
A Lightweight and Resource-aware Socket
Emulation Layer for the Intel SCC Processor

Carsten Clauss
carsten-clauss@web.de

Abstract. This paper presents rckSock: A communication layer for the
Intel SCC manycore processor that utilizes the SCC’s shared on-chip
memory and that does not involve the operating system for emulating
a Socket-like communication programming interface. By means of this
layer, common client/server-based applications can easily be ported to
the SCC in a lightweight and resource-aware manner while still exploiting
the SCC’s distinct on-chip communication capabilities.

1 Introduction

Socket-based TCP/IP communication is obviously the most predominant and
thus portable way for inter-process communication. Although the Berkeley Socket
API offers a quite generic communication interface that allows to be used for
quite different communication protocols, only the IP-based transport protocols
UDP and TCP are commonly utilized. However, both are networking protocols
and are thus intended to be used for inter -node communication in local and/or
wide area networks. Therefore, these protocols have some drawbacks when they
are used for intra-node communication instead: One drawback is their quite high
protocol stack that has even to be run through if a message is to be passed from
one process to another one on the same node. So, for example, TCP and IP
headers are added on the way down the stack, and on the other side checksums,
sequence numbers and other header entries are to be analyzed and removed on
the corresponding way up the stack. The other drawback is that typically the
operating system (e.g. in terms of a loopback network driver) gets involved into
the communication progress and this often increases the communication latencies
significantly.

1.1 Intra-Node and On-Chip Communication

In order to overcome this issues, two common approaches exist: The first one is to
use dedicated software facilities for local communication as offered by most oper-
ating systems, such as Pipes, FIFOs, Message Queues or UNIX Domain Sockets.
The other one is to use Shared Memory for the inter-process communication.
While the first one still involves the invocation of the operating system for mes-
sage transport, the latter one demands for a session and transport management
that in this case is to be implemented by the application programmer. Therefore,
in general it can be stated that operating system based intra-node communica-
tion is easy to use but not quite lightweight, especially with respect to communi-
cation latencies, whereas message-passing via shared memory is lightweight but
can be more tricky to use.



However, a third approach is to introduce a small emulation layer that fea-
tures a Socket-like communication interface for the application. By facilitating
shared memory for communication without any involvement of the operating
system, such a layer can achieve both at the same time: providing a portable
Socket-based communication interface while still being slim and lightweight for
featuring low-latency intra-node communication.

In the upcoming manycore era, shared memory based message-passing is
expected to become even more prevalent and it is most likely that such systems
will introduce further levels into the hierarchy of inter-process communication,
for example, by featuring explicitly addressable on-chip shared memory regions.
According to this, the different levels of inter-process communication may be
labeled as follows:

1. Inter-Core but On-Chip Communication via on-chip networks and on-chip
memories like caches or scratchpads.

2. Inter-Chip but Intra-Node Communication via memory controllers and thus
shared off-chip DRAM memories.

3. Inter-Node Communication via network interfaces and system-, local- and/or
wide-area networks, respectively.

While the third level is already covered very well by portable Socket-based
communication interfaces and respective networking protocols, Socket-like but
lightweight shared memory communication is yet commonly not well supported.

1.2 The Intel SCC Manycore Processor

The SCC is a 48-core concept vehicle created by Intel Labs as a platform for
manycore software research [1]. In contrast to common multi-core processors, the
SCC does not provide any cache-coherency between the cores and hence makes
message-passing the parallelization paradigm of choice. For doing so, each core
provides 8 kByte of a fast on-chip memory as a kind of scratchpad memory that
is also accessible to all other cores. Since these on-chip memories are intended to
pass messages directly between the cores, they are referred to as Message-Passing
Buffers (MPBs) – but actually they are just a fast on-chip shared memory. These
MPBs are arranged together with the cores of the SCC in a 6x4 on-chip mesh
network of tiles, with two cores and 16 kByte MPB space per tile. By means of
this network, all cores can furthermore access a global shared memory of up to
64 GByte DDR3-DRAM memory via four on-chip memory controllers. Hence,
the SCC is actually a prototype for such a hierarchical manycore architecture
where the communication falls into one of the three above mentioned levels.

