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Real-Time CORBA is an optional set of extensions to CORBA tailored to equip OR
to be used as a component of a Real-Time system.

3.1 Goals of the Specification

In any architecture, there is a tension between a general purpose solution and suppo
specialist applications. Real-Time developers have to pay strict attention to the alloc
of resources and to the predictability of system execution. By providing the developer w
handles on managing resources and on predictability, Real-Time CORBA sacrifices 
of the general purpose nature of CORBA in order support the development of Real-T
systems.

Real-Time development has further specialist areas: “hard” real-time and “soft” real-ti
different resource contention protocols and scheduling algorithms etc. This specifica
provides a Real-Time CORBA that is sufficiently general to span these variations in t
form of a single compliance point. The one restriction imposed by the specification is
fixed priority scheduling. Real-Time CORBA does not currently address dynamic
scheduling.

The prescriptions made by this specification are not essential for general purpose CO
development. Furthermore, for some use-cases of CORBA, e.g. Enterprise Distribut
Computing, the features of Real-Time CORBA would be irrelevant. EDC tends to foc
on usability and developer productivity. Placing these goals way above predictability
means that EDC CORBA developers would never do things like configure thread poo

The goals of the specification are to support developers in meeting Real-Time
requirements by facilitating the end-to-end predictability of activities in the system and
providing support for the management of resources.

Real-Time CORBA brings to Real-Time system development the same benefits of
implementation flexibility, portability and interoperability that CORBA brought to clien
server development.

There is one important non-goal for this specification. It is not a goal to provide a
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 17
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portability layer for the Real-Time Operating System itself. The POSIX Real-time
extensions already address this need. Real-time CORBA is compatible with the POS
Real-time Extensions but by not wrapping the RTOS the specification facilitates the us
Real-time CORBA on operating systems that fall outside of the POSIX Real-time
Extensions.

3.2 Extending CORBA

To provide specialist capabilities for specialist application without over constrainin
non Real-Time development, Real-time CORBA is positioned as a separate Exten
to CORBA. The set of capabilities provided by Real-time CORBA constitute an
optional, additional compliance point.

Real-time CORBA is defined as extensions to CORBA 2.2 (formal/98-12-01) and the
Messaging Specification (orbos/98-05-05). It is necessary to look beyond CORBA 2.
because the policy framework used in Real-Time CORBA is that from the Messaging
Specification. Secondly, deferred synchronous, asynchronous and oneway invocation
important tools in developing Real-Time systems.

3.3 Approach to Real-Time CORBA

3.3.1 The Nature of Real-Time

Developers of CORBA-compliant distributed, object oriented systems rely on the
CORBA Specification to support the functional aspects of those systems. However, t
is a class of problems where some of the requirements relate the functionality of the
system to Real-World time, be it measured in minutes or in microseconds. For these
systems, timeliness is as important as functionality.

A parcel delivery service that commits to next day delivery across the country is rela
the functional requirement of transporting a parcel from “A” to “B” to Real-world time
i.e. “one day”. For the organization to meet this non-functional requirement, it must
analyze the system, identify the activities and bound the time taken to perform them
must also decide what resources (people, planes etc.) are allocated to the problem.
use of those resources in performing particular activities must be coordinated so tha
activity doesn’t prejudice the Real-World time requirement of another activity. If the
arrival rate of parcels and the isolation of resources from the outside world are know
then the organization can (ignoring component failures) guarantee “next day” deliver
the arrival pattern of parcels is variable and the peak rate would suggest a large am
of resources (which would at other times be largely idle) then the organization could
back to statistical predictability: offering “next day delivery or your money back”.

Relating functional requirements to real-world time may take several forms. A respo
time requirement might say that the occurrence of event “A” shall cause an event “B
within 24 hours. A throughput requirement might say that the system shall cope with
1000 occurrences of an event per hour. A statistical requirement might say that 95%
the occurrences of event “A” shall cause an event “B” within 24 hours. All these forms
requirement are Real-time requirements. A system that meets Real-time requiremen
a Real-time system.
18 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification June 17, 1999
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3.3.2 Meeting Real-Time Requirements

Deterministic behavior of the components of a Real-time system promotes the
predictability of the overall system. In order to decidea priori if a Real-Time
requirement is met, the system must behave predictably. This can only happen if al
parts of the system behave deterministically and also if they “combine” predictably

The interfaces and mechanisms provided by Real-Time CORBA facilitate a predicta
combination of the ORB and the application. The application manages the resource
using the Real-Time CORBA interfaces and the ORB‘s mechanisms coordinate th
activities that comprise the application. The Real-Time ORB relies upon the RTOS
schedule threads that represent activities being processed and to provide mutexe
handle resource contention.

