
Real-time CORBA 2.0: Dynamic
Scheduling Specification

This OMG document replaces the draft adopted specification and submission (orbos/01-06-09). It is
an OMG Final Adopted Specification, which has been approved by the OMG board and technical
plenaries, and is currently in the finalization phase. Comments on the content of this document are
welcomed, and should be directed to issues@omg.org by March 1, 2002.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 1, 2002. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMG Final Adopted Specification
September 2001

Real-Time CORBA 2.0: Dynamic
Scheduling 26
Note – Eventually, this chapter will become part of CORBA Core. The chapter number
is temporary.

Contents

This chapter contains the following topics.

Topic Page

Section I - Overview and Rationale

“Overview” 26-2

“Rationale” 26-3

“Notional Scheduling Service Architecture” 26-3

“Goals of this Specification” 26-4

“Scope” 26-4

Section II - Concepts

“Sequencing: Scheduling and Dispatching” 26-5

“Well Known Scheduling Disciplines” 26-7

“Distributed System Scheduling” 26-11

“Distributable Thread” 26-11

Section III - Overview of the Programming Model

“Scheduler” 26-15

Section IV - Scheduler Interoperability and Portability
September 2001 Dynamic Scheduling Adopted Specification 26-1

26
Section I - Overview and Rationale

26.1 Overview

26.1.1 Dynamic Scheduling

In real-time, we distinguish between two types of distributed systems based on how the
system is used, and its impact on the underlying infrastructure. There are static and
dynamic distributed systems.

Static distributed systems are those where the processing load on the system is within
known bounds such that a priori analysis can be performed. This means that the set of
applications that the system could be running is know in advance, and that the
workload that will be imposed on each application can be predicted within a known
bound. Such systems often have a limited number of application configurations that
can be executed, sometimes referred to as system modes. In these systems, a schedule
for the execution of applications can be worked out in advance for each system mode,
with a bounded amount of variation. As a result, the underlying infrastructure
(operating system and middle-ware) need only be able to support executing that
schedule.

One common approach to static systems is the use of Operating System Priorities to
manage deadlines. Offline analysis is performed to map different application temporal
requirements (such as frequency of execution) onto the available priorities. If the
underlying infrastructure always respects these priorities, including preempting low
priority threads when higher priority threads become eligible to run, and providing
priority inheritance, this is sufficient.

“Scheduler Interoperability” 26-26

“Scheduler Portability” 26-27

“Dynamic Scheduling Interoperation” 26-27

Section V - Dynamic Scheduling Interfaces

“ThreadAction Interface” 26-27

“RTScheduling::Current Interface” 26-28

“RTScheduling::ResourceManager Interface” 26-35

“RTScheduling::DistributableThread Interface” 26-35

“RTScheduling::Scheduler Interface” 26-36

Appendix A - “Conformance” 26-40

Appendix B - “Extensions to core CORBA” 26-41

Topic Page
26-2 Dynamic Scheduling Adopted Specification September 2001

26
Dynamic distributed systems, on the other hand, do not have a sufficiently predictable
workload to allow this approach. It may be that the set of applications is either too
large or not known in advance, the processing requirements for an application is too
variable to be pre-planned, the arrival time of the inputs is too variable, or some other
source of variability. For these types of systems, the underlying infrastructure must be
able to satisfy real-time requirements in a dynamically changing environment.

This specification is focused on systems in which the discipline for scheduling
CORBA ORB and application threads (e.g., highest priority first, or earliest deadline
first, or least laxity first) may be chosen by the application or system designers; and the
scheduling input values needed by a scheduler to control execution (called scheduling
parameter elements in this document) for that scheduling discipline (e.g., priority,
deadline, expected execution time) may be changed by the application dynamically
(i.e., at any time). In contrast, Real-time CORBA 1.0 (ORBOS/99-02-12 with
ORBOS/99-03-29) is focused on fixed priority systems.

26.1.2 Distributable Thread

This specification replaces the term and concept of an activity that appeared as a
design and analysis suggestion in Real-time CORBA 1.0 with a specification for an
end-to-end schedulable entity termed distributable thread. Additionally, this
specifications introduction of the entity termed scheduling segment completes the
replacement of the activity concept from Real-time CORBA 1.0.

26.2 Rationale

Dynamic scheduling is widely employed in real-time and distributed real-time
computing systems. This specification extends Real-time CORBA 1.0 to encompass
these dynamic systems as well as static systems.

In most real-time systems, especially distributed systems, cost-effectiveness demands
that the computing system employ as much application-specific knowledge about the
application and its execution environment as feasible. Much of this knowledge can be
best captured in the scheduling discipline. This specification allows such application-
specific scheduling disciplines to be implemented by a pluggable scheduler.

An end-to-end execution model is essential to achieving end-to-end predictability of
timeliness in a distributed real-time computing system. This is especially important in
dynamically scheduled systems. The end-to-end execution model may be provided
according to a formal standard specification (as herein), or as an ad hoc, custom-made
creation by multiple different application programmers.

26.3 Notional Scheduling Service Architecture

This specification is based on a scheduling service architecture for a hypothetical or
notional scheduling service plug-in. The specification does not require that scheduling
service implementations conform to this notional architecture. It is presented only to
provide an aid to understanding and describing the specification of a generic
scheduling service framework.
September 2001 Dynamic Scheduling: Rationale 26-3

26
The application interacts with the scheduler, passing information about its (the
application’s) scheduling needs and its predicted use of system resources. The
scheduler is responsible for determining how best to meet the schedule given that
resource usage. The scheduler will use one or more scheduling disciplines, such as
Earliest Deadline First or Maximum Urgency First, to achieve this goal.

The application must also interact with the scheduler whenever there is a significant
change in its scheduling needs or its predicted resource usage. In addition, the
application must ensure that the scheduler is able to run as often as it needs to in order
to maintain the schedule – the application should not, for example, disable interrupts or
pre-emption for long periods of time, or create high priority threads that the scheduler
does not know about. If there are insufficient naturally occurring interaction points,
the application must include some additional interactions with the scheduler just to
guarantee that overruns and other errors can be detected in a timely way.

In a CORBA environment, the application can take an action (for example, making a
CORBA request) that could impact the schedule. In the notional architecture, the ORB
is responsible for interacting with the scheduler at these points, so that the scheduler
can take into account the transitioning of control from one processing node to another.
Thus, a set of specific ORB-scheduler interfaces are defined.

26.4 Goals of this Specification

This specification generalizes the Real-time CORBA 1.0 (ORBOS/99-02-12 and
ORBOS/99-03-29) specification to meet the requirements of a much greater segment of
the real-time computing field. There are three major generalizations:

• any scheduling discipline may be employed;

• the scheduling parameter elements associated with the chosen discipline may be
changed at any time during execution;

• the schedulable entity is a distributable thread that may span node boundaries,
carrying its scheduling context among scheduler instances on those nodes.

While the Real-time CORBA 1.0 Scheduling Service interfaces have been replaced,
this specification is backward compatible with the semantics of the Scheduling Service
defined in the Real-time CORBA 1.0 specification. Compatible implementations of
both specifications may be used in different ORB instances within the same system.
Not all features of this specification can be used in such mixed systems.

This specification imposes no requirements on base real-time operating systems, other
than the conventional ability to dispatch threads in a pre-emptive fashion. This
specification imposes no additional constraints on the real-time operating system
beyond those in Real-time CORBA 1.0.

26.5 Scope

This specification adds interfaces for a small set of well known scheduling disciplines
to CORBA as optional compliance points. This specification does not attempt to
provide all the interfaces necessary for interoperability of dynamically scheduled
26-4 Dynamic Scheduling Adopted Specification September 2001

26
applications and schedulers in heterogeneous systems. Rather, this specification
provides a framework upon which schedulers can be built and lays the foundation for
future full interoperability, and provides sufficient interfaces for applications to be built
using the set of included scheduler disciplines.

This specification defines a set of ORB/scheduler interfaces that will allow the
development of portable (i.e., ORB implementation independent) schedulers. For the
defined disciplines, this specification also specifies interfaces that will allow the
development of portable (i.e. ,ORB and scheduler implementation independent)
applications. The specification of portable application interfaces for other scheduling
disciplines is left to future revisions.