1.3 Related Work

In the domain of high-performance computing, besides the common Socket API,
another portable and much more comprehensive communication interface exists



and is quite prevalent: The Message-Passing Interface (MPI). In fact, this inter-
face standard [2] aims at being independent from the underlying communication
layers, transport protocols and networking facilities. This is achieved by an in-
terface design that is consistently hardware agnostic and that presents (and,
if necessary, pretends) a flat and homogeneous communication environment to
the application level. Nevertheless, an MPI library can very well be optimized
also for heterogeneous and hierarchical environments. So, for example, an MPI
library may facilitate quite different transport protocols and/or communication
substrates – and this even within the same MPI session – so that at any time
the fastest communication channel can be exploited. That way, MPI implemen-
tations commonly make use of shared memory for intra-node communication,
whereas dedicated interconnects like InifiniBand are usually used for inter-node
communication – and also Socket-based TCP/IP communication may be facili-
tated, e.g. as a fallback channel or for wide area communication.

Moreover, for manycore-related on-chip communication, MPI libraries may
take this further hierarchical step into account and may likewise provide support
for on-chip communication facilities like the SCC’s Message-Passing Buffers. In
fact, for the SCC two of such MPI libraries exist: RCKMPI by Intel [3] and
SCC-MPICH [4], which has been developed by the author of this paper. How-
ever, since the MPI standard is quite comprehensive, MPI libraries can be quite
heavyweight. Therefore, Intel also provides a slimmed down and accordingly
lightweight library for the SCC, which just features the essential communication
functions: the RCCE communication library [5]. In turn, this library, which can
moreover be extended by the so-called iRCCE library [6], builds the base for
SCC-MPICH and other higher-level communication layers for the SCC.

However, in contrast to the Socket interface, the common MPI-related com-
munication model is not client-server based but symmetric and follows the single-
program/multiple-data paradigm (SPMD) where all participating cores run the
same executable. This is due to the flat communication model of MPI that does
not reflect any hierarchies or other distinct communication relations within its
addressing scheme inherently.

Another communication interface for the multicore era (and thus also for the
manycore era) is the MCAPI standard [7] which has recently been specified by
the Multicore Association. This standard, in contrast to MPI, uses an addressing
scheme that is quite Socket-like and that allows for modeling communication
hierarchies in a less artificial way than MPI. A prototype implementation of the
MCAPI standard for the SCC has been developed by the author of this paper,
too (see [8] for implementation details).

2 Motivation

When taking a closer look at the communication libraries mentioned in the prior
related work section, it becomes apparent that these libraries are not resource-
aware with respect to connection establishment – and thus to the management
of the on-chip message-passing buffers as the actual communication resource of



the SCC. In order to motivate the development of rckSock, this section should
expose this resource-related issue. However, since SCC-MPICH and the MCAPI
prototype implementation for the SCC internally make use of RCCE/iRCCE,
they adapt the communication model of RCCE, too. Therefore, this section
especially takes a closer look at this model and its resource management.

2.1 Resource Allocation of RCCE

In the so-called non-gory mode, RCCE allocates all available MPB space right
at session start during its initialization procedure.1 In doing so, it uses each
local MPB region as one single but big buffer for all outgoing messages – this is
the so-called local-put/remote-get scheme (see [9] for a detailed analysis of this
pattern). That means that all outgoing messages per process have to be passed
through its local MPB and that at any time only one message can be located
within this local buffer. However, due to the blocking semantics of RCCE’s send
and receive functions, anyway only one communication request can be pending
per core at the same time. Therefore, this approach has the advantage that for
each message the whole available local MPB space can be used and this in turn
improves the achievable data rate especially for larger messages that have to be
passed piecewise through the MPB.