3.3.3 activities

This specification uses the word “activity” with a small “a”. It treats an “activity” as a
analysis/design concept rather than as an implementation concept. Real-Time sys
developers are interested in the particular relationship between the system under
development and the system’s environment. This relationship describes: those ext
stimuli from the environment that impinge upon the system; the patterns with whic
these stimuli occur; and the extent of activity in the system resulting from each
stimulus.

Most systems will not be purely CORBA systems. That is there may be I/O other th
request and reply messages and there may be threads in addition to those handlin
ORB and CORBA applications. Developers need to be able to treat such threads as
of their activities. They also need to be able to treat non-CORBA Inputs as stimuli t
trigger activities. It is a matter of application architecture whether or not a CORBA
request message is treated as a stimulus that triggers an activity.

Real-Time CORBA does not define IDL for an activity. Instead of worrying about ho
to delimit an individual activity, it deals with invocations of IDL defined operations.
These are well-formed concepts in the OMA. An operation invocation consists of a
Request and a Reply. It is initiated by some client computational context (e.g. a thre
and passes through a client-role ORB, a transport protocol (TCP in the case of GIO
a server-role ORB (possibly involving queuing) to a server application. Thereafter
operation passes through the same entities in reverse order, back to the client. An
activity may encompass several, possibly nested, operation invocations.

This specification acknowledges that an abstract activity is represented by concre
entities: a message within a transport protocol, a request held in memory and a th
scheduled to run on a processor. These three phases are termed “in-transit”, “stat
and “active” respectively. Real-Time CORBA provides the ability to effect these thr
phases of an activity. It leaves the developer to delimit their concept of an activity
the way they coordinate these concrete entities using the interfaces specified.

This specification provides a Real-Time CORBA Scheduling Service as an addition
the set of CORBA Core extensions. The Scheduling Service provides sufficient
abstraction for the developer to work in terms of activities.
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 19
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3.3.4 End-to-End Predictability

One goal of this specification is to provide a standard for CORBA ORB
implementations that support end-to-end predictability. For the purposes of this
specification, "end-to-end predictability" of timeliness in a fixed priority CORBA
system is defined to mean:

• respecting thread priorities between client and server for resolving resource
contention during the processing of CORBA invocations;

• bounding the duration of thread priority inversions during end-to-end processin

• bounding the latencies of operation invocations.

A Real-Time CORBA system will include the following four major components, eac
of which must be designed and implemented in such a way as to support end-to-e
predictability, if end-to-end predictability is to be achieved in the system as a whol

1. the scheduling mechanisms in the OS;

2. the Real-Time ORB;

3. the communication transport;

4. the application(s).

Real-Time ORBs conformant to this specification are still reliant on the characteris
of the underlying operating system and on the application if the overall system is t
exhibit end-to-end predictability.

Note – An OS that implements the IEEE POSIX 1003.1-1996 Real-Time Extension
has the necessary features to facilitate end-to-end predictability. It is still possible
an OS that doesn’t implement some or all of the POSIX Real-Time Extensions
specification to support end-to-end predictability. Real-Time CORBA is not restrict
to such OSs.

3.3.5 Management of Resources

Providing end-to-end predictability will entail explicit choices in how much resourc
are deployed in a system. Certain requirements will lead to static partitioning of th
resources amongst activities.

For Real-Time requirements of the statistical kind and for some throughput
requirements, the level of resources needed to make the system “schedulable” ca
prohibitive. Real-Time CORBA systems can still provide assurances that requirem
are met due to the explicit control provided over resources.

Resources come in three categories: process, storage and communication resour
Real-Time CORBA offers control over threadpools, which objects the threads with
them are used for and what priorities they might run at. Real-Time CORBA also
appends some storage resources to threadpools for the specific capability of handl
20 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification June 17, 1999
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number of concurrent requests above the number of threads provided. Real-Time
CORBA provides control over transport connections: which are shared and which
allocated for what priority of activity.

3.4 Compatibility

3.4.1 Interoperability

Real-Time CORBA does not prescribe an RT-IOP as an ESIOP. There are a numb
pragmatic reasons for this. There are many specialized scenarios in which Real-T
CORBA can be deployed. These different scenarios do not exhibit enough commo
characteristics to allow a common interaction protocol to be defined. Secondly, ea
scenario will impose a different transport protocol. Without agreeing a common
transport, interoperability isn’t possible.

Instead of specifying an RT-IOP, this specification uses the “standard extension”
mechanisms provided by IIOP. These mechanisms are GIOP ServiceContexts, IO
Profiles and IOR Tagged Components. Using these it is possible for IIOP to provid
protocol support for the mechanisms prescribed in Real-Time CORBA.

