
Joint minimumCORBA Submission 1

 Joint Revised Submission

Alcatel

Hewlett-Packard

Inprise Corporation

Iona Technologies, Plc.

Lucent Technologies, Inc.

Northern Telecom

Sun Microsystems, Inc.

supported by:

Highlander Communications, L.C.

OMG TC Document orbos/98-08-04

August 17, 1998

minimumCORBA

August 17, 1998 orbos/98-08-04: minimumCORBA 2

Copyright 1998 by Alcatel
Copyright 1998 by Hewlett-Packard
Copyright 1998 by Highlander Communication, L.C.
Copyright 1998 by Inprise Corporation
Copyright 1998 by Iona Technologies, Plc.
Copyright 1998 by Lucent Technologies, Inc.
Copyright 1998 by Northern Telecom
Copyright 1998 by Sun Microsystems, Inc.

The submitting companies listsed above have all contributed to this “merged” submission. These
companies recognize that this draft joint submission is the joint intellectual property of all the
submitters, and may be used by any of them in the future, regardless of whether they ultimately
participate in a final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Management
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof,
so long as the OMG reproduces the copyright notices and the below paragraphs on all distributed
copies.
The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification in the
products of the submitters.
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.
The information contained in this document is subject to change without notice.
This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in any
form or by any means—graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other information
contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the OMG
evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.

August 17, 1998 orbos/98-08-04: minimumCORBA 3

minimumCORBA Submission .5

0.1 Copyright Waiver . 5

0.2 Submission contact points 5

0.3 Guide to the material in the submission 6

0.4 Rationale . 7

0.5 Statement of proof of concept 7

0.6 Resolution of RFP requirements 7
0.6.1 RFP mandatory requirements . 7
0.6.2 RFP optional requirements . 8
0.6.3 RFP general requirements. 8

0.7 Responses to RFP issues to be discussed 9

minimumCORBA Profile .11

1.1 Profile Philosophy . 11

1.2 Conformance . 13

1.3 IDL . 13

1.4 ORB Interface . 13
1.4.1 ORB . 14
1.4.2 Object . 14
1.4.3 ConstructionPolicy . 14

1.5 Dynamic Invocation Interface 15

1.6 Dynamic Skeleton Interface 15

1.7 Dynamic Any . 15

1.8 Interface Repository . 15
1.8.1 TypeCode . 15

1.9 Portable Object Adaptor 16
1.9.1 Interfaces. 16
1.9.2 Policies . 17

1.10 Interoperability . 18

1.11 DCE interoperability . 19

1.12 COM/CORBA interworking 19

August 17, 1998 orbos/98-08-04: minimumCORBA 4

1.13 Interceptors . 19

1.14 Language Mappings . 19
1.14.1 C++ Mapping Specific Issues . 20
1.14.2 Java Mapping Specific Issues . 20

1.15 minimumCORBA IDL . 20
1.15.1 ORB Interface . 21
1.15.2 Dynamic Invocation Interface. 23
1.15.3 Dynamic Skeleton Interface . 24
1.15.4 Dynamic Management of Any Values 24
1.15.5 Interface Repository . 25
1.15.6 Portable Object Adapter . 33
1.15.7 Interceptors . 39

August 17, 1998 orbos/98-08-04: minimumCORBA 5

minimumCORBA Submission 0

0.1 Copyright Waiver

See inside front cover for copyright statement.

0.2 Submission contact points

Zoely Canela
Alcatel Alsthom Recherche
Route de Nozay
91460 Marcoussis
France
phone +33 1 69 63 12 71
fax +33 1 69 63 17 89
E-mail: canela@aar.alcatel-alsthom.fr

Jishnu Mukerji
Hewlett-Packard
300 Campus Drive, MS 2E-62
Florham Park, NJ 07932
phone +1 973 443 7528
fax +1 973 443 7422
E-mail: jis@fpk.hp.com

Jorge Rodriguez
Highlander Communications, L.C.
206 East Pine Street
Lakeland, FL. 33801
phone +1 941 686 7767
E-mail: jorge@highlander.com

6 orbos/98-08-04: minimumCORBA August 17, 1998

0

Jeff Mischkinsky
Inprise Corporation
951 Mariner’s Island Blvd.
San Mateo, CA 94404
phone +1 650 312 5158
fax +1 650 286 2475
E-mail: jeffm@inprise.com

Oisin Hurley
IONA Technologies
8-10 Pembroke St.
Dublin 2
Ireland
phone +353 1 602 2111 x2375
fax +353 1 602 2116
E-mail: ohurley@iona.com

Antonio Rodriguez-Moral
Lucent Technologies
Room 2G-520
101 Crawfords Corner Rd.
Holmdel, NJ 07733
phone +1 732 949 2164
fax +1 732 949 3210
E-mail: arodmor@lucent.com

Dave Stringer
Nortel
Harlow Labs
London Road, Harlow
Essex CM17 9NA, UK
phone +44 1729 403712
fax +44 1279 403930
E-mail: drs@nortel.com

Stephane Carrez
Sun Microsystems
6 av Gustave Eiffel
78182 Montigny Le Bretonneux
France
phone +33 1 30 64 82 22
fax +33 1 30 57 00 66
E-mail: Stephane.Carrez@France.Sun.COM

0.3 Guide to the material in the submission

This chapter provides the justification of, and the supporting text for, the proposed
specification. It includes the rationale, the proof of concept and the resolution of RFP
requirements and issues to be discussed.