2.2 The ”Late Receiver” Issue

However, when using iRCCE’s non-blocking functions (see [6] for a detailed
discussion about blocking vs. non-blocking RCCE/iRCCE functions), the local
MPB can become a bottleneck in terms of a communication buffer that congests
if a receiver is currently not ready to take the respective message.2 This is because
also in the non-blocking case, only one (and this is the first) of all locally pending
send requests can be processed by passing it through the local MPB and hence all
other pending requests have to wait for its completion since a message reordering
is not provided. That means that one late receiver can delay the message arrival
for all the other communication partners significantly – moreover, in case of a
faulty receiver that never takes the respective message, the application may even
become stuck.

Figure 1 shows an exemplary scenario for such a case where a single sender
(Core 0) sends messages to multiple receivers (Core 1 to 3) in a non-blocking
manner. As one can see, due to the dependencies caused by the order of the
posted requests, the computation function is not going to be called until all
pending requests are actually finished.

One possibility to decouple the dependencies in such a single-sender/multiple-
receivers case is to use likewise multiple communication buffers by means of
dividing the local MPBs into multiple chunks. In fact, this is what the original
version of RCKMPI does: It divides the local MPB space of each core into np

1 Resource allocation in gory mode is to be detailed in the next section.
2 That is what is commonly called the Late Receiver pattern, see [10].



12n ...

Receiver ready?

}
do_some_computations(i);

for(i=1; i<=3; i++)

for(i=3; i>0; i−−){

&send_request[i]);

isend(dest=i,...

recv(src=0,...);

recv(src=0,...);

recv(src=0,...);

wait(&send_request[i]);

Core 0

local

MPB

Core 1

Core 2

Core 3

Fig. 1: Single-Sender/Multiple-Receivers Scenario

receive buffers for incoming messages from each of the remote cores (according
to a remote-put/local-get pattern), where np is the number of processes started
within the respective MPI session. This approach makes the resource allocation
dynamic at least with respect to the fact that the number of chunks (and thus
their size in a reciprocal manner) depends on the number of processes started.

2.3 Need for Application-dependent Resource Management

However, in many cases, the processes are far from communication directly with
each other in a point-to-point manner. This is even true for collective commu-
nication patterns like broadcast or all-to-all because usually these patterns are
performed according to in a hierarchical scheme (like a binary tree, for example),
and not in a straightforward manner where each process sends a message directly
to all the other processes. Hence, in many cases, not all of the np · (np − 1)/2
possible direct connections are actually needed. Moreover, allocating resources
in terms of MPB space also for these unused connections right from the start
decreases the achievable throughput per connection. This is because due to the
limited MPB space, each further pair of possible connection partners decreases
the MPB chunk size per connection and thus the gainable data rate.

Therefore, the challenge is to manage the MPB as the communication re-
source not only in a dynamic but also in an application-dependent manner so
that the MPB allocation follows the actual communication pattern of the re-
spective application (see Figure 2 for an exemplary scenario where the MPB
and multiple sending queues are managed according to the communication pat-
tern of the application). This is because only in this case a true decoupling of
the communication pairs and their dependencies can be achieved while still re-
taining the maximal data rate per message and communication partner – and
this is what the rckSock layer does, as it will be shown in the next section.



}
do_some_computations(i);

for(i=3; i>0; i−=2){

for(i=1; i<=3; i+=2)

isend(dest=i,...

&send_request[i]);

wait(&send_request[i]);

recv(src=0,...);

recv(src=0,...);

do_some_computations();

Core 0

local

Core 1

Core 3

MPB

Core 2

Fig. 2: Application-depended MPB Management

3 Implementation

As a Socket emulation layer, rckSock follows the client-server paradigm, where
communication connections have to be established explicitly by calling respec-
tive connect and accept functions, which in turn helps to make the actual com-
munication patters of the applications tangible. Moreover, as a resource-aware
communication layer, rckSock manages each connection internally as a pair of
MPB regions for passing messages in a bidirectional manner, while externally
these connections are abstracted by communication handles: Namely by Sockets,
which are actually just pointers to internal data structures that in turn contain
pointers and information about the respective MPB regions.