Note that most scheduler implementations will extensively utilize features of the
underlying operating system, and in some cases the networking software. This aspect
of scheduler implementation is outside of the scope of this specification. Therefore,
this specification does not provide the portability of schedulers except with respect to
ORB interactions.

This specification does not provide interoperability between scheduling disciplines and
thus not between different scheduler implementations. A scheduling framework is
provided and the mechanism used for passing information between scheduler instances
is provided via GIOP service contexts. However, the format and content of the
information passed in the GIOP service contexts are not specified. On-the-wire
interoperability between scheduling disciplines and the corresponding scheduler
implementations is left to future specifications.

This specification provides an abstraction for distributed real-time programming (the
distributable thread). This specification does not attempt to address more advanced
issues such as fault tolerance, propagation of system information and control along the
path of a distributable thread, etc. These facilities may be provided in a subsequent
revision of this specification.

Section II - Concepts

26.6 Sequencing: Scheduling and Dispatching

Usually multiple execution entities (hereafter referred to as “threads”) contend for one
or more exclusively accessed resources – notably processor cycles, but also others,
both physical (e.g., communication paths) and logical (e.g., synchronizers). This
contention must be resolved into a sequence of resource accesses – e.g., thread
executions. In general, contention for all shared resources should be resolved in a
consistent manner, although this is not yet common practice – e.g., processors may be
allocated by priority, networks by first come first served, locks by serializability, disks
by head movement distance, etc. All resource contention can be resolved by one of two
sequencing means: either scheduling or dispatching.
September 2001 Dynamic Scheduling: Sequencing: Scheduling and Dispatching 26-5

26
Thread scheduling is deciding in what order they all will execute. Each time thread
scheduling is performed, a sequence is established – a schedule – for all threads ready
at that time. Scheduling is performed statically (prior to execution time), by a person
or a program, or dynamically (at execution time) by a user or the system software.

Thread dispatching is granting resource access – e.g., running the currently most
eligible thread. When scheduling is employed, dispatching occurs in schedule order.

Thread scheduling is not always necessary nor computationally feasible – dispatching
alone may be sufficient.

Moreover, some actions are never threads and thus not schedulable – most commonly,
interrupt service routines and certain OS services, which execute either when invoked
or automatically as needed (other OS services are scheduled in concert with application
entities).

Dispatching, when scheduling is not employed, establishes a thread resource access –
e.g., execution sequence – one thread or non-schedulable action at a time.

The execution sequence may change at a sequencing point (either a scheduling point or
a dispatching point), such as when a thread becomes ready or blocked, or a thread
contends for a resource, or a thread time constraint is violated.

Contention for execution (and all other sequentially shared physical and logical
resources) generally should be resolved according to an application-specific
sequencing optimality criterion that seeks maximal usefulness to the system. In real-
time systems, that usefulness is based primarily on (but not limited to) timeliness and
predictability of timeliness. (Other factors, not related to real-time, commonly found in
sequencing criteria include relative importance, precedence constraints, resource
ownership, etc.)

Sequencing optimality criteria are what define timeliness for a given system or
application. Consequently, they also distinguish hard and soft real-time. Hard real-
time has a single timeliness factor in its sequencing optimality criterion: always meet
all hard deadlines. Soft real-time includes all other possible timeliness factors in
sequencing (usually scheduling) optimality criteria – very common examples are
“minimize mean weighted tardiness,” “minimize the number of missed deadlines
according to importance,” and “minimize maximum tardiness.”

Informally, a property is predictable to the degree that it is known in advance. One end
point of the predictability scale is determinism, in the sense that the property is known
exactly in advance. The other end point of the predictability scale can be characterized
as maximum entropy, in the sense that nothing at all is known in advance about the
property. In stochastic real-time systems (which include hard real-time systems as a
special case), one well-defined way to measure predictability is coefficient of variation
Cν, which is defined as variance/mean2. The deterministic distribution, Cν = 0, and the
extreme mixture of exponentials distribution is an example of a maximally non-
deterministic property whose Cν = ∞.
26-6 Dynamic Scheduling Adopted Specification September 2001

26
In every real-time system, timeliness of each application and system action is
somewhere on this predictability scale. Hard real-time systems have deterministic
timeliness in the sense that they always meet all of their hard deadlines. Soft real-time
systems have non-deterministic timeliness – e.g., characterized stochastically, such as
minimizing either mean or maximum tardiness.

Given a sequencing optimality criterion, a sequencing discipline is selected or devised
to satisfy it. There are a great many widely used sequencing disciplines; common
examples in real-time computing systems include highest priority first (or just
“priority”), earliest deadline first (EDF), and least laxity first (LLF). There may be
more than one discipline that satisfies a given criterion – e.g., the hard real-time
criterion is satisfied by: the EDF and LLF disciplines (under specific conditions),
among others; or appropriate assignment and manipulation of priorities. Conversely, a
specific discipline may be suitable for different criteria: EDF satisfies the hard real-
time criterion, and also satisfies the soft real-time criterion “minimize maximum
tardiness” (among others); priorities can be used to satisfy either the hard or various
soft real-time criteria.

When scheduling is employed, the sequencing discipline is usually called a scheduling
discipline, and when only dispatching is employed, the discipline is usually called a
dispatching rule.

A sequencing algorithm implements a sequencing discipline. In general, a discipline
can be implemented by many different possible algorithms.

This specification uses the term scheduling to include the case when scheduling (and
thus dispatching in schedule order) is employed, and the case when only dispatching is
employed, because both of those cases involve selecting a sequencing optimality
criterion and a corresponding discipline and algorithm.

26.7 Well Known Scheduling Disciplines

There are many widely used scheduling disciplines, but real-time computing theory
and practice are focused on a small number of them, some of which are summarized
below. The constructs in the IDL will become clear later in this specification.

26.7.1 Fixed Priority Scheduling

The fixed priority scheduling discipline provides for pre-emptive scheduling or
dispatching of threads based on a simple numeric priority. When a higher priority
thread is created or becomes unblocked, it pre-empts a lower priority executing thread
and executes immediately.

module FP_Scheduling
{

struct SegmentSchedulingParameter
{

RTCORBA::Priority base_priority;
};
September 2001 Dynamic Scheduling: Well Known Scheduling Disciplines 26-7

26
local interface SegmentSchedulingParameterPolicy
: CORBA::Policy

{
attribute SegmentSchedulingParameter value;

};

struct ResourceSchedulingParameter
{

RTCORBA::Priority resource_priority_ceiling;
};

local interface ResourceSchedulingParameterPolicy
: CORBA::Policy

{
attribute ResourceSchedulingParameter value;

};

local interface Scheduler
: RTScheduling::Scheduler

{
SegmentSchedulingParameterPolicy

create_segment_scheduling_parameter
(in SegmentSchedulingParameter value);

ResourceSchedulingParameterPolicy
create_resource_scheduling_parameter

(in ResourceSchedulingParameter value);
};

};

Note that an analysis technique for scheduling fixed priority systems is Rate
Monotonic Analysis (RMA). The rate monotonic analysis assigns fixed priorities to
periodic threads based on their execution rates or periods – the thread having the
highest rate (shortest period) is assigned the highest priority. Normally, the
characteristics of all threads and their execution environment are known in advance,
and rate monotonic scheduling is statically performed off-line. In this case, the Real-
time CORBA 1.0 Fixed Priority discipline can be employed. Often thread behavior or
execution environment characteristics such as system loading vary with some dynamic
parameter, time or date, operational status of supporting systems, etc.

26.7.2 Earliest Deadline First (EDF)

The earliest deadline first discipline uses the execution completion deadline of the
threads as the basis for their execution eligibility – a thread that has a shorter (closer)
deadline is more eligible than one with a longer (later) deadline. In some cases, a
thread’s deadline is constant during the thread’s lifetime, and in other cases it changes
(for example, a thread’s deadlines may be nested). When EDF is used to meet
deadlines (i.e., for hard real-time), it requires that all deadlines can be met, in which
case it is most often employed statically. Other factors can be used in conjunction with
deadlines to create enhanced EDF-like disciplines that always meet all deadlines if
26-8 Dynamic Scheduling Adopted Specification September 2001

26
possible, and that shed or defer load when overloaded. When EDF is used to minimize
maximum tardiness (i.e., for soft real-time), it may be employed either statically or
dynamically. EDF can be employed either as a scheduling discipline or as a
dispatching rule.

module EDF_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
long importance;

};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

26.7.3 Least Laxity First (LLF)

A least laxity (or “time to go”) first discipline assigns execution eligibility based on
laxity value, where

laxity = deadline - current time - estimated remaining computation time.

