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1 Introduction

The Single-Chip Cloud Computer (SCC) experimental processor [4] is a 48-core concept vehicle created
by Intel Labs as a platform for many-core software research. The 48 cores are arranged in a 6x4 on-
die mesh of tiles with two cores per tile. The SCC chip possesses four on-die memory controllers for
addressing the external main memory. Additionally, each tile possesses a small amount of fast on-die
memory that is also accessible to all other cores in a shared-memory manner. These special memory
regions are the so-called Message-Passing Buffers (MPBs) of the SCC. The SCC’s architecture does
not provide any cache coherency between the cores, but rather offers a low-latency infrastructure in
terms of these MPBs for explicit message-passing between the cores. Thus, the processor resembles
a Cluster-on-Chip architecture with distributed but shared memory where each core can run its own
operating system instance. Communication between processes hosted by different OS instances running
on different cores can then be conducted either via a dedicated region of the off-die shared memory or
via the fast on-die MPBs for increased performance. The RCCE communication library [5, 6] offers
a customized message-passing interface for programming these SCC features by means of a simplified
application programming interface (API). This message-passing environment, that is in turn based
on a simpler one-sided communication mechanism (RCCE put/RCCE get), offers two-sided but blocking
(often also referred to as synchronous) point-to-point communication functions (RCCE send/RCCE recv)
as well as a set of collective communication operations (Barrier, Broadcast, etc.). However, the lack
of non-blocking point-to-point communication capabilities within the current RCCE library has driven
us to extend RCCE by such asynchronous message-passing functions (iRCCE isend/iRCCE irecv, see
Section 3). Furthermore, we have also improved the performance of some RCCE functions, as for
example the blocking send and receive operations (see Section 5) and we have added wildcard features
(iRCCE ANY SOURCE, iRCCE ANY LENGTH, see Section 6). In our latest release (V2.0, iRCCE FLAIR),
we have also added support for so-called Tagged Flags (see Section 4.4) and for Atomic Increment
Registers (see Section 4.5). In order not to interfere with the current RCCE library and its future
updates, we have placed our extensions into an additional auxiliary library with a separated namespace
called iRCCE [2]. In this manual, we detail the installation and the usage of these iRCCE extensions
(see Section 2 and Section 9) and we present some performance comparisons between the current RCCE
release and the improved iRCCE functions (see Section 8).
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2 Getting Started

2.1 Installation Guide

1. Download, configure and build the common RCCE library with the non-gory interface.

2. Download1 iRCCE as a TAR-File and unpack it within the desired installation folder.
(e.g. within the RCCE root directory by calling tar -xvzf iRCCE.tar.gz)

3. Change into the iRCCE directory.

4. Type ./configure <path-to-rcce> (= path to the RCCE installation).
(e.g. ./configure .. when you have unpacked iRCCE within the RCCE root directory)

5. Call make [AIR=1]2. All iRCCE related functions will then be added to the common RCCE library.3

2.2 Overview of the Basic iRCCE Functions

Library Initialization Function:

• iRCCE init();

Non-Blocking Send and Receive Functions:4

• int iRCCE isend(char *, size t, int, iRCCE SEND REQUEST *);

• int iRCCE isend test(iRCCE SEND REQUEST *, int *);

• int iRCCE isend wait(iRCCE SEND REQUEST *);

• int iRCCE isend push(void);

• int iRCCE irecv(char *, size t, int, iRCCE RECV REQUEST *);

• int iRCCE irecv test(iRCCE RECV REQUEST *, int *);

• int iRCCE irecv wait(iRCCE RECV REQUEST *);

• int iRCCE irecv push(void);

Blocking but Improved Send and Receive Functions:

• int iRCCE ssend(char *, size t, int);

• int iRCCE srecv(char *, size t, int);

Optimized Put and Get Functions:

• int iRCCE put(t vcharp, t vcharp, int, int);

• int iRCCE get(t vcharp, t vcharp, int, int);

1The iRCCE package can be found on the website of the Intel Many-core Application Research Community (MARC) [1]
2With AIR=1 the additional Atomic Increment Register functions will be built, too. (Requires sccKit 1.4 or higher!)
3That in turn means that you do not have to link against iRCCE but just against the extended RCCE library.
4For convenience, the the following function names are mirrored into the common RCCE namespace, too.
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2.3 Description of the Application Example and the Benchmark Tools

In order to build the application example and the benchmark tools, just change into the apps folder
after the installation of iRCCE and call make all. The following iRCCE executables will then be built:

• pingpong A simple Ping-Pong benchmark that utilizes the improved blocking send and receive func-
tions of iRCCE. The benchmark reports round-trip time / 2 as well as bandwidth for ascending
message sizes by measuring and averaging the time for n repetitions of the Ping-Pong pattern that
is shown in Figure 1. Optional arguments that can be passed to the executable are the number n of
repetitions and the maximum of the messages sizes that should be tested.

• pingping This benchmark performs a common variation of the Ping-Pong pattern that can only be
realized by means of non-blocking communication functions. In contrast to the Ping-Pong benchmark,
the time is measured under the aggravating circumstance that the outgoing message is interleaved
with an incoming one [3]. The benchmark reports the pure average ping time for n repetitions for
ascending message sizes. The difference between both patterns and between their clocked benchmark
times can be made clear by comparing Figure 1 with Figure 2.

• tagged This benchmark is a minimalistic version of the Ping-Pong benchmark that uses tagged flags
(see Section 4.4) instead of the common send/recv functions for exchanging small messages.

• spam This application enqueues a line of user-chosen length of requests and processes it afterwards.
Hence, this is just a stress test for simulating a scenario with a huge amount of outstanding non-
blocking communication requests.

• madmonkey Often cited in discussions about evolution, the infinite monkey theorem states that
a monkey typing random keys on a typewriter will certainly write any given text after a (long)
period time (Shakespeare’s works are often mentioned here). While parallel computer architectures
are very suitable for simulating this scenario, this application demonstrates the use of non-blocking
send/receive calls in situations where no one can tell when sends/receives shall occur. This application
needs a word to be found as program argument. Try for example "iRCCE"; the search for this word
should not take much longer than one minute when running the program on two cores.

• wildcards This is just a copy of the above described Ping-Pong and Ping-Ping benchmarks with the
simple variation that it uses the new wildcards for message length and for the source rank of the
sender (see Section 6). For using the iRCCE ANY LENGTH wildcard within this application, iRCCE
must be built against RCCE V1.0.13 with SINGLEBITFLAGS disabled!

• fortune This application implements a wheel of fortune game: a master devises a number between
0 and 100. The players then may guess which number was made up and send their guess to the
master. To receive the guesses from the players the master makes use of the wildcard mechanism for
the source rank (see Section 6). After having received all the messages from the players the master
determines the winner which is the one with the best guess.

• multicast This benchmark measures the throughput performance of iRCCE’s multicast functions. In
doing so, one process (the root) sends messages to all the other started processes by using the msend
and mrecv functions (see Section 5.3). Additionally, this benchmark also demonstrates the feasibility
of iRCCE’s wildcard features in collective communication patterns.