In order to create a lightweight communication layer, rckSock is based on
RCCE as likewise lightweight communication substrate. However, neither RCCE’s
non-gory nor its gory interface could be used directly. Instead, additional inter-
face functions had to be implemented that accommodate more the client-server
semantics than the SPMD-related RCCE functions do. This is because although
the gory interface of RCCE allows for allocating and freeing MPB space in a
dynamic manner (by calling RCCE malloc() and RCCE free()), RCCE uses a so-
called symmetric memory model where these functions have collective semantics
and hence must actually be called by all processes of a RCCE session.

Figure 3 shows an exemplary scenario where three processes collectively al-
locate a chunk of MPB space. As one can see, according to the symmetric
memory model, each process allocates one local chunk respectively, resulting
in three distributed ones that have to be addressed via the returned pointers
plus source/destination IDs by means of RCCE’s put and get functions.

3.1 Breaking with RCCE’s Symmetric Memory Model

The first step towards the rckSock implementation was to add new send and
receive functions, derived from those of the gory interface, that take pointers to
the local MPB and to the local source or destination buffers, but that take offsets
(instead of pointers) for dealing with remote MPB regions. The idea behind this



ptr =

RCCE_malloc(size);

ptr =

RCCE_malloc(size);

ptr =

RCCE_malloc(size);

RCCE_get(ptr,...

RCCE_put(ptr,...

dest=0);

src=2);

Core 0

local local local

Core 1 Core 2

MPB MPB MPB

Fig. 3: Collective Memory Allocation via RCCE malloc()

is that while pointers are only valid within the context of a process’s own virtual
address space, offsets (in relation to a virtual base address of a shared region)
are valid in a system-wide manner. Because the shared but distributed MPB
regions are all mapped into the virtual address spaces of all processes, pointers
to sub-addresses and thus to sub-chunks of local and remote MPB regions can
easily be determined and communicated by exchanging the respective offsets and
just adding them to the locally valid base-pointers of the respectively addressed
MPB regions. That way, the symmetric memory model can be broken and each
process can manage its local MPB space (by allocating and freeing chunks of it)
independently from one another. Moreover, by exchanging the respective chunk
offsets, the processes are still able to use these chunks in a shared manner.

This should be illustrated by the following example (see Figure 4): Assume a
server process that calls the accept() function and waits for clients to connect.
When a willing client process calls the respective connect() function, it initially
allocates a local MPB chunk X and connects to the server by telling it about the
offset (x offset) and the size (x size) of this chunk in relation to the local base
pointer. Upon this, the server allocates a likewise local MPB chunk Y and replies
to the connection request by sending the information about offset (y offset)
and size (y size) back to the client. Afterwards, both can communicate via these
two MPB regions X and Y in a bidirectional manner and without the risk of
interfering with other processes because these two regions are dedicated to this
client-server pair and hence are to be used exclusively by these two processes.
Due to the fact that each server can accept multiple connections from several
clients and that each process can act as a server as well as a client, arbitrary
communication relationships can be established and mapped to exclusively al-
located MPB chunks – at least as there is enough MPB space left after each
allocation for realizing further ones. However, at this point, two questions arise:

1. How can the offsets be communicated during the connect/accept procedure
between client and server if there is yet no connection established?

2. How big should the size of the MPB chunks, that are to be allocated by
client and server, be chosen?



x_ptr =

rcksock_malloc(

connect()

x_size);

y_ptr =

rcksock_malloc(

accept()

y_size);

x_offset

rcksock_get(y_offset,

...);