A thread with lower laxity is more eligible than one with higher laxity. An LLF
discipline is sometimes used for environments where thread execution time
requirements vary significantly. In such environments, a thread with a long execution
time may be released prior to threads with less laxity becoming ready-to-run. The
laxity estimate is updated as the thread execution duration estimate is updated at run
time. An LLF discipline may specify that a thread with negative laxity should not
(continue to) execute. Thus, LLF is primarily a dynamic discipline. LLF may be used
either to meet deadlines (i.e., for hard real-time) or to maximize minimum lateness (or
tardiness) (i.e., for soft real-time). LLF can be employed either as a scheduling
discipline or a dispatching rule.

module LLF_Scheduling
{

struct SchedulingParameter
{

September 2001 Dynamic Scheduling: Well Known Scheduling Disciplines 26-9

26
TimeBase::TimeT deadline;
TimeBase::TimeT estimated_initial_execution_time;
long importance;

};
// laxity = deadline
// - {current time}
// - (estimated_initial_execution_time –
// {time executed thus far})

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
{

SchedulingParameterPolicy
create_scheduling_parameter

(in SchedulingParameter value);
};

};

26.7.4 Maximize Accrued Utility (MAU)

A maximize accrued utility discipline uses a utility function associated with each
thread to establish a thread schedule; MAU cannot be used as a dispatching rule. Each
function provides a mapping from that thread’s completion time to a utility value. For
example, completing very close to but prior to the deadline may be most useful, while
completing much earlier than the deadline may have less utility, and completing after
the deadline may have zero or negative utility. Conventional deadlines are a special
case of utility functions. MAU disciplines seek schedules that result in maximal
accrued (e.g., summed) utility. Thus, MAU disciplines are intended for dynamic
systems.

module Max_Utility_Scheduling
{

struct SchedulingParameter
{

TimeBase::TimeT deadline;
long importance;

};

local interface SchedulingParameterPolicy
: CORBA::Policy

{
attribute SchedulingParameter value;

};

local interface Scheduler : RTScheduling::Scheduler
26-10 Dynamic Scheduling Adopted Specification September 2001

26
{
SchedulingParameterPolicy

create_scheduling_parameter
(in SchedulingParameter value);

};
};

26.8 Distributed System Scheduling

Scheduling in a distributed system can be divided into four cases. Cases 1 through 3
are the single-level scheduling cases.

Case 1 is that scheduling occurs completely independently on each node, and
application behaviors that involve more than a single node do not have trans-node end-
to-end timeliness requirements that are used by the node schedulers. That is the
common non-real-time case.

Case 2 is that scheduling occurs independently on each node, but an application
behavior that involves more than one node propagates its end-to-end timeliness
context, which is then used by each node’s scheduler while the behavior is active at
that node. At each node, the distributable thread competes with the other threads at that
node, according to its end-to-end needs. System-wide scheduling is coherent but not
generally globally optimal. That is the distributed real-time case this specification
explicitly addresses.

Case 3 is that scheduling on each node is global in the sense that there is a logically
singular system-wide scheduling algorithm instantiated on all nodes, and node
instances of this algorithm interact to cooperatively schedule all nodes in a globally
optimal way. This specification does not explicitly support case 3 because such
scheduling is very difficult (intractable in general) from both the conceptual and
implementation standpoints, but desires not to preclude it.

Case 4 is all the multi-level scheduling cases: there is at least one level of “meta-
scheduling” above the case 1 or 2 node schedulers that seeks to improve global
optimality by adaptively adjusting some combination of scheduling parameter
elements, schedulable entity, scheduling contexts, scheduling algorithms, scheduling
disciplines, and node load balancing. Case 4 includes sub-cases corresponding to cases
2 and 3. This specification does not explicitly support case 4, but again, desires not to
preclude it.

26.9 Distributable Thread

This specification replaces the term and concept of an activity that appeared as a
design and analysis suggestion in Real-time CORBA 1.0 with a definition for an end-
to-end schedulable entity termed distributable thread. Real-time CORBA 1.0 left the
details of the activity abstraction unspecified, but such a distributed execution model is
essential in dynamically scheduled real-time CORBA systems. The term has been
changed to avoid conflict with prior usage in CORBA specifications such as Workflow
Management (formal/00-05-02) and Additional Structuring Mechanisms for the OTS
Specification (orbos/00-04-02).
September 2001 Dynamic Scheduling: Distributed System Scheduling 26-11

26
The defining characteristic of any real-time distributed computing system, whatever its
programming model, is that the end-to-end timeliness (optimality and predictability of
optimality, as defined in Section 26.6, “Sequencing: Scheduling and Dispatching,” on
page 26-5) of trans-node application behaviors is acceptable to the application.

In most cases, the fundamental requirement for achieving acceptable end-to-end
timeliness is that a trans-node application behavior’s timeliness properties and
parameters – time constraints, expected execution time, execution time received thus
far, etc. – be explicitly employed for resource management (scheduling, etc.)
consistently on each node involved in that application trans-node behavior. As stated in
Section 26.8, “Distributed System Scheduling,” on page 26-11, “consistently” refers to
distributed scheduling case 3 in this specification.

In some static real-time distributed systems, these properties and parameters can be
instantiated a priori; but in general, and in all dynamic real-time distributed systems,
these properties must be propagated among corresponding computing node resource
managers – e.g., in operating systems, Java virtual machines, and middleware.

In real-time distributed CORBA systems, a trans-node application behavior’s end-to-
end timeliness (and potentially other) properties and parameters must be acquired from
the client’s ORB, propagated with the invocation, and deposited in the servant’s ORB,
when operation invocations occur; and similarly for any associated returns.

For (at least) dynamic real-time CORBA systems, the fixed priority propagation
mechanism in the Real-time CORBA 1.0 specification is insufficient – a trans-node
application behavior abstraction is needed. A natural abstraction is suggested by
CORBA’s native control flow programming model – a thread that can execute
operations in objects without regard for physical node boundaries. In this specification,
that programming model abstraction is termed a distributable thread (see Figure 26-1).
In this figure, Objects A, B, and C may be running on either different processing nodes
or within the same address space.

Figure 26-1 Control Flow in a Distributed Processing System

Control Flow

Object
A

Object
B

Object
C

26-12 Dynamic Scheduling Adopted Specification September 2001

26
The distributable thread is the schedulable entity. Each distributable thread has a
unique system-wide id. Each distributable thread may have one or more execution
scheduling parameter elements – e.g., priority, time constraints such as deadlines or
utility functions, importance – that specify the acceptable end-to-end timeliness for
completing the sequential execution of operations in object instances that may reside
on multiple physical nodes. The semantics of acceptability with respect to these end-
to-end timeliness parameters is defined by the application, in the context of the
scheduling discipline being used. Execution of the distributable thread is governed by
the scheduling parameter elements, on each node it visits (see Figure 26-2).

Figure 26-2 Distributed Threads

A distributable thread can extend and retract its locus of execution points among
operations in object instances across physical computing nodes by location-
independent invocations and (optionally) returns. Within each node, the flow of control
is equivalent to normal local thread execution.

The synchrony of a conventional two-way operation invocation (or RPC) programming
model is often cited as a concurrency limitation. But that criticism does not apply to
the distributable thread model. A distributable thread is a sequential abstraction, like a
local thread. A distributable thread is always executing somewhere, while it is the most
eligible there – it is not doing send/wait’s as with conventional operation invocations.

Remote invocations and returns are scheduling events at both client and servant nodes.
Each node’s processor is always executing the most eligible distributable thread while
the others wait.

A distributable thread always has exactly one execution point (head) in the whole
system. New distributable threads may be created, or sleeping ones awakened, when
needed. An application or system may have multiple distributable threads. Multiple
distributable threads execute concurrently and asynchronously, by default.
Distributable threads synchronize through operation execution; the writers of each
object control distributable thread concurrency in that object.