August 17, 1998 orbos/98-08-04: minimumCORBA 7

0

Chapter 1 contains the proposal proper, that is the text for publication as an OMG
specification. It comprises: the profile philosophy, the conformance statement followed by
subsections detailing the proposed profile of CORBA 2.2 presented along the lines of
CORBA 2.2 itself. Finally, the subset of CORBA IDL that constitutes the
minimumCORBA IDL is given. All of chapter 1 is normative.

0.4 Rationale

The background of embedded systems tends to require design time decisions on resource
allocation, object location and creation. Together with pre-determined patterns of
interaction, this yields a much more predictable system environment. As a result the
approach adopted in this proposal is to remove the dynamic facilities for creating,
activating, passivating and interrogating objects and for serving requests.

Since a minimumCORBA ORB instance will often be part of a larger system containing
(full) CORBA ORBs, maximum compatibility and full interoperability has been a design
goal.

The term “minimumCORBA” is used to denote the proposed specification in the same
manner as “CORBAservices”, “CORBAfacilities” and “CORBAsecurity” denote other
parts of the CORBA specification set.

The term “CORBA”, when used to denote a specification, covers the ORB component
of the Reference Model (i.e. the core, interoperability and the language mappings for
IDL). minimumCORBA defines a profile (or subset) of CORBA, whereas
CORBAservices etc. define optional extensions to the CORBA specification.

0.5 Statement of proof of concept

This profile is the result of several years of experience, acquired by the submitting
companies, in configuring ORBs for deployment in limited resource scenarios. As
such, both the viability and applicability of this profile are proven.

0.6 Resolution of RFP requirements

0.6.1 RFP mandatory requirements

Subset Profiling

This submission defines a single profile of CORBA cut down from CORBA 2.2. While
other profiles could be identified, the submitters believe that this is unnecessary and would
detract from the overall value of the minimumCORBA concept.

A single profile (or subset) for minimumCORBA is important from both marketing and
technical perspectives, as too many profiles will cause confusion. This profile is targeted at
a broad range of limited resource systems.

Where applications require a configuration more lightweight than that presented in this
submission, then vendors may choose to offer further, link-time flexibility. The ability to

8 orbos/98-08-04: minimumCORBA August 17, 1998

0

configure a run-time ORB would be a product differentiator.

IDL Profiling

This submission proposes that IDL be retained in full for maximum compatibility with full
CORBA.

CORBA Core

This proposal retains the static stubs and skeletons as required. It proposes no extensions
to pseudo-IDL for CORBA 2.2 defined objects. In order to maintain maximum
compatibility between CORBA and minimumCORBA, the submitters have opted for
omission of complete objects where possible.

Effect on Existing CORBA and CORBAservices

Since support for all IDL is retained, there is no bar to accessing any existing CORBA
services. Indeed, it is anticipated that instances of minimumCORBA will often run as part
of a larger CORBA system and will exploit services run in the full CORBA domain to
handle such circumstances as start-up, software download and upgrade. The retention of
various services related APIs allows minimumCORBA to be integrated with security and
transaction services. It is a vendor option whether to provide these additional capabilities.

0.6.2 RFP optional requirements

In keeping with the "one profile" philosophy, this proposal does not follow the suggested
model of optional conformance points. To reiterate, IDL is supported in full, including the
any and variable sized datatypes. The core components IR, DII and the DSI are not
included in minimumCORBA.

Note that a vendor may choose to supply an IR, for example, along with a
minimumCORBA product but would have to describe the offering as "minimumCORBA
plus a CORBA conformant IR" as there would still be no full CORBA conformance (e.g.
if DII, DSI were omitted).

0.6.3 RFP general requirements

Most of the general requirements described in section 5.1 of the RFP have trivial
responses because this proposal is a pure subset and so the response is inherited from
statements about CORBA itself. The one exception being the security considerations.

0.6.3.1 Security considerations

Applications based upon minimumCORBA need not provide run-time security. Instead,
security may be addressed at design time, for example relying upon the closed nature of
the system and physical access policies that will often apply in a minimumCORBA
system. A minimumCORBA implementation is at liberty to follow the prescriptions of
CORBAsecurity. However, this combination is an extension to minimumCORBA, and

August 17, 1998 orbos/98-08-04: minimumCORBA 9

0

therefore not a conformance point of minimumCORBA.

Applications perform CORBAsecurity related interaction with the ORB via
get_service_information, via resolve_initial_references(“SecurityCurrent”) and via
get_policy andget_domain_managers. All these operations are present in the
minimumCORBA profile. Therefore it is left to vendors whether or not to provide a
security capability in their minimumCORBA ORB. The cost of implementing these
operations when no security is provided is negligible.

Note that, one possible deployment of components based on minimumCORBA would be
constrained within trust domains where the only access to the outside world was via
clearly identified interoperability bridges. One way of securing such a system would be to
implement an interoperability bridge that additionally provided a minimal security
platform.

0.7 Responses to RFP issues to be discussed

The submitters advocate a single conformance point in order to produce an adequate
baseline for non-trivial, limited resource applications. The use of link time facilities to
selectively include or exclude code on a needs basis is outside the scope of OMG
specifications. Vendors may use such techniques, e.g. not requiring code support for “any”
types.

The submitters believe that the resultant minimumCORBA ORB is applicable to a
significant range of embedded applications. This profile exploits the upfront design
activity necessary to create long-lived embedded applications. The profile encourages an
implementation paradigm which supports pre-allocation of resources, which in turn results
in small fast implementations with all the benefits of distribution as well as access to the
full CORBA world.

