5) of aboutid  for a remote write of 64 while (M ayaii =0) {
byte. Furthermore, this single transaction won't be split during /I update counter "“’j remote read
transmission via the SCI interconnect. This means that the data Muwail = M sent - *1P cnt }

contained in the packet arrives completely in the order that it
was sent. These 64 byte contain a header of 12 byte, a maximum
payload of 47 byte followed by an alignment buffer of 4 byte
and a 1 byte packet identifier.

The protocol which is used for the transfer of control packets

aka short messages is based on a separate ring buffer for each
directed sender-receiver pair. The data structures and pseudo

code for the basic send and receive operations are given in figure

2. The ch_shmem device can optionally be compiled for use
on a Convex cache-coherent-NUMA-machine using ven-
dor specific functions. The data-structures and protocols
remain nearly identical.

copy message from local_memory to wP
WP msg + 63) := msgid
/'local accounting
increment WP gg and M gen
decrementM yqi
ReceiveShortMessage:
/I poll id field of next message to arrive
/I until it matches the expected id
while (*wP g !=msgid) {}
/I new message has arrived
copy message from rP
increment *wP .
/I calculate id of next message

msg

msg {0 local_memory

Fig. 3. Data structures and pseudo code fosltet protocol



Again, the data structures and the basic send and receive algo-

rithm are given in a pseudo code notation in figure 3. Sender

Send size of message

Receiver

to be transmitted P———requesT SEND___
B.3 Rendez-vous — Qi‘ﬁ;fé‘?i‘“ii‘iﬁ?g% msg
The eager protocol relies on statically allocated resources and copy biocks from private [ o cmmm——
thus is not suited to transfer messages which are longer than theu i ma emmes, | Prockreame
size of the incoming buffers on the receiving process. The ren- Cony st bk of this par [ eookmeav Copy blocks from shared
dez-vous protocol can transfer arbitrary sized messages by USQ‘EF?;:iLi:‘;;?:;’g; cirl mse o —
dynamically managed resources. However, this ability requires a — S o s o
more complex protocol. It is based on handshakes to transmit , . . oroemesee [©
the address of the transfer buffer and for synchronization in casggs lock readyierimees § oo weany
that the transfer buffer is smaller than the message size. _ o o o shared
To increase the effective bandwidth, a write-read-interleave” """ ™" | Message transfer completed
enables the receiver to start reading from the transfer buffer
before the sender has filled it completely. The data integrity is message” | CPU busy
ensured by unacknowledged BLOCK_READY control packets > == -» optional ‘ R
sent by the sender after a certain amount of the transfer buffer

has been filled. The diagram in figure 5 gives an example for a.
case where the transfer buffer can not hold the complete mes-

Elg. 5. Definition of the rendez-vous protocol

sage (multi-part transfer) and each part is transferred with a cgjcols. These numbers are compared with measurements of our

tain interleave.

IV. PERFORMANCE

SCI-MPICH implementation. Application performance, how-
ever, depends on a lot more and complex performance proper-

ties. We give a perspective of what can be expected from SCI-

The raw transfer performance via the SCI network is depictegp|CH.
in figure 7. Based on these numbers, we can calculate the upper

bound of the message passing performance for the different pfo-Upper Bound of Message-Passing Performance

Based on the raw performance data for local and remote
memory transfers and the protocol specifications, it is possible

process 0 process | process 2 to calculate an upper bound of the message passing performance
private local memory private local memory private local mem that can be obtained on such a system. The relevant parameters
- ptr o next avail FawP__] pirtonext buffer for message-passing via shared memory are given in table 1.
avail return . . . .
buffer pir pir to return The fact thatreadinga block (in the form of an assignment like
receive handles a = bfi] ) results in a lower bandwidth thasopyinga block
| ?L | ?L Hj | ?L | using somememcpy() function is due to the different assembler
a »—» write access pir code used for these operations.
' ‘ s— read access ptr
‘I‘I‘I‘ ‘THH‘ ‘poimerringbufferli ‘ incoming buffers 0 ‘ ‘ ‘
\ \ I T T Parameter Description peak Value
T
ointer ringbuffer 3 \‘ncmrhng ‘uTcn‘Z . .
LLLTTTLT | [ pommenz | | | ] B,(N) | bandwidth of sequential 142.9MB/s
shared SCI memory segment | reads from local memory
I T
for blocks ofN bytes
SendEagerMessage: . .
I get a free eager buffer B¢/(N) bandwidth forcopymg a block 76.3MB/s
while (*WP a1 = NULL){ of N bytedrom private
/I wait for update from remote process local memoryo shared remote
process_other_messages } memory
copy message from local_memory to *wP avail
1 |nd|crﬁ_e the receipt of a new eager message B (N) bandwidth forcopying a block 334.0MB/s
/I containing the value of *wP avail cl
send control_packet of N bytedrom shared local
Il local accounting memoryto private local mem-
increment wP 54 ory
ReceiveRagerMessage: L.,(N) | minimal latency of aemote 2.7us
/I control packet for eager message has rw write operation
/l arrived, containing a rP msg
copy message from rP msg 10 local_memory L”(N) minimal Iatency of aemote 4.4 Hs
_ readoperation
Fig. 4. Data structures and pseudo code foe#gerprotocol