DT1

Object
A

Object
B

Object
C

Object
D

DT2

DT3

1-way
Invocation
September 2001 Dynamic Scheduling: Distributable Thread 26-13

26
An exception that occurs anywhere along a distributable thread’s locus of execution
can be forwarded to and raised at the head of that distributable thread. Subsequently,
the exception propagates from the head back up the distributable thread to the nearest
enclosing exception handler.

Distributable thread-based programming models imply the need for a number of
supporting facilities; these programming models can be differentiated by the facilities
that they provide, and the approaches employed to provide them. Not all, or any, of
these facilities are included in this specification. These supporting facilities include
(but are not limited to) the following, which are not addressed in this specification:

• Some asynchronous “happenings” (i.e., changes in system state) of interest to a
distributable thread may have to be coordinated with current distributable thread
execution. For example, a violated time constraint, or the failure of a node or
network path over which a distributable thread is extended, might require
notification of the distributable thread’s head – as soon as possible, if the
distributable thread is currently executing, and otherwise as soon as the distributable
thread becomes the most eligible to execute.

Certain other events that occur at the distributable thread’s head – e.g., synchronous
exceptions (e.g., traps) and asynchronous exceptions (e.g., time constraint
expirations) – may require the distributable thread to execute a local exception
handler and then return back up the invocation chain to execute one or more
appropriate exception handlers at those places. After such an exception, the
programming model could allow the distributable thread to either continue
execution where the exception was initially delivered (a continuation model) or
terminate, or the model could require that the distributable thread always terminate
(a termination model).

• Distributable thread control actions – e.g., suspend, resume, abort, time constraint
change, etc. – may have to be propagated to, and carried out at, the distributed
thread's head.

• Mechanisms may have to be provided to support maintaining correctness of
distributed execution, and consistency of distributed data – in both cases, as defined
by the application – for concurrent activities of one or more applications.

• The code that is responsible for detecting/suspecting failure for an appropriate set of
nodes may require visibility to failures locally perceived by a distributable thread.

All of these facilities generally would be required to be timely – e.g., subject to
completion time constraints.

Section III - Overview of the Programming Model
This section presents an overview of the application programming model that is being
provided. Since the specification defines a scheduling framework, as well as a limited
set of scheduling disciplines, this section deals with the concepts that apply across
schedulers and scheduling disciplines.
26-14 Dynamic Scheduling Adopted Specification September 2001

26
26.10 Scheduler

In this specification a scheduler is realized as a extension to Real-time CORBA that
utilizes the scheduling needs and resource requirements of one or more applications to
manage the order of execution of those applications on the distributed nodes of a
CORBA system. A scheduler provides operations for applications to announce their
requirements, which the scheduler takes into consideration when it affects the order in
which threads are dispatched by the operating system.

A scheduler will be run in response to specific application requests, such as defining
new scheduling parameter elements, and in response to specific application actions,
such as CORBA invocations. The latter will be implemented using the CORBA
Portable Interceptor interfaces. The scheduler utilizes the information provided in
these interfaces to manipulate which threads are most eligible for execution by the
underlying operating system. This control is via whatever interfaces the operating
system provides, which are outside of the scope of CORBA. Thus, although scheduler
implementations could be independent of any particular ORB implementation, as long
as the ORB conforms to this specification, the scheduler will be closely tied to the
operating system.

The scheduler architecture is based on the premise that a distributed application can be
considered to be a set of distributable threads (see Section Distributable Thread),
which may interact in a number of ways, sharing resources via mutexes, sharing
transports, parent/offspring relationships, etc. The mechanisms of interaction are
irrelevant to this specification.

The scheduler architecture assumes that the problem of satisfying scheduling needs can
be addressed by managing the allocation of resources to distributable threads. The
distributable thread provides a vehicle for carrying scheduling information across the
distributed system.

Distributable threads interact with the scheduler at specific scheduling- points,
including application calls, locks and releases of resources, and at pre-defined
locations within CORBA invocations. The latter are required because CORBA
invocations are points at which the distributable thread may transition to another
processor, and the scheduling information must be reinterpreted on the new processor.

26.10.1 Scheduler Characteristics

This specification does not assume a single scheduling discipline for Real-time
CORBA. Schedulers are developed to implement a particular scheduling discipline or
disciplines. Both available products and technical literature abound with examples of
schedulers implementing various scheduling disciplines. This specification defines
only the interface between the ORB/application and the scheduler, and is intended to
foster the development of schedulers that are not dependent on any particular ORB
(although a particular scheduler implementation may choose to take advantage of the
features of a particular ORB). Note that schedulers will likely be dependent on the
underlying operating system, and this specification does not address these operating
system interfaces, since they are outside of the scope of CORBA.
September 2001 Dynamic Scheduling: Scheduler 26-15

26
This specification addresses schedulers that will optimize execution for the application
scheduling needs on a processor-by-processor basis (see Section Distributed System
Scheduling, case 2). That is, as the execution of an application distributable thread
moves from processor to processor, its scheduling needs are carried along and honored
by the scheduler on each processor. This does not preclude the development of
schedulers that perform global optimization, but this specification does not specifically
address that type of scheduler.

The schedulers considered in relation to this specification will have in common
processing stages where they acquire information about the demand for resources, an
optional processing stage where they plan the processing schedule (when scheduling,
as opposed to dispatching alone, is used), and a processing phase where they affect
how threads are dispatched by the operating system. This specification does not impose
any requirement on how the scheduler developer defines these processing stages. The
specification does define the minimum set of scheduling points (points in time or code
when the scheduler will execute).

This specification also provides the scheduler APIs for a small set of scheduling
disciplines, including fixed priority, as defined in Real-time CORBA 1.0. This
supports application portability for these disciplines.

The current specification does not address full interoperability across scheduler vendor
implementations; to achieve this, one would have to define the scheduling discipline,
the scheduling parameter elements, and the service context that is used to propagate the
scheduling characteristics of the application. The submitters believe that more
implementation experience is needed before full interoperability is possible.
Therefore, this specification only provides a complete API definition for a limited set
of well-understood scheduling disciplines and does not define a standard service
context for any scheduling disciplines. Future specifications will define standardized
service contexts and the APIs for additional disciplines.

26.10.2 Scheduling Parameter Elements

This specification defines a scheduling parameter as a container of potentially multiple
values called scheduling parameter elements. The scheduling parameter elements are
the values needed by a scheduling discipline in order to make scheduling decisions for
an application. A scheduling discipline may have no scheduling parameter elements,
only one, or several; the number and meaning of the scheduling parameter elements is
scheduling discipline specific. A single scheduling parameter, which may contain
several scheduling parameter elements, is associated with an executing thread via the
begin_scheduling_segment operation. A thread executing outside the context of a
scheduling segment has no scheduling parameter associated with it and is scheduled by
the native scheduling of the operating system, typically priority based.

Some scheduling disciplines will acquire the information about application resource
and scheduling requirements at system/application design time (static scheduling);
these schedulers typically would load the resulting scheduling information into a data
structure that is accessed at run time. Other schedulers are intended to react to
dynamic runtime system demands (dynamic scheduling). These cases represent
different scheduler “interaction styles.” The interaction style will depend on the
26-16 Dynamic Scheduling Adopted Specification September 2001

26
scheduler implementation and, possibly, on the particular scheduling discipline. This
specification addresses provides a general scheduler interface that can be used by
either style of scheduler interactions.

This specification also allows various types of interactions for static scheduling. The
specific approach to be used will be discipline-specific. For example, the application
may provide its scheduling parameter elements, and the associated names, in advance
so that the scheduler can store them internally; this could be done during some form of
application initialization. Alternatively, the application can provide scheduling
parameter elements each time it invokes scheduler operations.

The specific information needed by a scheduler will depend on which discipline(s) it
implements. For example, simple deadline scheduling may need only the thread’s
deadline and the amount of CPU time that the thread will consume. Another discipline
might utilize relative importance as one of its inputs. This specification has defined a
standard interface for passing a set of scheduling discipline-specific information to a
scheduler via the elements of a scheduling parameter. The definition of the structure,
types, and the handling of these scheduling parameter elements is scheduling
discipline-specific. The elements are only defined for the subset of scheduling
disciplines provided in this specification.

26.10.3 Pluggable Scheduler and Interoperability

This specification provides a “pluggable” scheduler. A particular ORB in the system
may have any scheduler installed, or may have no scheduler. If an ORB has a
scheduler installed, all applications run on that ORB are “under the purview” of that
scheduler.