Each of these executables can just be started like a normal RCCE application. For example like:

> rccerun -nue 2 -f rc.hosts pingping 1000 65536

...or via the much more convenient irccerun script (see next Section 2.4):

> irccerun -nue 2 -cores 00,01 pingping 1000 65536
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2.4 The irccerun Script

The irccerun script is a startup tool for RCCE/iRCCE applications, quite similar to the well-known
rccerun script. However, it offers some additional features that make the session handling much more
convenient. So, for example, the script makes sure that the executable is copied into the shared folder
before session startup. Hence, an application can directly be started from any location of the file systems
mounted on the MCPC. Try irccerun --help so find out some more features and option:

Standard Options for irccerun:

-nue <num cores> Number of cores to be involved

-cores <names> List of cores to be involved

-corefile <file> Name of core file to be used

-verbose|-v Verbose startup output

-Verbose|-V More verbose startup output

-tetsing|-t Don’t start but show ssh command lines

Special Options for irccerun:

-kill Don’t start but kill all still running executable

-ping Don’t start but echo a ’ping’ response

-clear Clear the MPBs in an explicit procedure (like rccerun)

-delay Time span to wait after clearing the MPBs

-clock <freq> Set the reference clock frequency to <freq>
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3 Non-blocking Communication

3.1 Interleaved Communication and Computation

In many situations, performance can be improved by interleaving communication and computation.
This is particularly true in situations where the communication progress stalls due to a temporary
lack of communication resources like intermediate buffers. In such a situation, a blocking communica-
tion function has to wait (either actively by polling or passively by sleeping) until the needed resource
becomes available again. An alternative mechanism in such a situation is to use non-blocking communi-
cation functions that do not block but return back to the application immediately if the communication
progress can temporarily not be fostered. Of course, it is up to the application to exploit the interim
time until the communication progress can be pushed on again. This can be done either by processing
computational tasks or by pushing on with other communication requests. But this in turn means that
the application must check repeatedly by itself whether the communication is still stuck or not. For
this purpose, non-blocking communication functions usually pass back a so-call request handle which
can then be used by additional push, test or wait functions to ensure the communication’s progress and
eventually its completion.

3.2 An Exemplary Scenario

For example, a non-blocking receive function will just check if the respective incoming message is
already completely available. If this is not the case (e.g. the sender has not even started the message
transfer), the function just records all needed parameters (like the source and the length of the expected
message as well as the address of the respective receive buffer) within the request handle and returns
it immediately to the application level. The program can then perform some other application-related
calculations, provided that these are independent from the data of the pending message. However,
during these calculations, the program has to call a specific push function repeatedly in order to ensure
that the communication progress is being fostered in an interleaved manner. Afterwards, the program
has to call an additional test or wait function in order to check whether the message transfer has been
completed. This approach should be illustrated by the following pseudo-code:

# Initialize the non-blocking receive request:

CALL non_blocking_receive(OUT request_handle)

# Perform the interleaved computation and communication:

# (the calculation task can be divided into n subtasks)

FOR i = 1 TO n

CALL partial_calculation(IN i)

CALL push_communication(VOID)

NEXT i = i + 1

# Ensure that the communication has yet been completed:

CALL wait_for_communication_completion(IN request_handle)

Of course, not only the receiving of a message can be conducted in such a non-blocking and interleaved
manner, but also the sending of a message can be processed in a similar way. The considerations for
non-blocking send requests are quite the same as stated above for the receive request and even the
programming patterns are quite analogous. Therefore, we do not present an exemplary non-blocking
send scenario at this point.
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3.3 Interleaved vs. Overlapped Communication

On systems, where the communication can be conducted autonomously by a communication controller
(e.g. a DMA engine) or by a communication thread (e.g. on a multi-core CPU), not only an interleaving
but rather a true overlapping of communication and computation can be achieved. The main difference
between interleaved and overlapped communication is that interleaving implies a concurrent but still
serialized processing, whereas a true overlapping results in a parallel processing of communication and
computation. Thus, the first approach helps to hide wait states and to break up message dependencies
(see Section 3.5 for an example), but on the other hand it requires an explicit switch-over between
computation and communication by frequently calling the push function. In contrast to this, the
second approach can achieve real parallelism and thus does not need an explicit pushing for progress.5

However, since there is no other asynchronous hardware (like a communication controller) available for
the cores on the SCC, the iRCCE library (currently) just implements the first approach.

3.4 The Non-Blocking Communication Approach of iRCCE

As stated above, the iRCCE library implements an interleaving mechanism for non-blocking communica-
tion operations. This is achieved by using the standard RCCE communication functions6 as a template
for their iRCCE counterparts, but instead of waiting for a progress flag7 to be set, the non-blocking
iRCCE functions just test the respective flag8 and return immediately if a progress cannot be made right
away. In order to resume the communication late on, the current progress states are stored in request
handles that are of type iRCCE SEND/RECV REQUEST9. These handles are set up and returned by the
respective non-blocking send/receive functions (iRCCE isend()/iRCCE irecv()) that have to be called
in order to initiate a non-blocking communication request. Subsequently, the communication progress
can be pushed on by calling iRCCE isend/irecv push() repeatedly. Again, also these functions return
immediately if the communication progress can temporarily not be fostered. Finally, the completion of
a once pending communication request must be ensured by a call to the iRCCE isend/irecv test() or
to the iRCCE isend/irecv wait() function with the respective request handle as function parameter.

Before the completion of a non-blocking operation is not ensured by a call to these
functions, neither the respective receive buffer is guaranteed to be valid (it is likely that
the message has yet not arrived in the receive buffer) nor the respective send buffer is
allowed to be modified (it is likely that the message has yet not been copied out of the
send buffer).

In order to handle multiple outstanding communication requests, the iRCCE library implements
a queuing mechanism. This is necessary, because it is possible to initiate subsequent non-blocking
send requests, for example, to the same destination even before the first message gets started to be
transferred. Thus, without a queuing mechanism, the order of the messages could not be observed.
The iRCCE library implements this queuing mechanism in terms of single-linked lists with one10 send
and 48 receive queues per core. If the first element in such a list is not NULL (that means that a
previous request is still in progress) the new request is just added at the end of the list. Otherwise, the
iRCCE isend/irecv() function tries to complete the new request directly. If such a completion cannot
be achieved, the request becomes the head of the respective list and the function returns immediately.

5Nevertheless, it should be mentioned that the synchronization between a communication and a computation thread, as
well as the latency for setting up a communication controller like a DMA engine, can expose an enormous overhead
that can even nullify the performance improvements gained by the parallel progress, especially for short messages.

6These are the send and receive functions (RCCE send()/RCCE recv()) of the non-gory interface of RCCE.
7See the RCCE wait until() calls of RCCE send/recv general() in RCCE send/recv.c.
8See the iRCCE test flag() calls of iRCCE push send/recv request() in iRCCE isend/irecv.c.
9These are just C structs that are defined in iRCCE.h

10Consequently, send requests (even to different remote ranks) are always processed in the order of their respective
iRCCE isend() calls; whereas receive requests are handled in the order of the message arrival.
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According to this, if one wants to foster the communication progress irrespectively from a specific
request, just the first pending request in the respective queue needs to be pushed; and that is exactly
what iRCCE isend/irecv push() does. In contrast to this, iRCCE isend/irecv test() only checks
and pushes that request that is passed as the function argument. However, these test functions can
alternatively be called with NULL as the argument indicating that the respective queue as a whole
is meant. And likewise, when calling iRCCE isend/irecv wait() with NULL as the argument, the
completion of the whole pending queue is waited for. Furthermore, even iRCCE isend/irecv() can
be called with NULL as the request argument. In such a case, a subsequent wait() call will be issued
internally.

3.5 An Example Code: The Ping-Ping Pattern

In this section, we want to detail the communication kernel of the Ping-Ping benchmark that is part
of the iRCCE distribution (see Section 2.3). The Ping-Ping pattern (see Figure 2) is an example for
common communication patterns where messages are exchanged in a symmetric manner. In contrast
to the notorious Ping-Pong pattern (see Figure 1), the Ping-Ping pattern is symmetric in this respect
that both participating processes do exactly the same: (1) initiate a send request, (2) initiate a receive
request and then (3) wait for their completion:

iRCCE_SEND_REQUEST send_request;

iRCCE_RECV_REQUEST recv_request;

char send_buffer[length];

char recv_buffer[length];

int my_rank = RCCE_ue();

int remote_rank = (my_rank + 1) % 2;

RCCE_barrier(&RCCE_COMM_WORLD);

timer = RCCE_wtime();

for(round=0; round < numrounds+1; round++)

{

/* (1) send PING via non-blocking send: */

iRCCE_isend(send_buffer, length, remote_rank, &send_request);

/* (2) receive PING via non-blocking recv: */

iRCCE_irecv(recv_buffer, length, remote_rank, &recv_request);

/* (3) wait for completion: */

iRCCE_isend_wait(&send_request);

iRCCE_irecv_wait(&recv_request);

}

timer = RCCE_wtime() - timer;

As one can see, without non-blocking communication functions, this pattern could not be realized be-
cause the symmetric blocking send calls would both stuck in anticipation of the matching but subsequent
receive calls.
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4 Extended Range of Functions

Besides the yet presented iRCCE functions for handling non-blocking communication, we have also
added some more higher-level functions for a more convenient handling of outstanding non-blocking
requests. This additional part of the iRCCE API should be detailed in this section.