T Again, the bandwidth is calculated as
Parameter Description peak Value
_ N
L, (N) minimal latency of docal 31ns (4) BeagefN) = LeagefN)
readoperation

A.3 Rendez-vous

The rendez-vous protocol is the most complex protocol to
escribe as the number of control packets that have to be trans-
Rted for one rendez-vous message depends on three parame-
ters:
A.1 Short « the size of the rendezvous-message

» the size of the dynamically allocated transfer buffer in shared
The amount of data that has to be transferred to send a shor, emorys y y
buf

message is constant and equals the size of a control packet with, . -hosen block-size for the write-read interleasing,,

Spacket = Sstreambutfer= 64byte. This includes the header with i vogits jn Npart = [N/Spy¢]  parts in which the mes-

a size Of Syeqqe,= 12byte . The resulting latency for a shorbage has to be transferred, with a total number of

message with a payload Nfbytes follows as Norook = | N/Spiock |~Npare blocks that can be transferred
interleaved, leaving a rest dfl,.; = N—Sy;0ck Npiock  PYEES.

(1) LepordN) = #C"erf L)+ 3 (hseader) *g I\EN) All together, it gives us a minimal latency for a rendez-vous

er~packe r*“headel el message as described in formula 5 if we can assumesthat)

In this formula, the first addend describes the remote write §f B, (N) (so thatB.(N) determines the effective bandwidth
the complete packet by the sending process, the second addendnterleaved copying). The numerous addends of formula 5
the minimal time for the receiving process to detect the arriva@ve the following meaning related to the protocol definition:
of the new message, the third addend gives the time required td’he mandatory control packets at the beginning and end of
analyze the header and read the data while the last adden@ach message and between multiple parts (if the message
describes the store of the message data in the local receiveloes not entirely fit into the allocated buffer). These control
buffer provided by the application. The latency for a control packets have to transfer 16 bytes of infomation in addition to
packet can be determined using the same formula, but the valughe standard header of each control packet.
of N that has to be used depends on the exact type of the controRemote writing of the interleaved blocks and the optional
packet. The effective bandwidth for short messages can easilycontrol packets between the blocks. These packets are

Tab. 1. Parameters for message-passing performance

For the three protocols short, eager and rendez-vous,
results in the following calculations:

be calculated as optional because if no send packet is available, the transmis-
sion of such a packet can safely be omitted.
(2)  BgpoN) = _ N __ » The local copy of the last block of each part from shared to
shor L (N) . .
shor private memory. The local copy operations for all other

Due to some system-bus-to-PCl-bus host-bridge peculiarities?!0cks do not influence the latency under the condition
which might result in a SCI packet loss, a verification has to be Bei(N) < B.C'.(N) given above. .
done by the sending process by reading an error counter on th&€Mote writing of the part of the message which does not
PCI-SCI adapter board. If an error occurred, the complete make up a full block.
packet is retransmitted because in this case, the complete pagk¥te more, the bandwidth is calculated as
did not arrive. Fortunately, this error checking has only a small N
impact on the latency since it is done by the sending procé@% BrnauN) = L—V(l\l)
while the receiving process already reads the new message. md