Client

local
MPB

Server

local
MPB

Exchange

X
Y

y_offset

Fig. 4: rckSock’s connect() and accept() functions

3.2 Communicating during Connection Establishment

The answer to the first question is that a minimalistic but already initially estab-
lished communication channel between each possible pair of processes is needed.
This can, for example, be conducted via the off-chip shared memory region or
even via ”regular” TCP/IP connections to be established by means of a kernel
driver like rckmb (see [11] for details about the SCC’s common TCP/IP drivers).
However, rckSock instead uses the common communication facilities provided by
RCCE as they are available when using the non-gory interface – but with the
difference that not the whole available MPB space is used but only a quite small
chunk of it:3 At the very beginning of a session (that is during the RCCE init()

function), each process allocates such a local and usually quite small piece of
MPB space dedicated for the later connection establishment. This chunk can
then be used as in RCCE’s common non-gory communication mode by mul-
tiplexing outgoing connection requests and replies to other processes through
it. That way, the connection function actually becomes a RCCE send() opera-
tion whereas the first part of the accept function is just a call of the matching
RCCE recv() function. The content of this connection request message can in
turn be composed of the information about the offset of the later MPB commu-
nication buffer regarding the new Socket connection to be established and, for
example, of additional Socket options. However, upon acceptance, the server has
to answer to the request with a quite similar message containing the offset of its
own freshly allocated MPB chunk and a reply to the inquired Socket options.
Hence, the connection establishment becomes a two-way handshake based on
the common send and receive functions of RCCE.

3.3 The Issue of an Optimal Chunk Size

The second question is not such easy to answer because the optimal sizes of
the MPB chunks to be allocated for the Socket connections depend on the com-
munication patterns of the respective applications. Therefor it is hard for the

3 ”quite small” means in the range of a few cache lines.



Socket emulation layer to choose an appropriate size without further information
from the application layer. One approach to solution was to implement a special
Socket option that enables the application programmer to specify the sizes of the
MPB buffers to be used for the Socket communication explicitly. However, that
in turn means that the application programmer has to modify the application
according to the desired priorities concerning the handling of multiple Socket
connections.

At this point it should be mentioned that porting Socket applications by
means of rckSock usually requires a little code rework. This is because despite the
above mentioned Socket options also the addressing scheme differs between the
common TCP/IP-based usage and the ID-based addressing scheme of RCCE. For
that reason, rckSock allows only for one ”port” for each serve to listen on because
the address to be used for connecting to other processes is just the core/process
ID. However, multiple Socket connections between a pair of processes are very
well possible and each process can act as server, client or both. Moreover, when
using non-blocking Sockets, even loop-back connections to the same process are
possible with rckSock.

3.4 Implementing a Dynamic Buddy System

However, the issue of choosing an optimal chunk size still exists and has led us to
the following consideration: Why not using the whole still available MPB space
for the communication unless further connections get requested? According to
this new approach, the first Socket connection of a process would get the whole
locally available MPB space (this is 8kByte minus the initially allocated chunks
for the connection establishment4) assigned for communication until a further
connection gets requested. In this case, the previously assigned MPB chunk of
the first connection has to be divided (usually halved) so that from now on both
connections can each use half of the initially available MPB space exclusively,
and so on.

When taking a deeper look at this approach, this allocation scheme appears
to be quite similar to that known from so-called Buddy Systems. According to
this approach, the local MPB space is managed by each process in terms of
chunks, the so-called Buddies, which in turn get sub-divided into two smaller
chunks each time a new connection is requested – and looking at it the other
way round, closing a connection accordingly leads to a merger of two Buddies
reforming a larger one. This scheme is applied in a hierarchical manner so that
the Buddies to be split upon a memory request and the Buddies to be merged
upon a memory release are predefined. As the smallest reasonable MPB unit is
a cache line, the smallest Buddy chunk possible with rckSock is 32 Byte, which
in turn results in an upper bound of log2(8 kByte / 32 Byte) = log2(256) = 8
hierarchy levels. However, this parameter is configurable and hence bigger values
for the smallest Buddy size (and thus fewer hierarchy levels) are implementable.

4 minus some cache lines for MPB-based synchronization flags



As one can see, such a Buddy System makes the resource allocation quite
flexible and allows for a dynamic mapping of the connection patterns onto the
whole available MPB space. However, as creating new connections also impacts
the sizes of already assigned MPB chunks, additional information exchange with
respect to changes made to the allocation pattern becomes inevitable. In other
words: If the size of a once allocated local MPB chunk gets split due to the
establishment of a new Socket connection, the new chunk size needs to be com-
municated to the respective counterpart on the other end of the corresponding
Socket. This could be done, for example, by signaling this event via messages
to be sent via that MPB chunk that has already been used for handling the
connect/accept procedure.