4.1 Overview of the Additional iRCCE Functions

Cancel and Waitlist Functions:

• int iRCCE isend cancel(iRCCE SEND REQUEST*, int*);

• int iRCCE irecv cancel(iRCCE RECV REQUEST*, int*);

• void iRCCE init wait list(iRCCE WAIT LIST*);

• void iRCCE add to wait list(iRCCE WAIT LIST*,iRCCE SEND REQUEST*,iRCCE RECV REQUEST*);

• int iRCCE test all(iRCCE WAIT LIST*, int*);

• int iRCCE wait all(iRCCE WAIT LIST*);

• int iRCCE test any(iRCCE WAIT LIST*, iRCCE SEND REQUEST**, iRCCE RECV REQUEST**);

• int iRCCE wait any(iRCCE WAIT LIST*, iRCCE SEND REQUEST**, iRCCE RECV REQUEST**);

Tagged Flags Functions:

• int iRCCE flag alloc tagged(RCCE FLAG*);

• int iRCCE flag write tagged(RCCE FLAG*, RCCE FLAG STATUS, int, void*, int);

• int iRCCE flag read tagged(RCCE FLAG, RCCE FLAG STATUS, int, void*, int);

• int iRCCE wait tagged(RCCE FLAG, RCCE FLAG STATUS, void*, int);

• int iRCCE test tagged(RCCE FLAG, RCCE FLAG STATUS, int*, void*, int);

Atomic Increment Register Functions: and Improved Collectives:

• int iRCCE atomic alloc(iRCCE AIR**);

• int iRCCE atomic inc(iRCCE AIR*, int*);

• int iRCCE atomic read(iRCCE AIR*, int*);

• int iRCCE atomic write(iRCCE AIR*, int);

Improved Collectives:

• int iRCCE barrier(RCCE COMM* comm);

• int iRCCE bcast(RCCE COMM comm);

• int iRCCE msend(char *, size t);

• int iRCCE mrecv(char *, size t, int);
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4.2 Functions for Canceling Requests

First of all, we have added functions for canceling already enqueued but not yet started send and
receive requests (iRCCE isend cancel()/iRCCE irecv cancel()). By means of these functions, it can
be attempted to remove such a request from the respective waiting queue until it becomes the head
of it. However, if the request has already become the first and the actual communication has already
been started, a subsequent canceling is no longer possible. In such a case, the cancel function returns
the information that the requested withdrawal has failed. But this in turn means that the started
request has to be matched by a respective send or receive call on the remote side.11 Therefore, the
application programmer should be clear in one’s mind about the fact that a cancel call may fail and that
the application’s communication pattern must be designed in such a way that all started non-blocking
requests are resolved.

4.3 Functions for Handling Multiple Outstanding Requests

In many cases one wants request some amount of non-blocking send/receive operations, then do calcu-
lations in some kind of loop and from time to time test if the send/receive operations have succeeded.
For bigger amounts of messages one will certainly write a loop for testing all those requests. Those
loops are an unnecessary and uncomfortable duplication of code, so we wrote functions to handle this
in a more elegant manner. iRCCE test all() will traverse a linked list of send/receive requests and
return success if there have been no pending requests, while iRCCE wait all() is not returning until
there are no pending requests left. One only have to initialize a data structure of type iRCCE WAIT LIST

and add requests to it first. Analogous to this, iRCCE test any()/iRCCE wait any() can be used for
testing or waiting for completion of any pending operation in the list.

4.4 Functions for Handling Tagged Flags

Former versions of the original RCCE (up to RCCE release V1.0.13) used one whole cache-line of 32
Byte per RCCE FLAG; at least when not using the ”single bit flags” mode.12 In the common use of such
cache-line-sized flags, only one integer word of 4 Byte is used for the actual synchronization whereas the
remainder is unused. However, when using iRCCE’s Tagged Flags, the remaining 28 Bytes can be used
for small payloads in a piggyback fashion. This is because on hardware level, all data exchange via the
mesh is conducted in cache-line granularity. For sending such payload alongside with a flag, one can use
the function iRCCE flag write tagged() which is quite similar to the common RCCE flag write()

function with the exception that it also takes a pointer and the length of a payload buffer as additional
arguments.

Caution: If the payload length is bigger than the remaining bytes of the cache-line, the
message gets truncated and only the first 28 Bytes will be transferred!

Please note that when using the OpenMP-emulated mode of RCCE, there is one more word needed
for synchronization. Therefore, only 24 Bytes are left for payload in this case. Hence, if one wants to
write portable iRCCE applications, one should check the actual available payload size13 before using
iRCCE flag write tagged(). On receiver side, a call of iRCCE wait tagged() will not only block until
the respective flag is set, but will also copy the sent piggyback payload into an additional receive buffer.

11This is because otherwise the pending request will wait eternally at the head of the queue and will hinder all following
requests from being processed.

12Please notice that Tagged Flags cannot be used in ”single bit flags” mode!
13This can be done via the macro iRCCE MAX TAGGED LEN or via a call of iRCCE get max tagged len().
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As a simple example, just consider the following Ping-Pong scheme, which is quite similar to that
which can be found in iRCCE tagged.c:

RCCE_FLAG mailbox;

iRCCE_flag_alloc_tagged(&mailbox);

. . .

if(my_rank == 0) {

/* Ping: */

iRCCE_flag_write_tagged(&mailbox, RCCE_FLAG_SET, remote_rank, send_buffer, length);

/* Pong: */

iRCCE_wait_tagged(mailbox, RCCE_FLAG_SET, recv_buffer, length);

iRCCE_flag_write(&mailbox, RCCE_FLAG_UNSET, my_rank);

}

else {

/* Ping: */

iRCCE_wait_tagged(mailbox, RCCE_FLAG_SET, recv_buffer, length);

iRCCE_flag_write(&mailbox, RCCE_FLAG_UNSET, my_rank);

/* Pong: */

iRCCE_flag_write_tagged(&mailbox, RCCE_FLAG_SET, remote_rank, send_buffer, length);

}

A major advantage of using tagged flags for exchanging small messages instead of using the common
send/recv functions is a significant latency improvement. In fact, when building iRCCE against RCCE
V1.0.13, even the latencies for small messages sent via the common iRCCE ssend()/iRCCE srecv()

functions can benefit from the internal usage of tagged flags.14 Since up to RCCE V1.0.13 there is
no difference between tagged flags and common flags, both types can be allocated and used with both
APIs (RCCE in gory mode and iRCCE). However, when building iRCCE against a more recent RCCE
version, the new function iRCCE flag alloc tagged()must be used for allocating tagged flags in order
to assure that a whole cache-line is assigned to such a flag. Please notice that iRCCE uses the non-gory
mode in which all once allocated resources can no more be freed during a session. For this reason,
iRCCE offers no corresponding free function.

4.5 Functions for Handling Atomic Increment Registers

Since the release of sccKit 1.4, the FPGA features two sets of 48 atomic counters. These 32 bit counters
are mapped via LUT entries into the cores’ address space and can be used in terms of memory mapped
registers. Therefore, each atomic counter is represented by a pair of two registers: the actual increment
register and an additional initialization register. While a read operation on the increment register
atomically increments its value and returns its former value, the initialization register cab be used to
preload the counter and to read its value without modification.