10 orbos/98-08-04: minimumCORBA August 17, 1998

0

August 17, 1998 orbos/98-08-04: minimumCORBA 11

minimumCORBA Profile 1

This chapter describes minimumCORBA, a subset of CORBA designed for systems
with limited resources.

The profile philosophy and a statement of conformance are presented first, followed by a
detailed description of the specification, which is presented in sections corresponding to
the affected chapters of the CORBA specification.

1.1 Profile Philosophy

For some applications CORBA is too large to meet exacting size and performance
requirements. Such scenarios require a cut-down version of CORBA. This cut-down
version is called “minimumCORBA”. minimumCORBA defines a profile (or subset)
of CORBA, whereas CORBAservices, CORBAsecurity etc. define optional extensions
to the CORBA specification.

The features of CORBA omitted by this profile clearly have value in mainstream
CORBA applications. However, they are provided at some cost, in terms of resources,
and there is a significant class of applications for which that cost cannot be justified.

12 orbos/98-08-04: minimumCORBA August 17, 1998

1

Features omitted from CORBA could still be implemented by the application in those
cases where they are needed. The following figure illustrates the relationship between
ORB, application and omitted features..

Figure 1-1 Omitting features from CORBA

The omission of a feature of CORBA represents a trade-off between usability and
conserving resources: CORBA has a greater degree of user-friendliness whereas
minimumCORBA is better for conserving limited resources.

This specification defines a single profile that preserves the key benefits of CORBA:
portability of applications and interoperability between ORBs. The following goals are
recognized when choosing this profile:

• Which features are retained in minimumCORBA and which are omitted is carefully
chosen to yield a profile that still has broad applicability within the world of limited
resource systems.

• minimumCORBA should to be fully interoperable with CORBA as applications
running on minimumCORBA ORBs may be part of systems that includes
components running on CORBA ORBs.

• minimumCORBA should support full IDL. So that, given sufficient resources, any
CORBA application can be executed on either full CORBA or on minimumCORBA
or partitioned between the two.

• Features that support the dynamic aspects of CORBA are omitted, as the systems
for which minimumCORBA is targeted will make design-time commitments, e.g.
with regard to interface type checking.

It will always be possible to envisage more constrained environments and so there has
to be criteria to determine when the subset is small enough, without sacrificing broad
applicability. The line is drawn by referring back to the “portability”,
“interoperability” and “full IDL” goals.

Included within the minimumCORBA profile are several features that incur cost, in
terms of static ORB size and stub code size, even when the application makes no use
of them.

ORB

Application

ORB

Application

“CORBA” “minimumCORBA”

August 17, 1998 orbos/98-08-04: minimumCORBA 13

1

• TypeCode Features: Savings could be made by not supporting type safety with
respect to “any”, to TypeCodes and to narrowing of Object References.

• Exception Features: support for both user and system exceptions could be omitted
when user exceptions are not used in the application. The reduced programming
model would still be useful, e.g. in cooperating finite state machines where objects
would “fail safe” and recovery would be handled by the application.

• Inheritance Features: the tables needed to implement the provision of multiple
inheritance could be omitted if the application undertakes not to use any multiple
IDL inheritance.

Conformant implementations of minimumCORBA may choose to include these
optimizations where it can be ascertained that the application does not use them.
However, the definition of compiler/linker options is beyond the scope of CORBA
specifications. Therefore, these optimizations are not included in the minimumCORBA
profile.

1.2 Conformance

This specification defines a single conformance point. This is a proper subset of the
CORBA specification. This specification makes no extensions to the specification being
subsetted.

minimumCORBA is based upon CORBA 2.2 (OMG document formal/98-02-01).

The profile is defined in terms of explicit omission of specific parts of the specification, so
that any part of the CORBA 2.2 specification (as defined in document formal/98-02-01)
not explicitly omitted is still part of the minimumCORBA specification.

Omitted features are not present in the minimumCORBA copy ofmodule CORBA and
module PortableServer, so that the APIs and their semantics are not required to be
provided in a conformant implementation.

This specification does not discuss the CORBAservices as they are separate and distinct
conformance points for a CORBA implementation.

1.3 IDL

minimumCORBA supports all of OMG IDL, as defined in chapter 3 of the CORBA
specification. This allows maximum compatibility between minimumCORBA and full
CORBA applications.

1.4 ORB Interface

A number of omissions are made from the ORB interface, as defined in chapter 4 of the
CORBA specification:

14 orbos/98-08-04: minimumCORBA August 17, 1998

1

1.4.1 ORB

The create_list andcreate_operation_list operations are omitted, as their purpose is
to support the DII.

Thework_pending, perform_work andshutdown operations are omitted, as they are
only needed for certain styles of CORBA application, and are not required for basic
ORB operation. Note that therun operation is retained as it is important, in a single
threaded model, to provide the server initialization code with a portable entry point to
the ORB. In a multi-threaded model,run can be implemented as a wrapper for the
appropriate threading primitive.

The Context object is omitted as it is defined as part of the DII and only adds support
for an alternate programming style : using identifiers in acontext clause differs from
using additionalin string arguments only in that the former are passed implicitly,
whereas the latter have to be provided as actual parameters in the function call. As the
Context object is omitted, theget_default_context operation is omitted.

Note that thecontext keyword is still present in minimumCORBA IDL. However, due
to the omission of the Context Object, there is no standard interface for a client to
associate values with context identifiers. Where an IDL signature defines acontext but
no values are available at the time of invocation, IIOP requires an empty sequence to
be passed. On the server side, a minimumCORBA application could not retrieve the
values associated with context identifiers by a client CORBA application.
Interoperability is maintained at a syntactic level only.

