Shared Virtual Memory for the SCC: bare metal programming for future many-core architectures

Pablo Reble

March 23, 2012

Agenda

- Parallel Programming Concepts
- SCC
- MetalSVM
- SVM subsystem
- Application
- Demo

Parallel Programming Concepts

• Message Passing (MPI)

- process parallelism
- explicit communication
- Shared Memory (OpenMP)
 - loop/thread parallelism
 - implicit communication
 - coherent memory required

<u>MARC</u>

The Single-chip Cloud Computer experimental processor is a concept vehicle created by Intel Labs as a platform for many-core software research.

- stands for: Many-Core Application Research Community
- launched in 2010 by Intel
- intention: provide access to future processor architectures to a broader audience
- sponsored Symposium, twice a Year in Europe
- http://communities.intel.com/community/marc

Chair for Operating Systems

- presented in 1994
- 32 bit intel architecture
- 75-100 MHz
- 3.3 volt
- on-chip APIC
- multiprocessor capability
- instruction to invalidate cache-located tagged data: CLIINV

- presented in 1994
- 32 bit intel architecture
- 75-100 MHz 100 MHz-1 GHz
- 3.3 volt
- on-chip APIC
- multiprocessor capability
- instruction to invalidate cache-located tagged data: CLIINV

Chair for Operating Systems

- presented in 1994
- 32 bit intel architecture
- 75-100 MHz 100 MHz-1 GHz
- 3.3 volt 0.66 V 1.16 V
- on-chip APIC
- multiprocessor capability
- instruction to invalidate cache-located tagged data: CLIINV

Chair for Operating Systems

- presented in 1994
- 32 bit intel architecture
- 75-100 MHz 100 MHz-1 GHz
- 3.3 volt 0.66 V 1.16 V
- on-chip APIC
- multiprocessor capability
- instruction to invalidate cache-located tagged data: CLIINV

Shared Virtual Memory for the SCC:

March 23, 2012

SCC Environment

SCC Environment

SCC Environment

state-of-the-art 2D mesh interconnect

SCC Environment

SCC Environment

SCC Environment

6

March 23, 2012

Rocky Lake Processor

Rocky Lake Platform

Default Configuration

- SCC provides shared but not coherent memory
- Cluster-like programming environment
- Separate Linux booted on each core
- Shell-script to start processes
- RCCE ['roki] light-weight message passing library

Default Configuration

- SCC provides shared but not coherent memory
- Cluster-like programming environment
- Separate Linux booted on each core
- Shell-script to start processes
- RCCE ['roki] light-weight message passing library

Default Configuration

- SCC provides shared but not coherent memory
- Cluster-like programming environment
- Separate Linux booted on each core
- Shell-script to start processes
- RCCE ['roki] light-weight message passing library

Chair for Operating Systems

<u>RCCE</u>

- light-weight communication environment
- local put, remote get approach
- uses MPB to realize blocking, synchronous message passing

<u>RCCE</u>

- light-weight communication environment
- local put, remote get approach
- uses MPB to realize blocking, synchronous message passing

10

<u>RCCE</u>

- light-weight communication environment
- local put, remote get approach
- uses MPB to realize blocking, synchronous message passing

<u>SVM</u>

• VM?

- virtual address space of a process is mapped onto a physical address space
- almost all UNIX system implementations, including Linux, use demand paging to manage the allocation of physical memory
- SVM?
 - concept of a single address space shared by a number of processors
 - strategies to generate coherent but distributed memory

Project Goal

- work in progress: research grant by Intel Labs Braunschweig
- shared virtual memory for many-core systems
- bare-metal hypervisor based approach

- work in progress: research grant by Intel Labs Braunschweig
- shared virtual memory for many-core systems
- bare-metal hypervisor based approach

First SVM Prototype

Chair for Operating Systems

History

- tiny OS kernel for education: eduOS (since 2009)
- 1st MARC Symposium (Braunschweig 2010)
 - presented basic ideas to integrate an SVM system into a bare-metal Hypervisor
- 3rd MARC Symposium (Ettlingen 2011)
 - Comm. and Synch. Layer (Focus on HW Synch. Support and High Concurrency)
- 4th MARC Symposium (Potsdam 2012)
 - SVM Prototype and first application benchmark

lguest

Lguest is a small x86 32-bit Linux hypervisor [...] serves as an excellent springboard for mastering the theory and practice of x86 virtualization [...] You should also be inspired to create your own hypervisor, using your own pets as logo. – Rusty Russell '07

lguest

Lguest is a small x86 32-bit Linux hypervisor [...] serves as an excellent springboard for mastering the theory and practice of x86 virtualization [...] You should also be inspired to create your own hypervisor, using your own pets as logo. – Rusty Russell '07

Chair for Operating Systems

Prototype

handles SVM related data:

- use write trough strategy
- enable Level 1 caching only
- tag related Cache-Lines as MPBT
- Consequences:
 - + use write combining buffer
 - + hardware support for invalidation
 - no use of Level 2 Cache

Memory Consistency Models

• Strong Memory Consistency Model:

Exactly one owner per page with read/write permissions

16

- allow dynamical change of ownership
- use messages to handle change

Memory Consistency Models

- Strong Memory Consistency Model:
 - Exactly one owner per page with read/write permissions
 - allow dynamical change of ownership
 - use messages to handle change
- Lazy Release Consistency:
 - Application explicitly controls Consistency (svm_barrier)

16

- First steps to apply Shared Memory Programming on the SCC use a small subset of SMI:
 - svm_alloc
 - svm_flush
 - svm_invalidate

Visualize Change of Ownership

Visualize Change of Ownership

18

Visualize Change of Ownership

18

March 23, 2012

Visualize Change of Ownership

18

March 23, 2012

Visualize Change of Ownership

18

Visualize Change of Ownership

18

Private offchip DRAM

- Stencil app (part of RCCE)
- Dirichlet Bounding Condition
- Solver: Jacobi Over Relaxation algorithm
- Synchronous behavior

Shared Memory: Barrier between iterations Message Passing: implicitly

- SCC Platform running with 533 MHz core and 800 MHz memory/mesh
- double precision

access pattern

20

access pattern

Shared Virtual Memory for the SCC:

20

First Results

RWTHAACHEN UNIVERSITY

- Five Stamp Stencil
 - ▶ Problem size 1024 × 512

First Results

RWTHAACHEN UNIVERSITY

- Five Stamp Stencil
 - Problem size 1024 × 512

First Results

RWTHAACHEN UNIVERSITY

- Five Stamp Stencil
 - ▶ Problem size 1024 × 512

First Results

RWITHAACHEN UNIVERSITY

- Five Stamp Stencil
 - ▶ Problem size 1024 × 512

Conclusion and Outlook

Conclusion

- First Prototype of MetalSVM is running
- Results are promising

<u>Outlook</u>

- Boot Linux on multiple hypervisor instances
- Connect two SCCs
- plan a release in 2012 metalsvm.org

Conclusion and Outlook

Conclusion

- First Prototype of MetalSVM is running
- Results are promising

<u>Outlook</u>

- Boot Linux on multiple hypervisor instances
- Connect two SCCs
- plan a release in 2012 metalsvm.org

Demo

Shared Virtual Memory for the SCC:

Chair for Operating Systems