When using the iRCCE API, each of the 96 atomic increment registers (AIRs) must be allocated
via a call of iRCCE atomic alloc() before it can be used. The function iRCCE atomic write() can
then be used to initialize the counter read and iRCCE atomic read() returns the current value without
modification. Finally, iRCCE atomic inc() is the function that atomically increments the respective
counter. For using these functions, iRCCE must be built via > make AIR=1!

14But also a word of caution: On the other hand, when using one cache-line per flag for all flags, the amount of MPB
space available for larger messages gets reduced, what can in turn impact the obtainable throughput!
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5 Other Improvements of iRCCE to RCCE

5.1 SCC-optimized Memory Copy Functions

On the current SCC architecture, a write access does not perform a cache line fill even if the cache
line is not present (cache on read not on write). Therefore, the core writes in this case directly to the
main memory and, of course, this is quite expensive in terms of time. However, if a present cache line
is modified, these changes are are not directly applied to main memory but just to the cache. Thus,
when touching a cache line by a read access before modifying its content, subsequent write accesses to
this line do not imply a write through to the main memory. The following SCC-customized functions
copy memory from the on-die buffers (MPB) to an off-die region while pre-fetching the cache lines
of the destination: iRCCE put() / iRCCE memcpy put(). Therefore, these functions avoid the above
mentioned SCC-specific bad behavior of write misses. In turn, if the destination is located in on-die
memory (MPB), classical pre-fetching techniques15 are used by the following functions in order to
increase the copy performance: iRCCE get() / iRCCE memcpy get(). All these functions are internally
used by the iRCCE communication functions; but they can also be utilized outside of the library.
Please notice: Allocating MPB space in an explicit manner via RCCE malloc is actually not supported
in RCCEs non-gory mode. Therefore, one can use the corresponding iRCCE function iRCCE malloc,
which is (more or less) just a wrapper that is available in non-gory mode, too.

5.2 Pipelined Send and Receive Functions

The common RCCE send and receive functions16 use the core-local MPB space for sending messages to
remote cores. As one may know, these local buffers are 8KByte MPB space per core. If a message to
be sent is bigger than the available local MPB space, it must be divided into chunks that are then sent
piecewise. For this purpose, the common RCCE functions determine a chunk size that is equal to the
amount of the available local MPB space. However, when using the whole available local MPB space for
one single message chunk, the message transport becomes necessarily a serialized process: (1a) sender
puts chunk into the MPB, (1b) sender signalizes the chunk’s arrival, (2a) receiver gets chunk from the
MPB, (2b) receiver signalizes the chunk’s removal (see Figure 3). This processing scheme must then be
performed iteratively until the whole message has been transferred.

Therefore, a smarter approach is not to use the whole local MPB as one big chunk but to divide
it into two smaller chunks. This is because in this case sender and receiver can work on the MPB
simultaneously in a pipelined and parallelized manner: (1a) sender puts message chunk A into the
MPB, (1b) sender signalizes the arrival of chunk A, (2a) sender puts message chunk B into the MPB;
and meanwhile, the receiver can remove chunk A from the MPB, (2b) sender/receiver signalize the
arrival/removal of chunk B/A; and so on (see Figure 4). The differences between both approaches can
be made clear by comparing Figure 3 and Figure 4.

This pipelining approach is implemented within iRCCE in terms of the blocking iRCCE ssend()

and iRCCE srecv() functions. It is important that each call of these functions is matched with a
call of its respective counterpart on the remote side. That means that a message that is sent via
iRCCE ssend() must necessarily be received via iRCCE srecv(); and vice versa. This is because the
pipelining requires that both the sender and the receiver cooperate synchronously according to the
pipelining technique. That this technique can really help to improve the communication performance
especially for larger messages can be proved by applying appropriate benchmark tool, as for example
shown here in Section 8. However, one should remember that this technique (at least in its current
implementation) just takes effect for messages that are bigger than the local MPB space of 8KByte.

15See include/scc memcpy.h for more details.
16as well as the non-blocking and the blocking send and receive functions of iRCCE
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5.3 Some Improved Collective Functions

The first improved collective function offered by iRCCE performs a broadcast (or multicast) pattern.
On the one hand, the improvement (with respect to throughput performance) of this function is based
on the pipelined communication functions of iRCCE. However, instead of just using these function
e.g. in the context of a common tree-based broadcast approach, we have modified them to realize a
single-writer/multiple-reader pattern. While the sender (the source of the broadcast) puts/writes the
message (or a at least a message chunk) into its local MPB, all receivers concurrently get/read the
message from this remote MPB region. This approach helps to increase the throughput performance
especially in cases where a lot of receivers are involved into the broadcast pattern, as one can see in
Table 2 in Section 8. For doing so, one can use the iRCCE function iRCCE bcast(). However, in fact
this function is just a wrapper around the so-called multicast functions of iRCCE: iRCCE msend() and
iRCCE mrecv(), as it is shown in the following code fragment.17 As one can see, these improvements
just take effect when the RCCE COMM WORLD communicator is used. Otherwise, the iRCCE bcast function
just makes a fallback to a call of the common broadcast function of RCCE:

int iRCCE_mcast(char *buf, size_t size, int root)

{

if(RCCE_IAM != root) return iRCCE_mrecv(buf, size, root);

else return iRCCE_msend(buf, size);

}

int iRCCE_bcast(char *buf, size_t size, int root, RCCE_COMM comm)

{

if(memcmp(&comm, &RCCE_COMM_WORLD, sizeof(RCCE_COMM)) == 0)

return RCCE_bcast(buf, size, root, comm);

else return iRCCE_mcast(buf, size, root);

}

17This code is taken from iRCCE application multicast (see iRCCE mcast.c).
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The second improved collective is the barrier function. Here, the extended Atomic Increment support
(for the SCC a set of 96 Atomic Increment Counters/Registers) is used for the implementation of a simple
SMP-like centralized barrier algorithm. The implementation is straight forward: Within a gather phase,
each incoming UE increments one of two counters. Target counter is iteratively exchanged, dependent if
the epoch is even or odd. A reset of the counter value is triggered by the last UE which has entered the
barrier to release the barrier. Accordingly, the release phase consists of busy waiting on the initialization
register of target Atomic Increment Counter except for the last UE. As this behavior obviously creates a
high contention, a certain backoff (RC wait(...)) is necessary to avoid an overload situation for target
off-chip located Synchronization Register [8].

For the common RCCE implementation, the communicator holds information on exactly two syn-
chronization flags (location within a cache-line and pointer to cache-line and byte containing the flag)
for the realization of a barrier support. This communicator structure corresponds to the linear barrier
algorithm, where one flag is used to gather and the other flag is used to release all UE’s in a master
follower approach.

iRCCE allocates the first two Atomic Increment Counters (iRCCE atomic barrier) for the realization
of the described central barrier algorithm as a workaround for the global communicator (RCCE COMM WORLD).
For the access of atomic operations, the new interface from Section 9.10 is used. As a fallback solution
for all other communicators, the common linear algorithm of RCCE is used.

int iRCCE_barrier(RCCE_COMM comm)

{

int counter, epoch;

if( comm == RCCE_COMM_WORLD )

{

flag_read(comm.gather,&epoch);

iRCCE_AIR* reg = iRCCE_atomic_barrier[epoch];

iRCCE_atomic_inc(reg, &counter);

if(counter < comm.size)

while(iRCCE_atomic_read(reg,&counter)) RC_wait(...);

else

iRCCE_atomic_write(reg,0);

epoch = !epoch;

flag_write(comm.gather,epoch);

return(RCCE_SUCCESS);

}

else

return RCCE_barrier(comm);

}
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6 Wildcard Mechanisms

The recent version of iRCCE also supports wildcards for message length (iRCCE ANY LENGTH) and source
parameter (iRCCE ANY SOURCE) when calling the blocking or non-blocking receive function of iRCCE
(iRCCE srecv()/iRCCE irecv()). This chapter details their usage and shows a short example code.