A.2 Eager B. SCI-MPICH Performance

The transmission of an eager message includes copying th& he foundation of all performance observations are the trans-

message data and sending a SEND_ADDRESS control paggé'lrates that can be achieved via the SCI interconnect which are
of lengthC = 16byte to indicate the new message. The receign©Wn in figure 7. Optimal performance can be achieved using

ing process has to copy the message data into the receive bififeRit transfers from the processor to the PCI bus which we

and return the pointer to the sending process. This giveén?jplemented using the FPU while the transfers which are done

latency of by the CPU are 32 bit transfers.
For the measurements of latency and bandwidth, we use a
_ _N N simple Ping-Pong benchmark between two MPI processes (see
3 L N) = ——+L C- +——+L (4
®) eagef) Bc(N) shorl® ~ Sheadel Bei(N) ) figure 6 for the basic algorithm). Each process executes block-

ing send and receive operations to wait for an incoming message

S S N
(5) L N) = (1+20N, )L 16)+N ]_“block | (S U+ N block rest
rndv( part shor{ block EE'Bcr(Sblock) rw packe)D partDBcI(SbIock) BcrNrest




retical values created by the model (which are the upper limit of

Process 0:
MPI_Barrier() performance that can be achieved) to the values measured on
MPI_Wtime(start) our cluster. The results are shown in figure 8. The short protocol
for (number_loops) was used for messages smaller than 48 bytes. For the eager and
MP1_Send() rendez-vous protocol, we chose overlapping message size
MPI_Recv() X . . .
MPI Wiime(end) ranges to find the intersection between both bandwidth curves.
latency = (end - start/(2 * number_loops) This intersection represents the optimal upper limit for the size
of message transferred via the eager protocol.
Processs 1: Another comparison was done between SCI-MPICH and

MPI_Barrier( other communication devices of MPICH for Intel based SMPs

for (number_loops) (ch_shmemwith locks andch_lfshmemwithout locks, both

MPI_Recv() using shared memory on a single node), clusteins Wsockor
MPI_Send() TCP/IP communication between nodes) and also for the other
Fig. 6. Ping-Pong benchmark between 2 MPI processes existing MPI implementation on top of SCI for Intel x86

machines, ScaMPI. Of course, the simple measurement of the

(MPI_Recv() ) and immediately respond#PI_Send() ) once |atency and bandwidth for blocking send and receive operations
it has arrived. The resulting round-trip times are then halved g@tween two processes is not to be considered a complete metric
give the effective latency, from which we derive the bandwidthgr the performance of a MPI implementation. It rather is
Using a high-resolution, low-latency timer based on the Intglought to give an impression of the performance of the core
x86 rdtsc  instruction, we could not only measure the latenciinctionality.
of a great number of Ping-Pong cycles, but also create histoThe system on which we conducted the ScaMPI measure-
grams to show the distribution of the latencies . ments is a 16-node SiemehpcLinerunning Linux, which con-
sists of nearly identical hardware (Pentiumll CPUs on Intel BX
boards, 32 bit Dolphin PCI-SCI adapters with the same chip

From the measurements of the raw SCI transfer rates anchgfisions) differing only in the CPU clock speed of 400MHz
the local memory transfer rates, we gain the parameters for tgnpared to 450MHz of our cluster on which all other bench-
model described above (see table 1). We then compare the thagrks were run. Furthermore, it has to be noted that we used the

B.1 Benchmarks

Latency of SCI Remote Memory Access Latency for Ping—Pong
Intel Pentium 1l 450MHz, BX chipset, Linkcontroller LC2, PSB rev. D Comparison of the model and the SCI-MPICH implementation
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Fig. 7. Bandwidth and latency of remote memory access via SCIFig. 8. Modeled and measured Ping-Pong bandwidth and latency
using CPU (32 bit) and FPU (64 bit) transfers (roundtrip/2) between 2 MPI processes



factory default settings of all ScaMPI tuning parameters for ourite and read operations by the sender and the receiver. With-
measurements, only the size and number of the eager buffeus this overlapping, the bandwidth for large messages
was set equal [23] to the settings used by SCI-MPICH. decreases as the ADI-2 devices shmem and Ifshmem for SMPs

Thech_wsocldevice for MPICH is a device for our own NT show. SCI-MPICH's bandwidth for large messages comes close
port of MPICH to Windows NT which uses Windows socketto the peak bandwidth of the raw SCI interconnect. The only
for communication. As it performs better than ttte p4device- drawback in performance are the partial transfers for messages
under NT, Solaris and Linux, we chose to use it as a basis fehich do not fit entirely in the memory pool for rendez-vous
the comparison of MPI via SCI and via the usual fast ethernemessages.