Theget_current operation is omitted from minimumCORBA, as it is deprecated from
CORBA 2.2.

1.4.2 Object

Theget_interface operation is omitted from minimumCORBA, as the Interface
Repository is omitted.

Theget_implementation operation is omitted, as it is deprecated in CORBA 2.2.

The is_a operation is omitted in order not to introduce a requirement either for holding
detailed type information in the object reference or for getting type information over the
wire. Instead, minimumCORBA relies on design time resolution of type checking issues.

Thenon_existent operation is omitted, because of the design philosophy of making more
decisions statically, at design time.

Thecreate_request operation is omitted, as the Dynamic Invocation Interface is omitted.

1.4.3 ConstructionPolicy

The ConstructionPolicy interface and its supporting constant, SecConstruction, are
omitted. It is not necessary for minimumCORBA applications to organize their
constituent objects into different policy management domains. Consequently all
minimumCORBA objects will belong to the default domain for the ORB and so, if there is
no default, belong to no domain.

August 17, 1998 orbos/98-08-04: minimumCORBA 15

1

1.5 Dynamic Invocation Interface

The entire Dynamic Invocation Interface, as defined in chapter 5 of the CORBA 2.2
specification is omitted from minimumCORBA. Note that this means that the
NamedValue type and NVList are omitted too.

1.6 Dynamic Skeleton Interface

The entire Dynamic Skeleton Interface, as defined in chapter 6 of the CORBA 2.2
specification, is omitted from minimumCORBA.

1.7 Dynamic Any

Dynamic Anys, as defined in chapter 7 of the CORBA 2.2 specification, are omitted from
minimumCORBA.

1.8 Interface Repository

The majority of the Interface Repository, as defined in chapter 8 of the CORBA 2.2
specification, is omitted from minimumCORBA, as it is part of the dynamically typed
programming model. There are two exceptions: the RepositoryIds, for which formats and
pragmas are defined in section 8.6; and the TypeCode interface, as defined in section 8.7,
for which a minimumCORBA version is retained.

The pragmas enable type id information to be changed, which can, among other things, be
used to implement a more compact type naming convention. The pragmas may be acted
upon or ignored by an implementation of minimumCORBA, as this is the same semantics
as the CORBA 2.2 specification.

The TypeCode interface is included because of its role in the semantics of theany type.
when using the CORBAany type, an application in a minimumCORBA domain will only
send and receive IDL types that were known at build time. Hence, part of the TypeCode
interface is omitted.

1.8.1 TypeCode

Theid, kind andname operations are retained. They are sufficient to allow applications to
distinguish types known at build time. Other operations that support arbitrary constructed
and template types are omitted as a minimumCORBA application is not expected to
handle these arbitrary types. The operations omitted are:member_count,
member_name, member_type, member_label, discriminator_type, default_index,
length, content_type, fixed_digits, fixed_scale, param_count andparameter. The
Bounds exception is also omitted as it is only used by omitted operations.

All the TypeCode create operations are omitted from the ORB interface as they support
the creation ofany values that have types created dynamically. In a minimumCORBA
application, TypeCodes are created as constants by the programmer or by tools (e.g. an
IDL compiler). The operations omitted are:create_struct_tc, create_union_tc,
create_enum_tc, create_alias_tc, create_exception_tc, create_interface_tc,

16 orbos/98-08-04: minimumCORBA August 17, 1998

1

create_string_tc, create_wstring_tc, create_sequence_tc,
create_recursive_sequence_tc andcreate_array_tc.

1.9 Portable Object Adaptor

minimumCORBA supports a subset of the interfaces and policies defined in chapter 9 of
the CORBA 2.2 specification. The interfaces and policies that are not supported are
omitted from the minimumCORBA copy ofmodule PortableServer.

1.9.1 Interfaces

POA

The POA object is profiled in minimumCORBA with items omitted where they support a
dynamic mode of POA operation. What remains is sufficient to achieve portability and
interoperability between different minimumCORBA implementations and between
minimumCORBA and full CORBA.

The following policy object factory operations are omitted:create_thread_policy,
create_implicit_activation_policy, create_servant_retention_policy and
create_request_processing_policy.Only the default values for the associated policies
are supported and so there is no requirement to create these policy objects.

The the_activator attribute is omitted as minimumCORBA does not support dynamic
(on demand) activation of POAs.

The get_servant_manager andset_servant_manager operations are omitted as
minimumCORBA omits ServantManagers.

The get_servant andset_servant operations are omitted as minimumCORBA doesn’t
support the USE_DEFAULT_SERVANT option for the RequestProcessingPolicy.

Current

The PortableServer::Current object is fully supported, again for reasons of portability and
interoperability.

Policy interfaces

The Policy objects and their associated policy value enums are omitted where the only
supported value is the default value as in these cases there is no requirement to the policy
objects. Where more than one policy value is supported the policy object and associated
enum remains. This is sufficient to support portability and interoperability. The policy
objects omitted are: ThreadPolicy, ImplicitActivationPolicy, ServantRetentionPolicy and
RequestProcessingPolicy. Also see section 1.9.2.

POAManager

The POAManager object remains in minimumCORBA as the type is used in the

August 17, 1998 orbos/98-08-04: minimumCORBA 17

1

create_POA operation. The only declarations not omitted are theactivate operation and
theAdaptorInactive exception. The other declarations in the POAManager interface are
omitted from minimumCORBA, as they add extra functionality not required for basic
ORB operation. Theactivate operation is retained as it provides portability of
minimumCORBA applications to CORBA environments.