3.5 Exploiting the ”Any Length” Wildcard

However, such an explicit signaling would cause an additional overhead that
is to be avoided. Therefore, rckSock chooses another way by just passing this
information (this is actually the current chunk size) alongside with the payload
in a piggy-back fashion. For this purpose, the so-called ANY-LENGTH wildcard
mechanism [12] of the iRCCE library gets exploited: This mechanism allows
for receiving messages of any length (that means without stating the message
length explicitly during an iRCCE recv()-call) by passing the information about
the payload size in terms of the word-sized flags that are needed anyway for
synchronizing the send and receive progress. According to this approach, the
rckSock’s send() function splits each message to be sent into sub-chunks of sizes
each not to exceed the local chunk size – and the recv() function of rckSock
in turn posts as many iRCCE recv()-requests with ANY-LENGTH as a wildcard
for the actual message length until the complete message has been recomposed.
In doing so, the bookkeeping about the MPB allocation scheme and about the
chunk sizes is kept local – and since sending buffers are always the local ones,
no further action needs to be taken concerning changes made to the allocation
scheme.

4 Evaluation

In this brief section, some performance results should substantiate the motiva-
tions for the development of rckSock. For this purpose, a synthetic benchmark
application is used that features one server process and multiple client processes
(each, if needed, with multiple connections to the single server process). This
benchmark runs with an increasing number of clients connecting to the server so
that the available MPB space per connection at the server side gets increasingly
reduced. The benchmark then measures the achievable throughput performance
(maximal data rate) by means of a simple Ping-Pong benchmark between a
single client-server pair while the other clients are just waiting.

In the scenario applied, rckSock was configured to use 8 cache lines (= 256
Byte) of MPB space per core for the initial connection establishment and addi-
tional 8 cache lines were reserved per core for the needed synchronization flags.



Hence, the initial available MPB space at the server side was 8192− 512 = 7680
Byte (= 240 cache lines). After each further incoming connection request, the
available MPB gets divided and managed according to the Buddy System as
described in Section 3.4.

buddy system number of smallest MPB chunk maximal throughput
hierarchy level connections per connection on this connection

1 1 7680 Byte / 240 CL 143.45 MB/s
2 2 3840 Byte / 120 CL 143.43 MB/s
3 3-4 1920 Byte / 60 CL 137.15 MB/s
4 7-8 960 Byte / 30 CL 119.42 MB/s
5 9-16 480 Byte / 15 CL 87.24 MB/s
6 17-32 224 Byte / 7 CL 53.84 MB/s
7 33-64 96 Byte / 3 CL 27.14 MB/s
8 65-240 32 Byte / 1 CL 9.64 MB/s

Table 1: Throughput Results of the Ping-Pong Benchmark (CL = Cache Lines)

As one can see, for small chunks of MPB space available per connection,
the achievable throughput performance decreases dramatically. However, usually
(and as assumed in the motivation section) one server and 47 clients do not need
up to 240 connections at the same time. Therefore, managing the MPB space in
a dynamic manner (as provided by the Buddy System presented in Section 3.4)
helps to exploit the available MPB space according to the actual communication
pattern in the most optimal way.

5 Conclusion and Outlook

Managing memory as a scarce resource according to Buddy Systems or similar
approaches is actually long-know. However, as managing on-chip memories for
message-passing will become more and more important in the upcoming many-
core era, it is quite apparent to use these techniques also for managing such
communication resources. In this paper, the rckSock library has been presented,
which constitutes a lightweight and resource-aware communication layer for the
Intel SCC as a prototype for future manycore processors.

In doing so, rckSock is lightweight with respect to a very thin protocol stack
that avoids the involvement of the operating system. Furthermore, rckSock is
resource-aware by means of a dynamic MPB management that helps to eliminate
dependencies between multiple connections while still providing optimal data
rates according to the communication patterns as given by the applications.