The results of this comparison are depicted in figure 9. TheThe effective bandwidth for rendez-vous messages below
latency for small messages via the ch_wsock device is not di28kB could be improved by using a modified protocol which

played as its minimum latency is about 150 . uses implicit synchronization for the write-read interleaving.
_ ) Instead of sending control packets for each block, it is possible
B.2 Discussion to only send such a packet for the first block and use special syn-

The benchmark results show that in terms of latency, SGhronization marks inside the message buffer for the rest of the
MPICH is able to compete with the SMP communicatiotransfer. This would reduce the synchronization overhead and
devices shmem and Ifshmem. The difference of approximatébad to higher point-to-point bandwidth for small rendez-vous
2.5us for SCI-MPICH short messages against the latency framessages. However, it would also lead to a polling behavior of
the model mainly represents the internal overhead of the MPife receiving process for the usual cas8gf B, resulting in a
layer. This overhead can not be reduced without changing thaste of CPU cycles: the CPU-available phases (see figure 5)
general MPICH code which is not desired. between each transferred block would disappear.

For messages send via the eager protocol, SCI-MPICH'sThe minimal latency that ScaMPI achieves is significantly
bandwidth trend resembles the curve of the model and contégher than SCI-MPICH’s, and also the bandwidth for messages
very close to the theoretical maximum for message sizes abéransferred via either protocol is lower. It seems that ScaMPI
16kB. The bandwidth as described by the model reaches utes at least two SCI transactions to transfer a control packet
peak value for message sizes of 8kB, then approximates tf24]. We tried to use an equal buffer layout of ScaMPI and SCI-
value little below the peak value. This behavior is due to tHdPICH using some of the startup-parameters that ScaMPI
peak ofB which is located at a block size of 8kB. However, theffers. It is possible that ScaMPI delivers results similar to SCI-

effective bandwidth is dominated I8, and the internal over- Latency for Ping—Pong
head Of the MP'R |ayer (Wh|Ch |S not descnbed by the model) o Comparison of different SMP/Cluster MPI Implementations
This results in a less distinct peak at 8kB message size and ¢ R \
approximation of the effective bandwidth to the model band- 50| 979 MeleH famem
A—A ScaMPI

width for larger message sizes.
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min. latency | max. bandwidth 30

latency [us]

SCI-MPICH 6.6 s 73.8MB/s //
MPICH Ifshmem 1.6 us 141.9MB/s o /Lij;; ]
) B - A
MPICH shmem 4.6 us 110.4MB/s O?H?H_Mﬁze/é
1 4 16 64 256 1K
ScaMPI 16.2us 65.7MB/s message size [byte]
Bandwidth for Ping—P
MP'CH WSOCk 1467 us 102 M B/S Compansonao?dﬁ\f,::em SM(I)DSCIUIS[:E?MPIcl)n:]plgementallons
140
Tab. 2. Ping-Pong minimal latency (round-trip/2) and maximum band- L |o—6 MPICH shimem
width between 2 MPI processes 1201 T2 S o
F »—x MPICH wsock 7/%
% 100 Sy
The maximum bandwidth for messages transferred via the 2 > 1
eager protocol being situated well below the raw SCI transfel 2 80 /5 g
rates is due to the miss of an interleaved copy mechanism: fc 2 e E/E/Q\E/ﬂ/z/g i
the eager protocol, the receiver is not notified on the arrival of = 0 P
the new message until it is transferred completely. This leads t L /{
the simple addition of the time required for the remote copy 20 /{
operation from the sender to the receiver the and local cop I e
1 4 6 64 256 1K 4K 16K 64K 256K M

operation of the receiver from shared to private memory.