AdapterActivator

The AdapterActivator object is omitted from minimumCORBA, because it supports a
dynamic mode of POA operation that is not required for basic ORB operation.

ServantManagers

The ServantManager object is omitted from minimumCORBA. This is because it supports
a dynamic mode of operation that is not required for basic ORB operation. Consequently,
both the derived interfaces, ServantActivator and ServantLocator, are omitted. The
PortableServer::ForwardRequest exception is also omitted as it can only be raised by
operations of the omitted, derived interfaces.

1.9.2 Policies

The policies supported include all of the default policy values from CORBA. The
minimumCORBA RootPOA is a subset of the CORBA RootPOA. The only policy in
which it differs is more restrictive than its CORBA RootPOA counterpart. Hence an
application built on the minimumCORBA RootPOA will run on the CORBA RootPOA.

ThreadPolicy

The only minimumCORBA ThreadPolicy is ORB_CTRL_MODEL. The
SINGLE_THREAD_MODEL policy is omitted because it is not required for basic ORB
operation.

LifespanPolicy

minimumCORBA supports both values of LifespanPolicy - TRANSIENT and
PERSISTENT. The PERSISTENT policy is retained because it allows the creation of
‘well known’ object references, which allow a service to still be contacted using the same
reference after it has been re-initialized. This is useful in a constrained resource
environment, as it allows applications to dispense with code to re-obtain references for
servers.

Note that minimumCORBA takes the PERSISTENT policy to imply nothing more than
the converse of the TRANSIENT policy. That is, that using the PERSISTENT policy,
object references generated using one instantiation of a POA may be successfully used
after the POA is deactivated and reinstantiated in another process. No further action to
restore the state of the POA or the objects managed by it is assumed.

As minimumCORBA does not support Adapter Activators or Servant Managers,
minimumCORBA applications implementing a POA with the PERSISTENT policy are

18 orbos/98-08-04: minimumCORBA August 17, 1998

1

responsible for re-creating the POA and re-activating the relevant objects before these
objects can be successfully invoked upon from clients still holding references to them
from previous instantiations of the POA.

ObjectIdUniquenessPolicy

minimumCORBA supports both values of ObjectIdUniquenessPolicy - UNIQUE_ID and
MULTIPLE_ID - as the cost of the latter is negligible and it offers the ability to save
resources by multiplexing multiple objects onto one servant.

IdAssignmentPolicy

minimumCORBA supports both values of IdAssignmentPolicy: SYSTEM_ID and
USER_ID. The cost of having both is negligible and is useful in a constrained resource
environment, as it allows the re-use in ObjectIds of values that have a meaning in another
context within an application.

ServantRetentionPolicy

minimumCORBA only supports the RETAIN ServantRetentionPolicy. The
NON_RETAIN policy is omitted in accordance with the design policy of removing
dynamic behaviours which are not necessary to basic operation. The dynamic model it
supports has non-negligible cost and implications for system predictability.

RequestProcessingPolicy

minimumCORBA only supports the USE_ACTIVE_OBJECT_MAP_ONLY
RequestProcessingPolicy. The USE_DEFAULT_SERVANT and
USE_SERVANT_MANAGER policies are omitted for the same reasons as the
NON_RETAIN option.

ImplicitActivationPolicy

minimumCORBA supports only the NO_IMPLICIT_ACTIVATION policy.
IMPLICIT_ACTIVATION is omitted as it is not required for basic ORB operation, and
the dynamic programming model it supports has non-negligible cost.

For this policy, minimumCORBA is aligned with the default policy value in CORBA.
The CORBA RootPOA has an ImplicitActivationPolicy of IMPLICIT_ACTIVATION.
However, the minimumCORBA RootPOA is still a subset of the CORBA RootPOA
because the IMPLICIT_ACTIVATION setting does not prohibit explicit activation and
the NO_IMPLICIT_ACTIVATION setting permits only explicit activation. That is the
one permitted activation mode in minimumCORBA is one of the two permitted
activation modes of CORBA.

1.10 Interoperability

minimumCORBA has the same conformance criteria regarding interoperability as

August 17, 1998 orbos/98-08-04: minimumCORBA 19

1

CORBA 2.2, as described in chapters 10 to 13 of the CORBA 2.2 specification. The
positioning of interoperability conformance with respect to the CORBA APIs is illustrated
in the following figure.

Figure 1-2 Reference points for CORBA conformance

The key thing to notice in this picture is that the interworking reference point, where
CORBA interoperability is defined, is different in nature to the programmatic reference
points. The former is a protocol whilst the latter are the client and server side APIs.
The CORBA specification makes only a limited coupling between the two. For
example, theis_a API need not result in a “_is_a” request message.

1.11 DCE interoperability

The DCE ESIOP, as defined in chapter 14 of the CORBA 2.2 specification, is omitted
from minimumCORBA.

1.12 COM/CORBA interworking

Interworking between COM and CORBA, as defined in chapters 15, 16 and 17 of the
CORBA 2.2 specification, is omitted from minimumCORBA.

1.13 Interceptors

Interceptors, as defined in chapter 18 of the CORBA 2.2 specification, are omitted
from minimumCORBA, as they depend on the DII and DSI.

1.14 Language Mappings

minimumCORBA implementations must support at least one language mapping as
defined by the OMG. However, no specific language binding is mandated.

For each supported language binding, the full mapping must be supported except for those
core objects that have been omitted. In the case of the C++ and Java mappings there are
further omissions described below.