Application components may interoperate, in the context of a particular scheduling
discipline, as long as their ORBs have compatible schedulers installed (meaning that
the schedulers implement the same discipline, and follow a CORBA standard for that
discipline) and the scheduler implementations use a compatible service context. As
noted above, the current specification does not define any standard service contexts for
scheduler interoperability, although future revisions are anticipated in this area.

A scheduler may choose to support multiple disciplines, but this specification does not
address how different scheduling disciplines might interact. This may also be
addressed in future revisions.

26.10.4 Distributable Threads

A distributable thread (see Section 26.9, “Distributable Thread,” on page 26-11) is the
fundamental abstraction of application execution in this specification. A distributable
thread incorporates the sequence of actions associated with a user-defined portion of
the application that may span multiple processing nodes, but that represents a single
logical thread of control. Distributed applications will typically be constructed as
several distributable threads that execute logically concurrently.
September 2001 Dynamic Scheduling: Scheduler 26-17

26
More precisely, a distributable thread is the locus of execution between points in the
application that are significant to the application developer, and it carries the
scheduling context of the application from node to node as control passes through the
system via CORBA requests and replies. It might encompass part of the execution of
a local (or native) thread or multiple threads executing in sequence on one or more
processors. If it encompasses multiple threads, then it also encompasses the various
phases; that is, "in-transit", "static", "active", etc., which might occur as the locus of
execution moves among threads.

A distributable thread may have a scheduling parameter containing multiple element
values associated with it. These scheduling parameter elements become the scheduling
control factors for the distributable thread and are carried with the distributable thread
via CORBA requests and replies. Scheduling parameter elements can be associated
with a thread by the application invoking the begin_scheduling_segment or
update_scheduling_segment operations (see Section 26.10.6, “Scheduling
Segments, Parameter Elements, and Schedulable Entities,” on page 26-19). The
application may call the spawn operation to create a distributable thread and a
corresponding native thread in the current processor and associate scheduling
parameter elements with it.

A distributable thread has at most one head (execution point) at any moment in time.
If there is a branch of control, as occurs with a CORBA oneway invocation, the
originating distributable thread remains at the client and continues execution (as long
as it remains the most eligible). A new distributable thread is implicitly created to
process each oneway invocations.

Each distributable thread has a globally unique id within the system, which can be
accessed via the get_current_id operation. The distributable thread id can be used to
obtain a reference to a distributable thread, via the lookup operation. This reference
can then be used to cancel that distributable thread, via the cancel operation. The
cancel operation results in a CORBA::THREAD_CANCEL system exception being
raised in the cancelled distributable thread.

26.10.5 Implicit Forking and Joining

Typically, an intrinsic part of any concurrency model is the semantics for the creation
of new execution contexts, or forking, and the synchronization of multiple execution
contexts, or joining.

Explicit forking is provided for in this specification by the spawn operation. Due to
time constraints explicit joining was not provided by this specification. Future
finalizations and revision task forces are encouraged to provide for this capability.

Certain aspects of the core CORBA programming model and the programming model
of various CORBA services introduce the implicit forking of distributable threads.
One example in the core CORBA specification is oneway invocations if made with a
synchronization scope of SYNC_NONE or SYNC_WITH_TRANSPORT. This
occurs because the distributable thread making the invocation is unblocked before the
26-18 Dynamic Scheduling Adopted Specification September 2001

26
operation on the servant executes. Applications may optionally associate an “implicit
scheduling parameter” for a distributable thread that is associated with any implicitly
created distributable threads created from that distributable thread.

When a distributable thread executing a scheduling segment implicitly forks another
distributable thread, the forked distributable thread’s scheduling parameter is
determined as follows:

• If the implicit scheduling parameter in set for the innermost scheduling segment of
the forking distributable thread then the ORB must use this value in implicitly
forking any distributable threads.

• Otherwise, the ORB must use the operative scheduling parameter of the innermost
scheduling segment for the implicit forking of any distributable threads.

As with forking, there are certain aspects of the core CORBA programming model and
the programming model of various CORBA services that introduce the implicit joining
of distributable threads. An example of an implicit join is the polling mode introduced
by asynchronous messaging. This occurs because the distributable thread calling the
poll operation can wait to “join up with” the distributable thread that ran the operation
on the servant to get the results of the asynchronous invocation. Note that the initial
asynchronous invocation call is an implicit fork that results in the distributable thread
used to run the operation on the servant.

When a distributable thread executing a scheduling segment implicitly joins another
distributable thread, there is neither inheritance nor propagation of either distributable
thread’s scheduling parameter to the other distributable thread.

26.10.6 Scheduling Segments, Parameter Elements, and Schedulable Entities

In this specification, distributable threads consist of one or more (potentially nested)
scheduling segments. Within a distributable thread, scheduling segments can be
sequential and/or nested. Nesting creates scheduling scopes.

Each scheduling segment represents a sequence of control flow with which a particular
set of scheduling parameter elements is associated. A scheduling segment is
delineated by begin_scheduling_segment and end_scheduling_segment
statements in the code. The application may use the segment name on the end
statement, as an error check. The scheduling parameter associated with a distributable
thread may be updated with a call to update_scheduling_segment.

At runtime, a scheduling segment has a single starting point, and a single ending point
(although it could be coded with multiple possible ending points, during execution only
one ending point can be invoked). Segments may span processor boundaries. This
specification places no restrictions on the placement of
begin_scheduling_segment’s and end_scheduling_segment’s; an
end_scheduling_segment may occur on a different processor than the
begin_scheduling_segment, and may even occur somewhere up the chain of
CORBA requests.
September 2001 Dynamic Scheduling: Scheduler 26-19

26
As a distributable thread moves from object instance to object instance through
CORBA invocations, it may extend (and possibly retract) itself through one or more
processes or processors. When this happens, the distributable thread may be
contending with a new set of distributable threads for resources.

Figure 26-3 A Distributable Thread with Two Sequential Segments

Figure 26-3 illustrates a simple distributable thread which contains two sequential
segments. The distributable thread begins in object instance A, with segment W, and
traverses object instances B and C before returning to A, where the first segment ends
and a new segment (Z) begins. Portable interceptors are invoked each time the
distributable thread transitions to another object instance via a CORBA request (on
both the client and servant side) and again as the distributable thread returns. Note that
these object instances could be on different processors.

Suppose the scheduling discipline is Earliest Deadline First, which implies that the
illustrated distributed thread must (implicitly) carry its deadline along as it progresses
through the various processor environments. Further, assume that the scheduling
discipline calls for scheduling segments that have missed their deadline to be
terminated. This last condition implies that the scheduler must be maintaining a list of

Object A Object B Object C

BSS W

BSS Z
ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS Z

ESS - end_scheduling_segment

Segment
W

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
26-20 Dynamic Scheduling Adopted Specification September 2001

26
deadlines. The begin_scheduling_segment, update_scheduling_segment, and
end_scheduling_segment operations serve to enter, update or remove deadlines,
but the scheduler must also address what happens when a set deadline expires.

Figure 26-4 A Distributable Thread Created by a Spawn Operation

Figure 26-4 illustrates the use of a spawn to create a distributable thread. Note that the
spawn also serves as the beginning for the initial segment (W) of the distributable
thread.

Some scheduling disciplines may support the nesting of scheduling segments, which
permits independently developed software components to define their own scheduling
segments. The component would create an additional scheduling segment by
embedding one or more pair of calls to begin_scheduling_segment and
end_scheduling_segment. The handling of unspecified parameter elements
(defaulting) is discipline-specific. In some cases, unspecified elements will use the
values from the next outer segment (if any). In other cases, predefined or application
defined default values might be used.

Object A Object B Object C

ESS W

Segment
W

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects

spawn W

BSS Z

ESS Z

Segment
Z

September 2001 Dynamic Scheduling: Scheduler 26-21

26
Each begin_scheduling_segment provides a new set of scheduling parameter
elements for the distributable thread. If the distributable thread is already in a
segment, these new parameter elements will replace the current set until a matching
end_scheduling_segment occurs. An end_scheduling_segment statement
causes the distributable thread to return to the previous scheduling parameter (if any).
Thus, a distributable thread may contain multiple scheduling segments that are
executed sequentially, each of which may contain nested segments. This specification
does not place any limits on the level of nesting that a scheduling discipline will
support.