Although the rckSock layer is currently based on RCCE as the lower com-
munication substrate, adopting this approach to other manycore-related com-
munication interfaces seems to be quite obvious for future work. Although Intel
will end support for the SCC in December 2013, other quite similar manycore
architectures, that also may benefit from rckSock, are already at the ready.



References

1. T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas,
P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
SCC Processor: The Programmer’s View,” in Proceedings of the 2010 ACM/IEEE
Conference on Supercomputing (SC10), New Orleans, LA, USA, November 2010.

2. MPI: A Message-Passing Interface Standard, Message Passing Interface Forum,
September 2012, Version 3.0. [Online]. Available: http://www.mpi-forum.org/
docs/mpi-3.0/mpi30-report.pdf

3. I. A. C. Ureña, M. Riepen, and M. Konow, “RCKMPI – Lightweight MPI Im-
plementation for Intel’s Single-chip Cloud Computer (SCC),” in Recent Advances
in the Message Passing Interface – 18th European MPI Users’ Group Meeting,
EuroMPI, Santorini, Greece, September 2011.

4. C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and Improvements
of Programming Models for the Intel SCC Many-core Processor,” in Proceedings
of the International Conference on High Performance Computing and Simula-
tion (HPCS2011), Workshop on New Algorithms and Programming Models for
the Manycore Era (APMM), Istanbul, Turkey, July 2011.

5. T. Mattson and R. van der Wijngaart, RCCE: a Small Library for Many-Core
Communication, Intel Corporation, January 2011, Software 2.0-release. [Online].
Available: http://communities.intel.com/docs/DOC-5628

6. C. Clauss, S. Lankes, P. Reble, J. Galowicz, S. Pickartz, and T. Bemmerl,
iRCCE: A Non-blocking Communication Extension to the RCCE Communication
Library for the Intel Single-Chip Cloud Computer – Users’ Guide and
API Manual, March 2013, Version 2.0 iRCCE FLAIR. [Online]. Available:
http://www.lfbs.rwth-aachen.de/publications/files/iRCCE FLAIR.pdf

7. Multicore Communications API (MCAPI) Specification, Multicore Association,
March 2011, Version 2.015. [Online]. Available: http://www.multicore-association.
org/workgroup/mcapi.php

8. C. Clauss, S. Pickartz, S. Lankes, and T. Bemmerl, “Towards a Multicore Commu-
nications API Implementation (MCAPI) for the Intel Single-Chip Cloud Computer
(SCC),” in Proceedings of the 11th International Symposium on Parallel and Dis-
tributed Computing (ISPDC 2012), Munich, Germany, June 2012.

9. P. Reble, C. Clauss, M. Riepen, S. Lankes, and T. Bemmerl, “Connecting
the Cloud: Transparent and Flexible Communication for a Cluster of Intel
SCCs,” in Proceedings of the Many-core Applications Research Community
(MARC) Symposium, Aachen, Germany, November 2012. [Online]. Available:
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4383/pdf/4383.pdf

10. F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi,
“Usage of the SCALASCA toolset for scalable performance analysis of large-scale
parallel applications,” in Proceedings of the 2nd International Workshop on Par-
allel Tools for High Performance Computing, Stuttgart, Germany, July 2008.

11. R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight commu-
nications on Intel’s Single-chip Cloud Computer processor,” SIGOPS Operating
Systems Review, vol. 45, pp. 73–83, 2011.

12. C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Recent Advances and Future
Prospects in iRCCE and SCC-MPICH,” in Proceedings of the 3rd Symposium of
the Many-core Applications Research Community (MARC), Ettlingen, Germany,
July 2011.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://communities.intel.com/docs/DOC-5628
http://www.lfbs.rwth-aachen.de/publications/files/iRCCE_FLAIR.pdf
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mcapi.php
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2012/4383/pdf/4383.pdf

	A Lightweight and Resource-aware Socket Emulation Layer for the Intel SCC Processor