ORB

Application

ORB

Applicationprogrammatic
reference points

interworking reference point

20 orbos/98-08-04: minimumCORBA August 17, 1998

1

1.14.1 C++ Mapping Specific Issues

All of the C++ mapping is retained in minimumCORBA except for those elements that
result from omitted features ofmodule CORBA andmodule PortableServer.

A further omission concerns the semantics of the_this() member function. It is not
possible for_this() to cause implicit activation of the servant in a
minimumCORBA application.

As noted in section 1.1, conformant minimumCORBA ORB implementations may
offer optimizations that optionally remove code required for the support of features
such as type-safe narrowing and multiple inheritance of IDL interfaces, that incur code
size cost even when they are not used. However, these optimizations are vendor
specific enhancements, and are not included in the minimumCORBA profile.

1.14.2 Java Mapping Specific Issues

All of the Java mapping is retained in minimumCORBA except for those elements that
result from omitted features ofmodule CORBA andmodule PortableServer.

One further omission concerns the Java ORB Portability Interfaces, as defined in section
24.18 of CORBA 2.2, which are also omitted from minimumCORBA. This is because
they depend on the DII and DSI, which are omitted from minimumCORBA.

A subsequent version of CORBA is expected to provide static portable Java stubs.
Once they are specified it will be possible to update the minimumCORBA profile to
include them.

1.15 minimumCORBA IDL

The following sub-sections detail the minimumCORBA subset of CORBA IDL. Each
section corresponds to a chapter of the CORBA specification, and indicates what part,
if any, of the IDL in that chapter is included in minimumCORBA IDL.

Where all or part of the IDL in a chpater of the CORBA specification is included in
minimumCORBA, the full IDL from CORBA is shown, with those parts that are
omitted from minimumCORBA struck through.

Where all of the IDL in a chapter of the CORBA specification is omitted from
minimumCORBA, this is just stated, rather than listing the IDL with every line struck
through.

The minimumCORBAmodule CORBA and its counterpart in CORBA 2.2 are
distinguished by their contents and not by an IDL identifier or version indicator. The
need to distinguish two modules cannot be met by varying the name (i.e. CORBA) or
by varying #pragma prefix (i.e. omg.org) or #pragma version (i.e. 2.2), even if the
CORBA 2.2 modules contained #pragmas, because this would lead to different fully
scoped names and repository ids. That in turn would compromise portability and
interoperability. Note the same is true formodule PortableServer.

August 17, 1998 orbos/98-08-04: minimumCORBA 21

1

Instead it is left to vendors to address the usability concerns in a manner appropriate to
their product. For example, toolsets could include a switch for minimumCORBA mode
or IDL compilers could include files from different paths. As toolsets and compilers
are beyond the scope of CORBA specifications, neither of these possibilities are
prescribed.

1.15.1 ORB Interface

module CORBA {
 typedef unsigned short ServiceType;
 typedef unsigned long ServiceOption;
 typedef unsigned long ServiceDetailType;

 const ServiceType Security = 1;

 struct ServiceDetail {
 ServiceDetailType service_detail_type;
 sequence <octet> service_detail;
 };

 struct ServiceInformation {
 sequence <ServiceOption> service_options;
 sequence <ServiceDetail> service_details;
 };

 interface ORB {
 string object_to_string (in Object obj);
 Object string_to_object (in string str);

Status create_list (
in long count,
out NVList new_list

);

Status create_operation_list (
in OperationDef oper,
out NVList new_list

);

Status get_default_context (out Context ctx);

 boolean get_service_information (
 in ServiceType service_type;
 out ServiceInformation service_information;
);

// get_current deprecated operation - should not be used by new code
// new code should use resolve_initial_reference operation instead
Curr ent get_current();

22 orbos/98-08-04: minimumCORBA August 17, 1998

1

 //Obtaining Initial Object References

 typedef string ObjectId;
 typedef sequence <ObjectId> ObjectIdList;

 exception InvalidName {};

 ObjectIdList list_initial_services ();

 Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);

boolean work_pending();
void perform_work();
void shutdown(in boolean wait_for_completion);

 void run();

 };

 interface Object { // PIDL
ImplementationDef get_implementation ();
InterfaceDef get_interface ();

 boolean is_nil();
 Object duplicate ();
 void release ();

boolean is_a (in string logical_type_id);
boolean non_existent();

 boolean is_equivalent (in Object other_object);
 unsigned long hash(in unsigned long maximum);

Status create_request (
in Context ctx,
in Identifier operation,
in NVList ar g_list,
inout NamedValueresult,
out Request request,
in Flags req_flags

);

 Policy get_policy (
 in PolicyType policy_type
);

 DomainManagersList get_domain_managers ();

 };

 //ORB Initialization
 typedef string ORBid;

August 17, 1998 orbos/98-08-04: minimumCORBA 23

1

 typedef sequence <string> arg_list;
 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

 //Current Object
 interface Current {
 };

 //Policy Object
 typedef unsigned long PolicyType;

 // Basic IDL definition
 interface Policy {
 readonly attribute PolicyType policy_type;
 Policy copy();
 void destroy();
 };

 typedef sequence <Policy> PolicyList;

 //Domain management operations
 interface DomainManager {
 Policy get_domain_policy (
 in PolicyType policy_type
);
 };

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy {
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy

);

 };

 typedef sequence <DomainManager> DomainManagerList;

};

1.15.2 Dynamic Invocation Interface

As the DII is omitted from minimumCORBA, all of the CORBA IDL for the DII, as
defined in chapter 5 of the CORBA specification, is omitted from minimumCORBA
IDL.