Figure 26-5 Distributable Thread with Nested Segments

Figure 26-5 illustrates segment nesting. In this case, segment X is nested within
segment W. At the point where segment X begins, the scheduling context of segment
W is logically pushed onto a stack, and segment W’s scheduling parameter elements
are used for the distributable thread. When segment X ends, the distributable thread
returns to the scheduling parameter elements for segment W.

Object A Object B Object C

BSS W

BSS X

BSS Z
ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS X

ESS Z

ESS - end_scheduling_segment

Segment
W

Segment
X

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
26-22 Dynamic Scheduling Adopted Specification September 2001

26
In the case of EDF, all of these segments involve the requirement that they complete by
some deadline, but they would probably be different deadlines. In the case of nested
segments (W, X, and Y) the tightest deadline may come from any of the segments.

A distributed thread executing in a single object instance may, at different times, have
different deadlines. Note that where the distributed thread first executes in object
instance B its deadline will be the deadline for segment W. However, as soon as
segment X begins, the deadline must be selected from the tighter of the outer (W) or
inner (X) scheduling segment.

It is expected that each instance of the scheduler must monitor the time constraints of
every distributed thread that is currently traversing its node.

A scheduling parameter element that is created in one object instance must be
considered in other object instances as the distributed thread passes through them. In
the illustration, the deadline established in object instance A must be considered with
respect to all other deadlines that exist in the domain of object B, and similarly as the
distributed thread extends to object C.

How a scheduler addresses distributed dynamic scheduling is implementation
dependent, but it is likely that the features of the portable interceptor will be required.
By requiring use of an interceptor that targets the scheduler for the outgoing and
incoming sides of the connection at both the client and server sides, the scheduler can
address these characteristics. A client-side outgoing interceptor can address moving
the deadline compliance monitoring while the associated server side incoming
interceptor can address the continuing deadline compliance monitoring and distributed
thread scheduling with respect to the server side workload.

The application may also invoke the scheduler within a segment, either to allow the
scheduler to notify the application if it has had a scheduling failure (such as a missed
deadline), or to modify the current segment’s scheduling parameter elements. This is
done via the update_scheduling_segment operation. The update operation allows
the application to occasionally check in with the scheduler, and can also be used to
change scheduling parameter elements dynamically, without creating a new segment.
September 2001 Dynamic Scheduling: Scheduler 26-23

26
Figure 26-6 Distributable Thread with Nested Segments

Figure 26-6 illustrates the remaining features of scheduling segments, namely the use
of multi-level nesting, updates, and the flexible placement of ends. Note that there are
two levels of nesting within segment W. In this example, an
update_scheduling_segment is called within segment Y. Any exceptions for the
distributable thread could be delivered at this point, rather than waiting for the next
portable interceptor call or the end_scheduling_segment. In addition, the
application could provide new scheduling parameter elements on the update, without
returning to the next upper scheduling scope. Note also, this in this example, segment
Y is begun in object instance C, but ended in object instance B, which was the invoker
of object instance C.

The application can obtain a list of the current scheduling segment names, innermost
scope first, via the current_scheduling_segment_names operation.

26.10.7 Scheduling Points

There are a number of scheduling points, which are points in time and/or code at which
the scheduler is run and may result in an alteration of the current schedule. These
include all begins and ends, access to shared resources, and points at which control

Object A Object B Object C

BSS W

BSS X

BSS Y

BSS Z

ESS Y

ESS W

BSS - begin_scheduling_segment

USS - update_scheduling_segment

ESS X

ESS Z

USS Y

ESS - end_scheduling_segment

Segment
W

Segment
X

Segment
Y

Segment
Z

Segment
scopes

Application call

Portable Interceptor

Distributable Thread

Normal Thread

Distributable Thread Traversing CORBA Objects
26-24 Dynamic Scheduling Adopted Specification September 2001

26
transfers between processing nodes (i.e., CORBA requests). Because these scheduling
points may result in schedule changes, they may also be a point at which dispatching
occurs.

The following set of scheduling points is defined:

• Creation of a distributable thread (via begin_scheduling_segment or spawn)

• Termination or completion of a distributable thread

• begin_scheduling_segment

• update_scheduling_segment

• end_scheduling_segment

• A CORBA operation invocation, specifically the request and reply interception
points provided in the Portable Interceptor specification

• Creation of a resource manager

• Blocking on a request for a resource via a call to
RTScheduling::ResourceManager::lock or
RTScheduling::ResourceManager::try_lock

• Unblocking as a result of the release of a resource via a call to
RTScheduling::ResourceManager::unlock

26.10.8 Schedule-Aware Resources

This specification permits the application to create a scheduler-aware resource locally
via the create_resource_manager operation in a ResourceManager; these
resources can have scheduling information associated with them via the
set_scheduling_parameter operation. For example, a servant thread could have a
priority ceiling if the application were using fixed priority scheduling. The scheduler
will run when these resources are locked or released, so that the scheduling discipline
is maintained.

Any scheduling information associated with these resources is scheduling discipline-
specific.

26.10.9 Exceptions

This specification defines the following exceptions related to scheduling:

• CORBA::SCHEDULER_FAULT – this indicates that the scheduler itself has
experienced an error.

• CORBA::SCHEDULE_FAILURE – this indicates that the distributable thread has
violated the constraints of its scheduling parameter. For example, this exception
could occur when a deadline has been missed or a segment has used more than its
allowed CPU time.
September 2001 Dynamic Scheduling: Scheduler 26-25

26
• CORBA::THREAD_CANCELLED – indicates that the distributable thread
receiving the exception has been cancelled. This may occur because a distributable
thread cancels another distributable thread thereby causing the
CORBA::THREAD_CANCELLED exception to get raised at the subsequent head
of the cancelled distributable thread.

• RTScheduling:: UNSUPPORTED_SCHEDULING_DISCIPLINE – indicates
that the scheduler was passed a scheduling parameter inappropriate for the
scheduling discipline(s) supported by the current scheduler.

26.10.10 Summary

An application consists of one or more distributable threads (as well as possibly local
processor threads which are not part of distributable threads). Each distributable
thread will execute through one or a series of (distributed) scheduling segments,
including some that may have nested segments. These segments represent regions of
execution that have their own scheduling parameter elements. Within these scheduling
segments, additional calls may be made to alter the scheduling parameter elements
and/or to just allow the scheduler to run.

Distributable threads may evolve from application threads, due to a
begin_scheduling_segment operation, a one-way operation, or be generated by
spawn operations. Distributable threads may be cancelled by another distributable
thread, and cancelled distributable threads will be notified of the cancellation via an
exception.

These distributable threads may share local resources utilizing resource manager lock,
try_lock, and unlock operations. These operations are schedule-respecting.

Section IV - Scheduler Interoperability and Portability

26.11 Scheduler Interoperability

A CORBA ORB supporting dynamic scheduling will interoperate with an ORB that
does not support this capability. The scheduling parameter for a distributable thread is
passed to the other ORB in the service context field and the other ORB can ignore
them.

An ORB conformant with Real-time CORBA 1.0 will interoperate with an ORB
compliant with this specification in the functional sense (i.e., without regard to
timeliness). An ORB compliant with this specification that has no scheduler installed
is fully interoperable in both terms of functionality and timeliness. If a scheduler is
installed then timeliness characteristics of the resulting system will depend on the
installed scheduler and its backwards compatibility with the Real-time CORBA 1.0
fixed priority scheduling.
26-26 Dynamic Scheduling Adopted Specification September 2001

26
26.12 Scheduler Portability

This specification addresses the issue of portability between the ORB and scheduler
and also between the application and the scheduler. This specification provides that
capability in that it makes the ORB/scheduler interfaces available to applications.

26.13 Dynamic Scheduling Interoperation

This specification does not address interoperation between different dynamic scheduler
implementations or between different scheduling disciplines.