6.1 ANY LENGTH: Receiving Messages with arbitrary Sizes

By using the additional iRCCE ANY LENGTH symbol18 as a wildcard for the message length parameter,
the receive functions are told to accept incoming messages of an arbitrary size. After receiving a
message by using this wildcard, the length of the actual payload can then be determined by calling the
iRCCE get length() or iRCCE get size() function (see Section 9.8). For that purpose, the current
message length is passed to the receiver prior to the actual payload. This is done by ”hijacking” the
synchronization flags that are needed to get a message through the MPB. That means that the sender
not only signals the receiver that a message (or the first chunk of a message) has been copied into the
MPB but also informs the receiver about the total length of this message by means of these flags.19

However, this in turn implies that such a flag must be typed as an integer and not just as a single bit.
For this reason, this wildcard mechanism only works in the so-called big flags case of RCCE release
V1.0.13 where a whole cache line is used per flag.

Therefore, the iRCCE ANY LENGTH wildcard can only be used when iRCCE is built against
RCCE release V1.0.1320 with single bit flags disabled21. This is because cache line-sized
flags are needed to submit the actual message length to the receiver. Moreover, when
using the iRCCE ANY LENGTH wildcard, the application programmer has to ensure that the
provided receive buffer is large enough to take in the largest possible message that may
occur for a specific receive function call!22

6.2 ANY SOURCE: Receiving Messages from arbitrary Source Ranks

Using the new symbol iRCCE ANY SOURCE as a wildcard for the source parameter in iRCCE srecv() or
iRCCE irecv(), the receiver is able to receive a message from an arbitrary UE. In case of the blocking
version this is achieved by a periodic check of the potential sources in terms of a set sent flag. When a
source is found the function proceeds as if it was called with a source specified. To find a source in case
of the non-blocking version additional effort is needed. A non-blocking call with iRCCE ANY SOURCE as
parameter for the source first tries to find a source by checking the sent flags of the potential sources
just like discussed above, however with a little difference. A potential source is not only distinguished
by a set sent flag but also by an empty iRCCE irecv queue of that source. That means no other open
receive request may pend on that source. If a source is found an appropriate request is initialized and
the futher behaviour is equivalent to a respective iRCCE irecv()-call with that source. Otherwise there
is a new queue (iRCCE irecv any source queue) for reserved requests with no defined source. This
queue contains initialized received requests with the source member set to iRCCE ANY SOURCE. When
calling one of the functions for handling outstanding requests (see Section 9) an attempt is made to find
a source for those requests. On success the request is taken out of the iRCCE irecv any source queue

and treated as a normal request. The application programmer only has to be aware that iRCCE irecv()-
calls with specified source have precedence23 over those called with iRCCE ANY SOURCE. Apart from this
a call with this wildcard behaves as usual.

18In fact, this symbol is just a global and constant integer value. (const int iRCCE ANY LENGTH = -1)
19Please notice that iRCCE does not add any headers to the payload of the messages.
20This version can be found here: http://marcbug.scc-dc.com/svn/repository/tags/RCCE V1.0.13
21Which is the default case! (make [SINGLEBITFLAGS=0])
22That means that iRCCE does not check for buffer overflows!
23That is because an empty iRCCE irecv queue is one of the criteria for potential sources.
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6.3 A simple Master/Worker Example

The following code shows an example for a Master/Worker pattern that is realized in a smart way by
using the iRCCE ANY SOURCE and iRCCE ANY LENGTH wildcards:

#define max_length 10

char buffer[max_length];

int my_rank = RCCE_ue();

int num_ues = RCCE_num_ues();

if(my_rank == 0)

{

/* I am the Master! Receive strings from workers: */

for(i=1; i<num_ues; i++)

{

iRCCE_srecv(buffer, iRCCE_ANY_LENGTH, iRCCE_ANY_SOURCE);

printf("Message from Worker %d: %s\n", iRCCE_get_source(NULL), buffer);

}

}

else

{

/* I am a Worker! Send a random string to the master: */

sprintf(buffer, "%d", rand());

iRCCE_ssend(buffer, strlen(buffer), 0);

}

6.4 Using Wildcards in Multicast/Broadcast Patterns

One major advantage of having the split functions iRCCE msend() and iRCCE mrecv() is that on receiver
side even wildcards can be used for a collective broadcast pattern. So, for example, the receiving
processes need not to be informed about the actual message length before the broadcast operation
starts: The receivers just call iRCCE mrecv() with the iRCCE ANY LENGTH wildcard and only the sender
has to state the actual message length in the iRCCE msend() call. Moreover, the same applies on
receiver side for the actual sender ID: If a process is sure to be receiver, it does not need to know who
the actual sender is. It only needs to use the iRCCE ANY SOURCE wildcard for this purpose. Therefore,
the function iRCCE mcast() (see code example in Section 5.3) could also be implemented like this:

int iRCCE_mcast(char *buf, size_t size, int root)

{

if(RCCE_IAM != root)

return iRCCE_mrecv(buf, iRCCE_ANY_LENGTH, iRCCE_ANY_SOURCE);

else

return iRCCE_msend(buf, size);

}
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7 Known Problems and Issues

• Differences between MPI and iRCCE Semantics
Although some function names of iRCCE are quite similar to their counterparts of the Message
Passing Interface Standard (MPI) [7], usage and semantics of both APIs differ in detail. So, for
example, the test function of iRCCE only checks and pushes that non-blocking request that is passed
via the respective function call. In contrast to this, the MPI test function also triggers the so-called
progress engine that ensures that all waiting requests are checked for progress irrespectively from the
passed request of the function call.

• Matching of Non-Blocking Requests with Blocking Function Calls
Although not extensively tested, a call e.g. of the blocking RCCE send function (RCCE send()) should
match with a call of its non-blocking iRCCE counterpart (iRCCE irecv()) on the remote side; and
vice versa. But beware! This is true for matching non-blocking iRCCE calls with blocking RCCE
calls, but not for mixing non-blocking calls with the blocking but pipelined functions of iRCCE, as
for example iRCCE srecv().24 Moreover, calling a blocking RCCE function after initiating a still
pending non-blocking iRCCE function can cause deadlocks because of the missing push() calls!25

• Mixing of Non-Blocking Function Calls with Collective Operations
Do not use collective communication operations (like RCCE bcast or RCCE barrier) when there are
still outstanding non-blocking communication requests! This is because since RCCE does not use
message tags like MPI, iRCCE cannot distinguish internally between collective and point-to-point
requests. Thus, an overlapping of non-blocking transfers with collective communication patterns can
lead to message mismatches and deadlocks.

• Allocating MPB Space or Flags during Non-Blocking Communication
Do not allocate new flags or new MPB regions when there are still outstanding non-blocking com-
munication requests! This is because the amount and the position of the MPB space used for the
asynchronous data transfers is recorded at creation time of the respective non-blocking communication
request and internally used throughout the request’s completion.

8 Performance Results and Comparisons

In this section, we want to present some performance results. In Figure 5, one can see the Ping-
Pong bandwidth26 (measure with the iRCCE Ping-Pong benchmark, see Section 2.3) for different
message sizes and different optimization approaches. All measurements were done between the cores
rck00 and rck01 with network and memory running at 800MHz and a core frequency of 533MHz
(Tile533 Mesh800 DDR800). The used libraries were standard RCCE (V 1.0.13, big flags, nongory)
and our iRCCE. The figure shows a performance comparison between the standard RCCE functions
(RCCE send/recv()), the utilization of improved memory copy functions (iRCCE memcpy put/get())
and the the applying of Pipelining (iRCCE ssend/srecv()) for long messages (length ≥ 8192). As one
can see, iRCCE outperforms RCCE with respect to the communication bandwidth especially in case of
larger messages.