24 orbos/98-08-04: minimumCORBA August 17, 1998

1

1.15.3 Dynamic Skeleton Interface

As the DSI is omitted from minimumCORBA, all of the CORBA IDL for the DSI, as
defined in chapter 6 of the CORBA specification, is omitted from minimumCORBA
IDL.

1.15.4 Dynamic Management of Any Values

As Dynamic Anys are omitted from minimumCORBA, all of the CORBA IDL for
Dynamic Anys, as defined in chapter 7 of the CORBA specification, is omitted from
minimumCORBA IDL.

August 17, 1998 orbos/98-08-04: minimumCORBA 25

1

1.15.5 Interface Repository

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,
dk_Attrib ute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primiti ve, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed

};

interface IRObject {
// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {
...
// Interface contents not shown for brevity
...

};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;

struct StructMember {
Identifier name;
TypeCode type;

26 orbos/98-08-04: minimumCORBA August 17, 1998

1

IDLType type_def;
};

typedef sequence <StructMember> StructMemberSeq;

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;
typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {
...
// Interface contents not shown for brevity
...

};

interface IDLType : IRObject {
readonly attribute TypeCode type;

};

interface Primiti veDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;

enum Primiti veKind {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring

};

interface Repository : Container {
...
// Interface contents not shown for brevity
...

};

interface ModuleDef : Container, Contained {
};

struct ModuleDescription {
Identifier name;

August 17, 1998 orbos/98-08-04: minimumCORBA 27

1

RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};

interface ConstantDef : Contained {
readonly attribute TypeCode type;
attrib ute IDLType type_def;
attrib ute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};

interface TypedefDef : Contained, IDLType {
};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

interface StructDef : TypedefDef, Container {
attrib ute StructMemberSeq members;

};

interface UnionDef : TypedefDef, Container {
readonly attribute TypeCode discriminator_type;
attrib ute IDLType discriminator_type_def;
attrib ute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {
attrib ute EnumMemberSeq members;

};

interface AliasDef : TypedefDef {

28 orbos/98-08-04: minimumCORBA August 17, 1998

1

attrib ute IDLType original_type_def;
};

interface Primiti veDef: IDLType {
readonly attribute Primiti veKind kind;

};

interface StringDef : IDLType {
attrib ute unsigned long bound;

};

interface WstringDef : IDLType {
attrib ute unsigned long bound;

};

interface FixedDef : IDLType {
attrib ute unsigned short digits;
attrib ute short scale;

};

interface SequenceDef : IDLType {
attrib ute unsigned long bound;
readonly attribute TypeCode element_type;
attrib ute IDLType element_type_def;

};

interface ArrayDef : IDL Type {
attrib ute unsigned long length;
readonly attribute TypeCode element_type;
attrib ute IDLType element_type_def;

};

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type;
attrib ute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};
enum Attrib uteMode {ATTR_NORMAL, A TTR_READONLY};

interface Attrib uteDef : Contained {
readonly attribute TypeCode type;

August 17, 1998 orbos/98-08-04: minimumCORBA 29

1

attrib ute IDLType type_def;
attrib ute Attrib uteMode mode;

};

struct Attrib uteDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
Attrib uteMode mode;

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT , PARAM_INOUT};
struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};
typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {
...
// Interface contents not shown for brevity
...

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;

30 orbos/98-08-04: minimumCORBA August 17, 1998

1

typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {
...
// Interface contents not shown for brevity
...

};

 enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_wchar, tk_wstring, tk_fixed
 };

 interface TypeCode { // PIDL
exception Bounds {};

 exception BadKind {};

 // for all TypeCode kinds
boolean equal (in TypeCode tc);

 TCKind kind ();

 // for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
 RepositoryId id () raises (BadKind);

 // for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except
 Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index) raises (BadKind,
Bounds);

// for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long index) raises (BadKind,
Bounds);

// for tk_union
any member_label (in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

August 17, 1998 orbos/98-08-04: minimumCORBA 31

1

// for tk_sequence, tk_array, and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_scale() raises (BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);

 };

interface ORB {
// other operations ...

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

32 orbos/98-08-04: minimumCORBA August 17, 1998

1

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
};

};

August 17, 1998 orbos/98-08-04: minimumCORBA 33

1

1.15.6 Portable Object Adapter

module PortableServer{
 // forward reference
 interface POA;

 native Servant;

 typedef sequence<octet> ObjectId;

exception ForwardRequest
{
Object forward_r eference;

};

 // **
 //
 // Policy interfaces
 //
 // **
enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};
interface ThreadPolicy : CORBA::Policy
{
readonly attribute ThreadPolicyValue value;

};

 enum LifespanPolicyValue {
 TRANSIENT,
 PERSISTENT
 };
 interface LifespanPolicy : CORBA::Policy
 {
 readonly attribute LifespanPolicyValue value;
 };

 enum IdUniquenessPolicyValue {
 UNIQUE_ID,
 MULTIPLE_ID
 };
 interface IdUniquenessPolicy : CORBA::Policy
 {
 readonly attribute IdUniquenessPolicyValue value;
 };

 enum IdAssignmentPolicyValue {
 USER_ID,
 SYSTEM_ID

34 orbos/98-08-04: minimumCORBA August 17, 1998

1

 };

 interface IdAssignmentPolicy : CORBA::Policy
 {
 readonly attribute IdAssignmentPolicyValue value;
 };

enum ImplicitActi vationPolicyValue {
IMPLICIT_A CTIVATION,
NO_IMPLICIT_A CTIVATION