The rendez-vous protocol. too, delivers a performance whict
is close to the values predicted by the model for message siz€g). 9. Ping-Pong bandwidth and latency (roundtrip/2) between
beyond 128kB. The important technique is the interleaving o2 MPI processes

message size [byte]



MPICH'’s with an optimized memory configuration, but surpass- with the Windows NT version of SCI-MPICH and with new
ing SCI-MPICH will be difficult regarding the overhead of only beta-release drivers for Linux and Solaris x86 show.
2.5us for control packets and the efficiency (effective band- Multithreading
width related to raw SCI transfer rate) of 96% for large eager- Tests with the Spark98 benchmark indicate that memory-
and rendez-vous messages which SCI-MPICH achieves. intensive MPI applications perform better if each process is

The shared-memory SMP devices shmem and Ifshmem do, ofun on a dedicated node than using multiple process on a
course, deliver lower latencies and a considerably higher band-SMP node. This is due to the simple design of the memory
width for messages which fit well into the memory caches. interface on the dual CPU main boards. To make efficient use
However, the performance gap is less significant than might beof the second CPU, a second thread could be used for mes-
expected. First tests with the application benchmark Spark 98sage transfers. In conjunction with remote interrupts, this
[25] even show that it may result in higher performance to run would provide fully asynchronous sending and receiving.
SCI-MPICH processes on distinct nodes then using an equivaDMA
lent SMP setup. This effect is due to the simple design of the Although, on the hardware which is used for this develop-
memory interface in low-cost Intel based SMP machines which ment, DMA transfers via SCl are generally slower than trans-
gives only half of the bandwidth to each CPU if they are com- fers by the CPU, they allow for true asynchronous transfers.
peting for memory access. With SCI-MPICH, the communica- If computation and communication can be overlapped, it
tion between processes imposes less stress to the memory busight give more performance even with lower transfer band-
This effect is also responsible for the bandwidth of large rendez-width.
vous messages being higher for SCI-MPICH than for the SMP Dynamic configuration
devices, even if these do also use an interleave technique. The configuration of the protocols and the according data

The results of the wsock device for MPICH are very close to structures is currently set up on the application startup. To
the raw TCP/IP performance on the 100Mbit ethernet. However,change these settings, the application needs to be restarted
the resulting performance is well below the performance of SCI- with a different configuration description. Dynamic configu-
MPICH in terms of bandwidth and even more in terms of ration on runtime would allow to adjust settings (i.e. the size
latency. The introduction of Gigabit ethernet networks will and the number of the transfer buffers for the eager protocol)
improve the bandwidth, but the inclusion of the operating sys- during the execution of the application, potentially in an
tem into the message transmission will avoid latencies as low asadaptive manner by analyzing the communication pattern to
SCI based solutions achieve today. optimize the setup for this specific application.
* /0

Parallel applications often suffer from the bottleneck of slow

The presented MPI implementation offers full MPI-1 func- file I/O. MPICH offers parallel I/O by the implementation of
tionality based on the widespread and reliable MPICH distribu- MPI-IO, ROMIO. We are currently developing support of
tion which is extendable with a variety of important tools for ROMIO for parallel file access via SCI.
tracing or parallel debugging. What makes this implementatien Collective Operations
special for cost-effective cluster-solutions are the extremely low Especially for larger configurations, the performance of col-
latencies of small messages and the high maximum bandwidthlective operations is important for the overall performance of
The free availability of the source code may help to establishan application. The standard MPICH routines for collective
SCI connected clusters as a high-performance, solid yet afford-operations should be replaced with special SCI shared mem-
able platform for technical and scientific computing next to the ory functions. This is already done faP1_Barrier()
popular ethernet connected clusters. These perform nearlysai€Cluster Manager
order of magnitude worse when it comes to inter-node commu-The startup of a SCI-MPICH application under Unix is cur-
nication. rently performed via a script and remote shell invocations
However, while the software is running stable in our configura- Without any queuing, scheduling and protection (the same is
tion of 6 nodes, it is still in an early stage of development. It has true for the startup under NT which is performed with the
not yet been tested on larger configurations, and the performancéool NTRrexed21]). If one process should crash, the others
that it delivers to real applications has to be evaluated in depth.continue running. These and other problems are currently
It offers a lot of room for improvement next to the two key pa- addressed with the development of a Java-based cluster man-
rameters bandwidth and latency which are now near to the theo@gement software and new startup and shutdown techniques
retical maximum. The most important issues that we have infor SCI-MPICH.
mind are briefly discussed below.
e Driver Issues (SMP and Caching)

The driver for the Dolphin SCI-PCI adapter which were

available for the development on Linux and Solaris x86 do

neither support multiple processes on one node nor remote

interrupts, and the Solaris x86 driver maps local SCI seg-

ments as ,uncachable”. The resulting limitations are auto-

matically solved with fully functional drivers, as internal tests

V. SUMMARY & FUTURE WORK
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