Regarding the latencies for short (1 Byte) messages,27 the performance depends on the RCCE version
which iRCCE is built against. When using a version up to RCCE V1.0.13 (which uses one cache line
per flag), the latencies can benefit from iRCCE’s Tagged Flags feature, as it is shown in Table 1.

24This is because the pipelining requires that both the sender and the receiver cooperate synchronously according to the
pipelining technique (see Section 5.2).

25Better use iRCCE isend/irecv() with NULL as the request argument in this case because the internal wait() call avoids
such deadlocks (see Section 3.4).

26See [6] for a detailed analysis of the bandwidth curve progression and its correlation with cache level sizes.
27Please notice that iRCCE’s iRCCE ssend/srecv() functions are (in contrast to RCCE’s RCCE send/recv()) synchronizing

also for Zero Byte messages!
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However, when using a more recent version of RCCE, the latencies measured with the iRCCE Ping-
Pong benchmark for iRCCE ssend/srecv() suffer a little bit in comparison to the original RCCE
functions. This is because the iRCCE functions additionally try to trigger still pending non-blocking
request before starting the actual communication and this causes an additional overhead.
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Figure 5: Some Results of the iRCCE Ping-Pong Benchmark: Performance comparison in terms of
communication bandwidth between the standard RCCE functions (RCCE send/recv()), the
utilization of improved Memory-Copy functions (iRCCE memcpy put/get()) and the the ap-
plying of Pipelining (iRCCE ssend/srecv()) for long messages (length ≥ 8192)

Latencies in µs RCCE iRCCE

RCCE V1.0.13 2.84 1.65
RCCE V1.1.0 1.78 1.83
RCCE V2.0 1.78 1.83

Table 1: Latencies measured by using the iRCCE Ping-Pong benchmark for 1 Byte messages between
rck00 and rck01. All compilation was done by using the icc (not the icpc) compiler and the
SCCs configuration was set to Tile533 Mesh800 DDR800.

RCCE RCCE comm iRCCE iRCCE AIR

3.3 MB/s 26.6 MB/s 71.3 MB/s 77,7 MB/s

Table 2: Broadcast/Multicast Performance: Bandwidth/Throughput for a 64kB message sent from one
sender (the root) to 47 receivers. The SCCs configuration was set to Tile533 Mesh800 DDR800.
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9 The iRCCE Application Programming Interface

9.1 Library Initialization Function

int iRCCE init(void)

This function must be invoked before any other iRCCE function is called. The function initializes
crucial data structures of the iRCCE library as for example the queues for pending communication
requests. The return value should always be iRCCE SUCCESS.

9.2 Functions for Non-Blocking Sending

int iRCCE isend(char *buffer, size t length, int dest, iRCCE SEND REQUEST *request)

This function initiates a request for a non-blocking send operation. The function initializes a request
handle of type iRCCE SEND REQUEST that must be passed as a pointer and that is used later on for
checking for the operation’s completion. The function returns iRCCE SUCCESS in that case that the
request could be finished already within this function call. However, usually the function returns
iRCCE PENDING or iRCCE RESERVED indicating that the communication has been started but not yet
finished or that there are prior requests pending in the send queue and that the request is being
reserved. For more details about this function see Section 3.

buffer starting address of the message to be sent
length length of the outgoing message in bytes
dest rank (ID) of the target process (UE)
request request handle that is used later on for checking for completion

(if set to NULL, a subsequent iRCCE isend wait() call will be issued internally)

int iRCCE isend test(iRCCE SEND REQUEST *request, int *flag)

This function checks whether an initiated request for a non-blocking send operation is already completed.
The function checks and pushes only that request that is passed as the request handle argument.
However, if NULL is passed as the argument, the function checks for the completion of the whole pending
send queue. The function is non-blocking and the return values and their meanings are the same as for
iRCCE isend(). Therefore, the argument flag can also be omitted by passing NULL instead.

request request handle returned by iRCCE isend()

flag flag that indicates whether the message has been sent (1) or not (0)

int iRCCE isend wait(iRCCE SEND REQUEST *request)

This function can be used for waiting for the completion of a pending send request. Since this function
blocks until the respective request is finished, the function also pushes the pending receive queue as
well as the pending send requests that are enqueued prior to that request in order to avoid deadlocks.
However, if NULL is passed as the request handle argument, the completion of the whole pending send
queue is waited for. The return value should always be iRCCE SUCCESS.

request request handle returned by iRCCE isend()
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int iRCCE isend push(void)

This function pushes the progress of non-blocking communication requests that are enqueued in the
pending send queue. The function is non-blocking and the return value is iRCCE PENDING in case of
still pending send requests or iRCCE SUCCESS if the send queue is empty.

9.3 Functions for Non-Blocking Receiving

int iRCCE irecv(char *buffer, size t length, int source, iRCCE RECV REQUEST *request)

This function initiates a request for a non-blocking receive operation. The function initializes a request
handle of type iRCCE RECV REQUEST that must be passed as a pointer and that is used later on for
checking for the operation’s completion. The receiver may specify iRCCE ANY SOURCE as wildcard for
the source parameter, indicating that any source is acceptable (see also Section 6). The function returns
iRCCE SUCCESS in that case that the request could be finished already within this function call. However,
usually the function returns iRCCE PENDING or iRCCE RESERVED indicating that the communication has
been started but not yet finished or that there are prior requests pending in the receive queue and that
the request is being reserved. For more details about this function see Section 3.

buffer starting address of the receive buffer
length length of the expected message in bytes
source rank (ID) of the source process (UE)
request request handle (if set to NULL, iRCCE irecv wait() will be called internally)

int iRCCE irecv test(iRCCE RECV REQUEST *request, int *flag)

This function checks whether an initiated request for a non-blocking receive operation is already com-
pleted. The function checks and pushes only that request that is passed as the request handle argument.
However, if NULL is passed as the argument, the function checks for the completion of the whole pending
receive queue. The function is non-blocking and the return values and their meanings are the same as
for iRCCE irecv(). Therefore, the argument flag can also be omitted by passing NULL instead.

request request handle returned by iRCCE irecv()

flag flag that indicates whether the message has been received (1) or not (0)

int iRCCE irecv wait(iRCCE RECV REQUEST *request)

This function can be used for waiting for the completion of a pending receive request. Since this function
blocks until the respective request is finished, the function also pushes the pending send queue as well
as the pending receive requests that are enqueued prior to that request in order to avoid deadlocks.
However, if NULL is passed as the request handle argument, the completion of the whole pending receive
queue is waited for. The return value should always be iRCCE SUCCESS.

request request handle returned by iRCCE irecv()

int iRCCE irecv push(void)

This function pushes the progress of non-blocking communication requests that are enqueued in the
pending receive queues. The function is non-blocking and the return value is iRCCE PENDING in case of
still pending receive requests or iRCCE SUCCESS if the receive queue is empty.
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int iRCCE iprobe(int source, int* test rank, int* test flag)

This function just probes if a message could be currently received (from a sender with ID source)
by a call of iRCCE irecv(). This function is non-blocking and returns the current status within the
test flag parameter. Instead of a specific source ID, the iRCCE ANY SOURCE wildcard can here be
used, too. In such a case, the test rank parameter returns the ID of the actual sender.

source in: rank (ID) of the source process (UE) or iRCCE ANY SOURCE wildcard
test rank out: rank (ID) of the actual source process (UE) (can be set to NULL)
test flag flag that indicates whether a message could currently be received or not

9.4 Blocking but Pipelined Communication Functions

int iRCCE ssend(char *buffer, size t length, int dest)

This function is quite similar to the blocking RCCE send() function of RCCE. The main difference is
that this function is synchronizing and that a pipeline technique for larger messages is used (see also
Section 5 and Section 8). The threshold value for the message size, when pipelining should take effect,
is 8KByte per default and the function call must be matched by a remote call of iRCCE srecv().