};

 interface ImplicitActi vationPolicy : CORBA::Policy
{
readonly attribute ImplicitActi vationPolicyValue value;

};

enum ServantRetentionPolicyValue {
RETAIN,
NON_RETAIN

};

interface ServantRetentionPolicy : CORBA::Policy
{
readonly attribute ServantRetentionPolicyValue value;

};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONL Y,
USE_DEFAULT_SERVANT,
USE_SERVANT_MAN AGER

};

interface RequestProcessingPolicy : CORBA::Policy
{
readonly attribute RequestProcessingPolicyValue value;

};

 // **
 //
 // POAManager interface
 //
 // **

 interface POAManager
 {
 exception AdapterInactive{ };

 void activate()
 raises(AdapterInactive);

void hold_requests(in boolean wait_for_completion)

August 17, 1998 orbos/98-08-04: minimumCORBA 35

1

raises(AdapterInactive);
void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(in boolean etherealize_objects,
in boolean wait_for_completion)

raises(AdapterInactive);
 };

 // **
 //
 // AdapterActivator interface
 //
 // **

interface AdapterActivator
{
boolean unknown_adapter(in POA parent, in string name);

};

 // **
 //
 // ServantManager interface
 //
 // **

interface ServantManager
{ };

interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter)
raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations);

};

interface ServantLocator : ServantManager {
native Cookie;

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)
raises (ForwardRequest);

36 orbos/98-08-04: minimumCORBA August 17, 1998

1

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant);

};

 // **
 //
 // POA interface
 //
 // **

 interface POA
 {
 exception AdapterAlreadyExists {};

exception AdapterInactive { };
 exception AdapterNonExistent { };
 exception InvalidPolicy { unsigned short index; };

exception NoServant { };
 exception ObjectAlreadyActive { };
 exception ObjectNotActive { };
 exception ServantAlreadyActive { };
 exception ServantNotActive { };
 exception WrongAdapter { };
 exception WrongPolicy { };

 //--
 //
 // POA creation and destruction
 //
 //--

 POA create_POA(in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises (AdapterAlreadyExists, InvalidPolicy);

 POA find_POA(in string adapter_name, in boolean activate_it)
 raises (AdapterNonExistent);

 void destroy(in boolean etherealize_objects,
 in boolean wait_for_completion);

 // **
 //
 // Factories for Policy objects
 //
 // **

August 17, 1998 orbos/98-08-04: minimumCORBA 37

1

Thr eadPolicy
create_thread_policy(in ThreadPolicyValue value);

 LifespanPolicy
 create_lifespan_policy(in LifespanPolicyValue value);

 IdUniquenessPolicy
 create_id_uniqueness_policy
 (in IdUniquenessPolicyValue value);

 IdAssignmentPolicy
 create_id_assignment_policy
 (in IdAssignmentPolicyValue value);

ImplicitActi vationPolicy
create_implicit_activation_policy
(in ImplicitActi vationPolicyValue value);

ServantRetentionPolicy
create_servant_retention_policy
(in ServantRetentionPolicyValue value);

RequestProcessingPolicy
create_request_processing_policy
(in RequestProcessingPolicyValue value);

 //--
 //
 // POA attributes
 //
 //--

 readonly attribute string the_name;
 readonly attribute POA the_parent;
 readonly attribute POAManager the_POAManager;

attrib ute AdapterActivator the_activator;

 //--
 //
 // Servant Manager registration:
 //
 //--

ServantManager get_servant_manager()
raises (WrongPolicy);

void set_servant_manager(in ServantManager imgr)
raises (WrongPolicy);

 //--
 //

38 orbos/98-08-04: minimumCORBA August 17, 1998

1

 // operations for the USE_DEFAULT_SERVANT policy
 //
 //--

Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
 raises (WrongPolicy);

 // **
 //
 // object activation and deactivation
 //
 // **

 ObjectId activate_object(in Servant p_servant)
 raises (ServantAlreadyActive, WrongPolicy);

 void activate_object_with_id(
 in ObjectId id,
 in Servant p_servant)
 raises (ServantAlreadyActive, ObjectAlreadyActive,
 WrongPolicy);

 void deactivate_object(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 // **
 //
 // reference creation operations
 //
 // **

 Object create_reference (
 in CORBA::RepositoryId intf)
 raises (WrongPolicy);

 Object create_reference_with_id (
 in ObjectId oid,
 in CORBA::RepositoryId intf)
 raises (WrongPolicy);

 //--
 //
 // Identity mapping operations:
 //

August 17, 1998 orbos/98-08-04: minimumCORBA 39

1

 //--

 ObjectId servant_to_id(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);

 Object servant_to_reference(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);

 Servant reference_to_servant(in Object reference)
 raises (ObjectNotActive, WrongAdapter, WrongPolicy);

 ObjectId reference_to_id(in Object reference)
 raises (WrongAdapter, WrongPolicy);

 Servant id_to_servant(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 Object id_to_reference(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 };

 // **
 //
 // Current interface
 //
 // **

 interface Current : CORBA::Current
 {
 exception NoContext { };

 POA get_POA() raises (NoContext);
 ObjectId get_object_id() raises (NoContext);
 };

};

1.15.7 Interceptors

As Interceptors are omitted from minimumCORBA, all of the CORBA IDL for
Interceptors, as defined in chapter 18 of the CORBA specification, is omitted from
minimumCORBA IDL.

END OF DOCUMENT

40 orbos/98-08-04: minimumCORBA August 17, 1998

1