Dynamic Scheduling is an extension of and modification to the RT CORBA
specification. Application functions that are scheduled using the fixed priority methods
will interoperate with dynamic scheduling tasks. This specification offers the
application developer several options with regard to mixed mode operations. For
example, a band of priorities can be reserved for dynamically scheduled activities.
That band may be located at the high or low end of the priority range or it may be
placed in the middle of the priority band. When activities have a priority higher than
the dynamic scheduling band then dynamic scheduled activities will only run during
what would otherwise be idle time. When dynamic scheduling is given top priority the
scheduler resources might be dedicated to some activities while the remainder of the
activities are dispatched during periods when the dynamically scheduled activities are
not ready to execute.

Schedulers may be constructed so that dynamic scheduling systems can provide
services to non-dynamically scheduled CORBA client applications. Requests from
such an client would be treated as any processing that occurs without a scheduling
parameter set. When dynamically scheduled clients make requests to non-dynamically
scheduled servants then the added information carried in the service contexts is
ignored. The request is valid but is not dynamically scheduled.

Section V - Dynamic Scheduling Interfaces

26.14 ThreadAction Interface

26.14.1 do Operation

26.14.1.1 IDL

module RTScheduling
{

…
local interface ThreadAction
{

void do(in CORBA::VoidData data);
September 2001 Dynamic Scheduling: Scheduler Portability 26-27

26
};
…
};

26.14.1.2 Semantics

The ThreadAction interface is used to provide an entry point for newly spawned
distributable threads. The ThreadAction interface serves as a parent type for user
implemented ThreadAction objects. The ThreadAction::do operation by default
does nothing. User written overrides of the do operation are expected execute the
application’s thread-specific actions.

26.15 RTScheduling::Current Interface

The RTScheduling::Current interface is derived from RTCORBA::Current. An
ORB that implements this specification returns a reference from a call to
CORBA::ORB::resolve_initial_references with the “RTCurrent” value passed
via the identifier parameter that can be narrowed to an RTScheduling::Current
reference.

26.15.1 spawn Operation

26.15.1.1 IDL

module RTScheduling
{

…
local interface Current

: RTCORBA::Current
{

…
DistributableThread

spawn
(in ThreadAction start,
 in unsigned long stack_size,

// zero means use the O/S default
 in RTCORBA::Priority base_priority);

…
};
…

};
26-28 Dynamic Scheduling Adopted Specification September 2001

26
26.15.1.2 Semantics

The spawn operation creates a new O/S thread and makes that thread a distributable
thread with a stack size at least as large as the value passed in the stack_size
parameter. The initial CORBA base priority is the value passed by the base_priority
parameter. The new distributable thread calls the do operation on the ThreadAction
object passed via the start parameter.

26.15.2 UNSUPPORTED_SCHEDULING_DISCIPLINE Exception

26.15.2.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
exception UNSUPPORTED_SCHEDULING_DISCIPLINE {};
…

};
…

};

26.15.2.2 Semantics

The UNSUPPORTED_SCHEDULING_DISCIPLINE exception is raised when a
scheduling parameter argument isn’t appropriate for the installed scheduler instance.

26.15.3 begin_scheduling_segment Operation

26.15.3.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void begin_scheduling_segment

(in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
raises UNSUPPORTED_SCHEDULING_DISCIPLINE);

…
};
…

September 2001 Dynamic Scheduling: RTScheduling::Current Interface 26-29

26
};

26.15.3.2 Semantics

The begin_scheduling_segment operation raises the
RTScheduling::UNSUPPORTED_SCHEDULING_DISCIPLINE exception when
the scheduling_parameter argument didn't have an appropriate value for the active
scheduling discipline.

The begin_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed its
schedule.

The begin_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal error.

The begin_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The begin_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the scheduling_parameter, any elements of the scheduling
parameter, or the name parameter was invalid for the installed scheduler.

The begin_scheduling_segment operation begins a scheduling segment, and
converts the currently executing thread into a distributable thread, if it is not already
one. A scheduling segment is a window of execution where a distributable thread is
executing a particular region of code. The scheduler conditions execution of a
particular scheduling segment using the passed scheduling_parameter argument,
until a begin_scheduling_segment. update_scheduling_segment, or
end_scheduling_segment is encountered.

The name parameter provides identification for the region of code that comprises the
scheduling segment. Some schedulers may support nesting of scheduling segments. If
a scheduler does not support nesting of scheduling segments this operation raises
CORBA::SCHEDULE_FAILURE.

A scheduling_parameter contains elements that are a value or set of values
appropriate for the active scheduling discipline. The scheduling_parameter used
by the scheduler and set by the application.

The requirements for the "scheduling_parameter" and "name" parameters are
dependant on both the scheduling discipline defined, and on the interaction style
supported by the scheduler. It is expected that at least one these parameters
("scheduling_parameter" or "name") is a non-null argument.

In addition, the begin_scheduling_segment operation provides a scheduling point
for the scheduler and gives the scheduler an opportunity to cancel a distributable thread
by raising the CORBA::THREAD_CANCELLED exception while is executing in a
scheduling segment.
26-30 Dynamic Scheduling Adopted Specification September 2001

26
26.15.4 update_scheduling_segment Operation

26.15.4.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void update_scheduling_segment

(in string name,
 in CORBA::Policy sched_param,
 in CORBA::Policy implicit_sched_param)
raises (UNSUPPORTED_SCHEDULING_DISCIPLINE);
…

};
…

};

26.15.4.2 Semantics

The update_scheduling_segment operation raises the
RTScheduling::DistributableThread::UNSUPPORTED_SCHEDULING_DISCIPL
INE exception when the scheduling_parameter argument didn't have an appropriate
value for the active scheduling discipline.

The update_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed its
schedule.

The update_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal error.

The update_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The update_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the scheduling_parameter or any elements of the scheduling
parameter are invalid for the installed scheduler.

The update_scheduling_segment operation provides the scheduler with a
scheduling point and provides an opportunity for the scheduler to check for a
scheduling failure. In addition, the update_scheduling_segment operation gives
the scheduler an opportunity to raise the CORBA::THREAD_CANCELLED
exception within a distributable thread while it is executing in a scheduling segment.
September 2001 Dynamic Scheduling: RTScheduling::Current Interface 26-31

26
The update_scheduling_segment operation should only be called inside of a
scheduling segment. A call to the update_scheduling_segment operation outside
of a scheduling segment raises CORBA::SCHEDULE_FAILURE.

Any non-null value passed via the scheduling_parameter parameter allows an
application to request that a scheduler update the scheduling parameter or the implicit
scheduling parameter, or both, associated with enclosing scheduling segment. A null
value indicates to the scheduler that there it should not update scheduling parameter
associated with the enclosing scheduling segment.

26.15.5 end_scheduling_segment Operation

26.15.5.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
void end_scheduling_segment(in string name);
…

};
…

};

26.15.5.2 Semantics

The end_scheduling_segment operation raises the
CORBA::SCHEDULE_FAILURE exception when the scheduling segment failed its
schedule.

The end_scheduling_segment operation raises the
CORBA::SCHEDULER_FAULT exception when the scheduler has had internal error.

The end_scheduling_segment operation raises the
CORBA::THREAD_CANCELLED exception when the distributable thread was
cancelled.

The end_scheduling_segment operation raises the CORBA::BAD_PARAM
exception when the name parameter was invalid for the installed scheduler.

The end_scheduling_segment operation ends a scheduling segment. Each call to a
end_scheduling_segment operation should match a call to
begin_scheduling_segment made in the same distributable thread. If
end_scheduling_segment is called in a distributable thread that does not have a
matching call to begin_scheduling_segment raises
CORBA::SCHEDULE_FAILURE.
26-32 Dynamic Scheduling Adopted Specification September 2001

26
The end_scheduling_segment operation provides the scheduler with a scheduling
point and provides an opportunity for the scheduler to check for a scheduling failure.

If a non-null string is passed via the name parameter then the scheduler can verify the
name with the name passed in the corresponding begin_scheduling_segment call.
If a null string is passed then no verification takes place.

After an end_scheduling_segment operation, the distributable thread is either
operating with the scheduling parameter of the next outermost scheduling segment
scope. If this operation is performed at the outermost scope, the result is that the
processing for that thread reverts back to the fixed priority scheduling where the active
thread priority is the sole determinant of the threads eligibility for execution.