buffer starting address of the message to be sent
length length of the outgoing message in bytes
dest rank (ID) of the target process (UE)

int iRCCE srecv(char *buffer, size t length, int source)

This function is quite similar to the blocking RCCE recv() function of RCCE. The main difference
is that this function is synchronizing and that a pipeline technique for larger messages is used (see
also Section 5 and Section 8). The receiver may specify iRCCE ANY SOURCE as wildcard for the source
parameter, indicating that any source is acceptable (see also Section 6). The threshold value for the
message size, when pipelining should take effect, is 8KByte per default and the function call must be
matched by a remote call of iRCCE ssend().

buffer starting address of the receive buffer
length length of the expected message in bytes
source rank (ID) of the source process (UE)

int iRCCE probe(int source, int* test rank)

This function just probes if a message could be received (from a sender with ID source) by a call of
iRCCE srecv(). Otherwise it blocks until a matching message arrives. Instead of a specific source ID,
the iRCCE ANY SOURCE wildcard can here be used, too. In such a case, the test rank parameter returns
the ID of the actual sender.

source in: rank (ID) of the source process (UE) or iRCCE ANY SOURCE wildcard
test rank out: rank (ID) of the actual source process (UE) (can be set to NULL)
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9.5 SCC-customized Put/Get and Mem-Copy Functions

int iRCCE put(t vcharp target, t vcharp source, int size, int rank)

This is the SCC-optimized version of the RCCE put() function (see Section 5.1 for more details). The
function copies the contents of the buffer pointed to by source into the MPB location pointed to by
target. The data type t vcharp is similar to volatile char* and defined in RCCE.h.

target an MPB address that will be converted to the appropriate address on the UE
source start address of the data in private memory of the calling UE
size size of the data to be put into the MPB in bytes
rank rank (ID) of the target process (UE)

int iRCCE get(t vcharp target, t vcharp source, int size, int rank)

This is the SCC-optimized version of the RCCE get() function (see Section 5.1 for more details). The
function copies the contents of the MPB location pointed to by source into the buffer pointed to by
target. The data type t vcharp is similar to volatile char* and defined in RCCE.h.

target address of the destination buffer in private memory of the calling UE
source an offset that, when combined with the remote rank, points to the source MPB
size size of the data to be gotten from the MPB in bytes
rank rank (ID) of the source process (UE)

void* iRCCE memcpy put(void* dest, const void* src, size t num)

This function copies num bytes from memory area src to memory area dest in an SCC-optimized
manner (see also Section 5.1). It can be used instead of the common memcpy() routine of <string.h>.

dest start address of the destination memory area
src start address of the source memory area
num number of bytes to be copied from source to destination

void* iRCCE memcpy get(void* dest, const void* src, size t num)

This function copies num bytes from memory area src to memory area dest in an SCC-optimized
manner (see also Section 5.1). It can be used instead of the common memcpy() routine of <string.h>.

dest start address of the destination memory area
src start address of the source memory area
num number of bytes to be copied from source to destination

t vcharp iRCCE malloc(size t size)

Allocating MPB space in an explicit manner via RCCE malloc is actually just supported in RCCE’s gory
mode. Therefore, this corresponding iRCCE function is (more or less) just a wrapper that is available
in non-gory mode, too. However, in contrast to the behavior of the common RCCE malloc function in
gory mode, it is not possible to free a once allocated MPB region afterwards. For this reason, there
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does not exist a corresponding iRCCE free function. The iRCCE malloc function returns NULL if size
is not a multiple of 32 or if the whole MPB space is already allocated.

size number of bytes to allocate in MPB; must be a multiple of 32

9.6 Cancel Functions for Non-blocking Requests

int iRCCE isend cancel(iRCCE SEND REQUEST *request, int *flag)

This function tries to cancel a yet not finished non-blocking send request. If the request has not yet
been started of being processed, the canceling should be successful, otherwise this request can no longer
be canceled. The returned flag value indicates whether the canceling was successful or not. For more
details about this function see Section 4.2.

request request that should be removed from the waiting send request queue
flag flag that indicates whether the canceling was successful (1) or not (0)

int iRCCE irecv cancel(iRCCE RECV REQUEST *request, int *flag)

This function tries to cancel a yet not finished non-blocking receive request. If the request has not yet
been started of being processed, the canceling should be successful, otherwise this request can no longer
be canceled. The returned flag value indicates whether the canceling was successful or not. For more
details about this function see Section 4.2.

request request that should be removed from the waiting receive request queue
flag flag that indicates whether the canceling was successful (1) or not (0)

9.7 Functions for Handling Multiple Outstanding Requests

void iRCCE init wait list(iRCCE WAIT LIST* wait list)

This function initializes a wait-list and must be called before adding pending communication requests to
the respective wait-list. A wait-list of type iRCCE WAIT LIST can handle both send and receive requests.

wait list a pointer to an object of the opaque iRCCE data type iRCCE WAIT LIST

iRCCE add to wait list(iRCCE WAIT LIST* wait list, iRCCE SEND REQUEST *send request,
iRCCE RECV REQUEST *recv request)

This function adds a pending send and/or receive request to a wait-list that must be initialized before
by iRCCE init wait list(). Either the send request argument or the receive request argument can be
set to NULL if there is not request of the respective type to be added.

wait list a pointer to the respective wait-list object
send request a pointer to a pending send request to be added to the wait-list (can be NULL)
recv request a pointer to a pending receive request to be added to the wait-list (can be NULL)
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iRCCE test all(iRCCE WAIT LIST* wait list, int *flag)

This function tests for completion of all requests in the passed wait-list. The flag is set to 1, if all
respective requests are finished, or to 0 otherwise. See Section 4.3 for more details about this function.

wait list a pointer to the respective wait-list object
flag flag that indicates whether the wait-list is processed (1) or not (0)

iRCCE wait all(iRCCE WAIT LIST* wait list)

This function just waits for completion of all requests in the passed wait-list. See Section 4.3 for more
details about this function.

wait list a pointer to the respective wait-list object

iRCCE test any(iRCCE WAIT LIST* wait list, iRCCE SEND REQUEST **send request,
iRCCE RECV REQUEST **recv request)

This function tests for completion of any request in the passed wait-list. It returns a pointer to that
finished request or NULL otherwise. In case of a finished send request, send request points to this
request and recv request is set to NULL; and vice versa in case of a finished receive request.

wait list a pointer to the respective wait-list object
send request returned pointer to a finished send request (or NULL)
recv request returned pointer to a finished receive request (or NULL)

iRCCE wait any(iRCCE WAIT LIST* wait list, iRCCE SEND REQUEST **send request,
iRCCE RECV REQUEST **recv request)

This function just waits for completion of any request in the passed wait-list. In case of a finished
send request, send request points to this request and recv request is set to NULL; and vice versa in
case of a finished receive request. The rank (ID) of the respective sender/receiver can afterwards be
determined via iRCCE get dest()/iRCCE get source() (see Section 9.8).

wait list a pointer to the respective wait-list object
send request returned pointer to a finished send request (or NULL)
recv request returned pointer to a finished receive request (or NULL)

9.8 Functions for Querying Request Parameters

iRCCE get source(iRCCE RECV REQUEST* request)

This function returns the source rank (ID) that is associated with a certain receive request. When
using the iRCCE ANY SOURCE wildcard within a receive call (see Section 6), this function can then be
used to determine the actual sender after receiving a message. If NULL is stated instead of a pointer
to a request, the source rank of the last incoming message is returned. However, a return value of -1
indicates a faulty usage of this function.

request request to be inquired
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iRCCE get dest(iRCCE SEND REQUEST* request)

This function returns the rank (ID) of the receiver that is associated with a certain send request.

request request to be inquired

iRCCE get status(iRCCE SEND REQUEST* send request,
iRCCE RECV REQUEST* recv request)

This function returns the current status of a message that is associated with a certain send or receive
request. When inquiring a send request, the pointer to receive requestmust be set to NULL. And vice
versa, when inquiring a receive request, the pointer to send request must be set to NULL. In contrast
to call of a test function, this function does not push any pending requests, but just returns the current
status.

send request send request to be inquired (or NULL)
recv request recv request to be inquired (or NULL)

iRCCE get size(iRCCE SEND REQUEST* send request, iRCCE RECV REQUEST* recv request)

This function returns the size of a message that is associated with a certain send or receive request.
When inquiring a send request, the pointer to receive request must be set to NULL. And vice versa,
when inquiring a receive request, the pointer to send request must be set to NULL. If both request
pointers are set to NULL, the length of the last incoming message is returned.

send request send request to be inquired (or NULL)
recv request recv request to be inquired (or NULL)

iRCCE get length(void)

This function is similar with a call of iRCCE get length(NULL, NULL). It can be used to determine the
actual length after receiving a message while using the iRCCE ANY SOURCE wildcard within the receive
call (see Section 6).

9.9 Functions for Handling Tagged Flags

int iRCCE flag alloc tagged(RCCE FLAG *flag)

Since up to RCCE V1.0.13 there is no difference between tagged flags and common flags, both types
can be allocated and used with both APIs (RCCE in gory mode and iRCCE). However, when building
iRCCE against a more recent RCCE version, this function must be used for allocating tagged flags in
order to assure that a whole cache-line is assigned to such a flag.

flag pointer to an existing variable of type RCCE FLAG

int iRCCE flag write tagged(RCCE FLAG *flag, RCCE FLAG STATUS val, int ID,
void *tag, int len)

This function can be used to change (= write) the status (= value) of an (i)RCCE flag to RCCE FLAG SET

or RCCE FLAG UNSET. In contrast to the common RCCE flag write() function, this functions also trans-
fers additional payload (up to 28 Byte) as a tag alongside with the flag value.
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flag pointer to the flag to be written
val flag value to be written (RCCE FLAG SET or RCCE FLAG UNSET)
ID rank of target UE
tag pointer to payload to be sent alongside with the flag to target UE
len length of the piggyback payload to be sent

int iRCCE get max tagged len()

This function returns the upper bound of the payload length that can be transferred via one call of
iRCCE flag write tagged(). Usually, the returned value is 28 Byte. However, if one wants to write
portable iRCCE programs, it is a good idea to inquire for this value via this function before using
tagged flags (see also Section 4.4).

int iRCCE flag read tagged(RCCE FLAG flag, RCCE FLAG STATUS *val, int ID,
void *tag, int len)

This function reads and returns the current status of a certain flag and additionally copies potentially
tagged payload (up to size len) into a receive buffer pointed to by tag (at least if this buffer pointer is
not set to NULL).

flag flag to be read
val pointer to a status variable of type RCCE FLAG STATUS for storing the flag value
ID rank of target UE
tag buffer pointer for the payload to be received alongside with the flag from target UE
len length of the piggyback payload to be received

int iRCCE wait tagged(RCCE FLAG flag, RCCE FLAG STATUS val,
void *tag, int len)

This function polls on a flag (by using the iRCCE flag read tagged() function internally) until the
flags value is equal to the passed parameter val. Thereupon is copies potentially tagged payload (up
to size len) into a receive buffer pointed to by tag (at least if this buffer pointer is not set to NULL).

flag flag on which should be polled
val flag value to be waited for (RCCE FLAG SET or RCCE FLAG UNSET)
tag pointer to payload to be received alongside with the flag
len length of the piggyback payload to be received

int iRCCE test tagged(RCCE FLAG flag, RCCE FLAG STATUS val, int *result,
void *tag, int len)

This function is quite similar to iRCCE wait tagged() with the difference that it does not block. The
returned result parameter indicates whether an alternate call of iRCCE wait tagged() would block
(*result=0) or not (*result=1).

flag flag which should be checked
val flag value to be waited for (RCCE FLAG SET or RCCE FLAG UNSET)
result returned integer flags that indicates whether a respective wait() call would block or not
tag pointer to payload to be received alongside with the flag
len length of the piggyback payload to be received
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9.10 Functions for Handling Atomic Increment Registers

int iRCCE atomic alloc(iRCCE AIR** reg)

The SCC’s FPGA provides 96 atomic increment registers (AIRs) and before one of them can be used,
it must be allocated by a call of this function. Please note that there is no corresponding free function
and, therefore, a once allocated register cannot be freed during a still running iRCCE session.

reg returned pointer to an atomic increment register
(represented by a pointer of type iRCCE AIR)

int iRCCE atomic inc(iRCCE AIR* reg, int* value)

This function increments the value of an AIR register in an atomic manner and returns the value of the
register before the respective incrementation took place.

reg pointer to an atomic increment register (represented by a type iRCCE AIR)
value returned value of the AIR register before the incrementation took place

int iRCCE atomic read(iRCCE AIR* reg, int* value)

This function reads and returns the current value of the respective AIR register without changing it.

reg pointer to an atomic increment register (represented by a type of iRCCE AIR)
value returned value of the AIR register

int iRCCE atomic write(iRCCE AIR* reg, int value)

This function can be used to initialize the counter reading of an AIR register to a certain value.

reg pointer to an atomic increment register (represented by a type of iRCCE AIR)
value value of the AIR register to be written (e.g. for initializing the register)

9.11 Improved Collective Communication Functions

int iRCCE bcast(char *buffer, size t length, int root, RCCE COMM comm)

This is an improved version (with respect to throughput performance) of the common broadcast function
that makes internally use of iRCCE’s multicast functions (see next Section 9.12). However, these im-
provements just take effect when the RCCE COMM WORLD communicator is used. Otherwise, this function
just makes a fallback to a call of the common RCCE bcast() function.

buffer starting address of the message to be sent
length length of the outgoing message in bytes
root rank (ID) of the process (UE) that is the source of the message
comm communicator whose UEs participate in the broadcast pattern
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int iRCCE barrier(RCCE COMM *comm)

This is an improved barrier function (with respect to latencies) that internally makes use of the atomic
increment registers (AIRs, see Section 4.5 and 9.10) if the RCCE COMM WORLD communicator is addressed.
Otherwise, this function makes a fallback to the common RCCE barrier() function.

comm pointer to a communicator whose UEs participate in the barrier

9.12 Send and Receive Functions for Multicast

int iRCCE msend(char *buffer, size t length)

This function is to be called by the sender (the root) of a multicast pattern where one sender sends a
message to all the other processes (UEs), which in turn have to call the respective iRCCE mrecv() func-
tion. The main difference between these functions and a common broadcast function like RCCE bcast

is that wildcards like iRCCE ANY SOURCE or iRCCE ANY LENGTH are allowed on the receiver side (see
Section 6.3).

buffer starting address of the message to be sent
length length of the outgoing message in bytes

int iRCCE mrecv(char *buffer, size t length, int source)

This function is to be called by all receivers of a multicast pattern where one sender, which has to
call the respective iRCCE msend() function, sends a message to all the other processes (UEs). he main
difference between these functions and a common broadcast function like RCCE bcast is that wildcards
like iRCCE ANY SOURCE or iRCCE ANY LENGTH are allowed on the receiver side (see Section 6.3).

buffer starting address of the receive buffer
length length of the expected message in bytes
source rank (ID) of the source/root process (UE)
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Version History

• Version 1.0 / February 2011: Initial Release of iRCCE

• Version 1.1 / April 2011: Bug-Fix Release

• Version 1.2 / June 2011: Added Wildcard Support (ANY SOURCE, ANY LENGTH)

• Version 1.3 / November 2011: Non-official Beta-Release (iRCCE ssend(), iRCCE srecv())

• Version 2.0 / March 2013: Added Support for Tagged Flags and Atomic Increment Registers
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