26.15.6 Id Related Operations

26.15.6.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…

IdType get_current_id();
// returns id of thread that is running

DistributableThread lookup(in IdType id);
// returns a null reference if
// the distributable thread is
// not known to the local scheduler

typedef sequence<octet> IdType;

readonly attribute IdType id;
// a globally unique id

…
};
…

};

26.15.6.2 Semantics

Each distributable thread has a globally unique id within the system, which can be
accessed via the get_current_id operation. The distributable thread id can be used to
obtain a reference to a distributable thread, via the lookup operation. This reference
can then be used to cancel that distributable thread, via the
September 2001 Dynamic Scheduling: RTScheduling::Current Interface 26-33

26
RTScheduling::DistributableThread::cancel operation. This cancel operation
results in a CORBA::THREAD_CANCEL system exception being raised at the head
of the cancelled distributable thread.

26.15.7 scheduling_parameter and implicit_scheduling_parameter Attributes

26.15.7.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…
readonly attribute CORBA::Policy

scheduling_parameter;
readonly attribute CORBA::Policy

implicit_scheduling_parameter;
…

};
…

};

26.15.7.2 Semantics

Each distributable thread has a current scheduling policy if it is operating in a
scheduling segment (and a null scheduling policy otherwise). The
scheduling_parameter attribute returns the scheduling parameter for the innermost
segment name.

The implicit_scheduling_parameter attribute returns the implicit scheduling
parameter as last set by a begin_scheduling_segment or
update_scheduling_segment call for the current distributable thread.

If the distributable thread is executing outside the context of the scheduling segment
then a null reference is returned from either of this attributes.

26.15.8 current_scheduling_segment_names Attribute

26.15.8.1 IDL

module RTScheduling
{

…
local interface Current : RTCORBA::Current
{

…

26-34 Dynamic Scheduling Adopted Specification September 2001

26
typedef sequence<string> NameList;

readonly attribute NameList
current_scheduling_segment_names;

// Ordered from innermost segment name
// to outmost segment name

…
};
…

};

The current_scheduling_segment_names attribute returns a list of the current
scheduling segment names, innermost scope first.

26.16 RTScheduling::ResourceManager Interface

26.16.1 IDL

module RTScheduling
{

…
local interface ResourceManager : RTCORBA::Mutex
{
};
…

};

26.17 RTScheduling::DistributableThread Interface

26.17.1 IDL

module RTScheduling
{

…
local interface DistributableThread
{

void cancel();
// raises CORBA::OBJECT_NOT_FOUND if
// the distributable thread is
// not known to the scheduler

};
…

};
September 2001 Dynamic Scheduling: RTScheduling::ResourceManager Interface 26-35

26
26.17.2 cancel Operation

The cancel operation causes the CORBA::THREAD_CANCELLED exception to be
raised at the head of the distributable thread. Note that while the
DistributableThread is a local interface the head of the distributable thread may not
be executing within the same address space as thread calling cancel.

26.18 RTScheduling::Scheduler Interface

The scheduler interface is a local interface with the semantics of an abstract interface.
Its purpose is to delineate the core interface of a scheduler such that the Scheduler
interface is used as a parent interface of a scheduler plug-in.

An object reference to the currently installed scheduler is obtained by calling
CORBA::ORB::resolve_initial_references with the identifier parameter set to the
value “RTScheduler.” If no scheduler is installed a null object reference is returned.

26.18.1 Scheduler:: INCOMPATIBLE_SCHEDULING_DISCIPLINES
Exception

26.18.1.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
exception INCOMPATIBLE_SCHEDULING_DISCIPLINES {};
…

};
…

};

26.18.2 Scheduler::scheduling_policies Attribute

26.18.2.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
attribute CORBA::PolicyList

scheduling_policies;
…

26-36 Dynamic Scheduling Adopted Specification September 2001

26
};
…

};

26.18.3 Scheduler::poa_polices Attribute

26.18.3.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
readonly attribute CORBA::PolicyList poa_policies;
…

};
…

};

26.18.3.2 Semantics

The scheduling_policies attribute allows the ORB to request the list of POA
policies that the scheduler requires to be applied to all POA’s associated with this
ORB. A null list is an acceptable result value.

26.18.4 Scheduler::scheduling_discipline_name Attribute

26.18.4.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
readonly attribute string

scheduling_discipline_name;
…

};
…

};
September 2001 Dynamic Scheduling: RTScheduling::Scheduler Interface 26-37

26
26.18.4.2 Semantics

A simple string containing the textual name of the scheduling discipline for use by
both the ORB and application.

26.18.5 Scheduler::create_resource_manager Operation

26.18.5.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
ResourceManager

create
(in string name,
 in CORBA::Policy scheduling_parameter);

…
};
…

};
// raises (CORBA::BAD_OPERATION, CORBA::BAD_PARAM,

CORBA::NO_RESOURCES);

26.18.5.2 Semantics

Used by application developers to create a scheduler aware resource protection
primitive, and associated a name with the resource.

26.18.6 Scheduler::set_scheduling_parameter Operation

26.18.6.1 IDL

module RTScheduling
{

…
local interface Scheduler
{

…
void set_scheduling_parameter

(inout PortableServer::Servant resource,
 in string name,
 in CORBA::Policy scheduling_parameter);

…
};
26-38 Dynamic Scheduling Adopted Specification September 2001

26
…
};

26.18.6.2 Semantics

The set_scheduling_parameter operation associates the supplied scheduling
parameter and name parameter with the supplied servant resource.

The "resource" parameter is a required parameter.

The requirements for the "scheduling_parameter" and "name" parameters are
scheduling discipline defined. It is expected that at least one these parameters
("scheduling_parameter" or "name") is a non-null argument.

This is useful for schedulers that associate some scheduling information with a shared
resource. An example of this type of scheduler would be a fixed priority scheduler that
uses some form of priority ceiling protocol.
September 2001 Dynamic Scheduling: RTScheduling::Scheduler Interface 26-39

26
A.1 Conformance

This specification makes changes to the Real-time CORBA 1.0 specification that an
implementation must conform to comply with the Real-time CORBA 1.0 specification.
However, the changes to the Real-time CORBA 1.0 specification that are required of
existing implementations are minor and only affect ORBs compliant with this
specification.

While, the implementation of this specification is optional for implementations of the
Real-time CORBA 1.0 specification the opposite is not true. For an ORB to comply
with this specification it must conform to the Real-time CORBA 1.0 specification. In
particular, an ORB that conforms to this specification must implement the fixed
priority scheduling of the Real-time CORBA 1.0 specification when no scheduler is
installed.

The implementation of the basic Dynamic Scheduling infrastructure (i.e., the
implementation of all interfaces and associated semantics not associated with a
particular scheduler) is the most basic form of compliance with this specification.

Implementing a scheduler that conforms to one of the scheduling disciplines in this
specification (i.e., it implements of all interfaces and associated semantics for that
scheduling discipline) is an optional and separate compliance point for a conforming
implementation of the basic Dynamic Scheduling infrastructure. Nesting of scheduling
segments is not required feature for the conformance of a scheduler that implements
any one of the specified scheduling disciplines in this specification.
26-40 Dynamic Scheduling Adopted Specification September 2001

26
B.1 Extensions to core CORBA

B.1.1 Additional System Exceptions

This specification adds three system exceptions to core CORBA:

• CORBA::SCHEDULER_FAULT

• CORBA::SCHEDULE_FAILURE

• CORBA::THREAD_CANCELLED

See Section 26.10.9, “Exceptions,” on page 26-25 for more details.
September 2001 Dynamic Scheduling: RTScheduling::Scheduler Interface 26-41

26
26-42 Dynamic Scheduling Adopted Specification September 2001

	Real-Time CORBA 2.0: Dynamic Scheduling
	26.1 Overview
	26.2 Rationale
	26.3 Notional Scheduling Service Architecture
	26.4 Goals of this Specification
	26.5 Scope
	26.6 Sequencing: Scheduling and Dispatching
	26.7 Well Known Scheduling Disciplines
	26.8 Distributed System Scheduling
	26.9 Distributable Thread
	26.10 Scheduler
	26.11 Scheduler Interoperability
	26.12 Scheduler Portability
	26.13 Dynamic Scheduling Interoperation
	26.14 ThreadAction Interface
	26.15 RTScheduling::Current Interface
	26.16 RTScheduling::ResourceManager Interface
	26.17 RTScheduling::DistributableThread Interface
	26.18 RTScheduling::Scheduler Interface