The benefit is that two Real-Time CORBA implementations will interoperate.
Interoperability may not be as important for a Real-time CORBA system as for a
CORBA system because Real-Time dictates a measure of system-wide design co
to deliver predictability and therefore also some control over which ORB to deploy

The second benefit is that the specified extensions define what features of a vend
own Real-Time IOP can be mapped onto IIOP. This allows vendors to bridge betw
different Real-time CORBA implementations.

3.4.2 Portability

Whilst providing real-time applications with portability across real-time ORBs is a goal
this specification, providing a portability layer for real-time operating systems is not a
goal. Basing such an RTOS wrapper on say, POSIX Real-Time Extension would cons
the range of operating systems to which Real-Time CORBA can add value.

Any Real-Time system will be carefully configured to meet its Real-Time requiremen
This includes taking account of the behavior and timings of the ORB itself. Porting a
application to a different Real-Time ORB will necessitate that the application be
reconfigured. Portability cannot be “write once run everywhere” for Real-Time CORB
What it does do is reduce the risk to a development of having to port.

3.4.3 CORBA - Real-Time CORBA Interworking

In many systems Real-Time CORBA components will have to interwork with CORB
components. The interfaces (in particular IIOP extensions) are specified so that th
functionally possible. Clearly, in any given system, there will be timing and
predictability implications that need to be considered if the Real-Time component
not to be compromised.
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 21
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CORBA applications can be ported to Real-Time ORBs. They simply will not make
use of the extra functions provided. Porting a Real-Time application to a non-Real
Time ORB will sacrifice the predictability of that application but the two platforms ar
functionally equivalent.

3.5 Real-Time CORBA Architectural Overview

Real-Time CORBA defines a set of extensions to CORBA. The extensions to the
CORBA Core are specified in Chapter 4. The Real-Time CORBA Scheduling Serv
is specified in Chapter 5.

The diagram below shows the key Real-Time CORBA entities that are specified. T
features that these relate to are described in overview in the following sections.

3.5.1 Real-Time CORBA modules

All CORBA IDL specified by Real-Time CORBA is contained in new modules
RTCORBA and RTPortableServer (with the exception of new service contexts, wh
are additions to the IOP module.)

Figure 1. Real-Time CORBA Extensions

IIOP

CORBA::
Current

RTCORBA::

Scheduling

RTCORBA::

Servant

POA RT POA

RTCORBA::

serverclient

ORB RTORB

RTCORBA::ESIOP (others)

Threadpool

Priority

Service

Current

PriorityMapping(GIOP/TCP)

Real-Time CORBA entity existing CORBA entity
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3.5.2 Real-Time ORB

Real-Time CORBA defines an extension of the ORB interface, RTCORBA::RTORB
which handles operations concerned with the configuration of the Real-Time ORB
manages the creation and destruction of instances of other Real-Time CORBA ID
interfaces.

3.5.3 Thread Scheduling

Real-Time CORBA uses threads as a schedulable entity. Generally, a thread repre
a sequence of control flow within a single node. Threads for part of an activity.
Activities are “scheduled” by coordination the scheduling of their constituent threa
Real-Time CORBA specifies interfaces through which the characteristics of a thre
that are of interest can be manipulated. These interfaces are Threadpool creation
the Real-Time CORBA Current interface.

Note – The Real-Time CORBA view of a thread is compatible with the POSIX
definition of a thread.

3.5.4 Real-Time CORBA Priority

Real-Time CORBA defines a universal, platform independent priority scheme calle
Real-Time CORBA Priority. It is introduced to overcome the heterogeneity of differen
Operating System provided priority schemes, and allows Real-Time CORBA
applications to make prioritized CORBA invocations in a consistent fashion betwee
nodes with different priority schemes.

For consistency, Real-Time CORBA applications always should use CORBA Prior
to express the priorities in the system, even if all nodes in a system use the same n
thread priority scheme, or when using the server declared priority model.

3.5.5 Native Priority and PriorityMappings

Real-Time CORBA defines a NativePriority type to represent the priority scheme t
is ‘native’ to a particular Operating System.

Priority values specified in terms of the Real-Time CORBA Priority scheme must b
mapped into the native priority scheme of a given scheduler before they can be app
to the underlying schedulable entities. On occasion, it is necessary for the reverse
mapping to be performed, to obtain a Real-Time CORBA Priority to represent the
present native priority of a thread. The latter can occur, for example, when priority
inheritance is in use, or when wishing to introduce an already running thread into
Real-Time CORBA system at its present (native) priority.

To allow the Real-Time ORB and applications to do both of these things, Real-Tim
CORBA defines a PriorityMapping interface.
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 23
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3.5.6 Real-Time CORBA Current

Real-Time CORBA defines a Real-Time CORBA Current interface to provide acces
the CORBA priority of a thread.

3.5.7 Priority Models

One goal of Real-Time CORBA is to bound and to minimize priority inversion in
CORBA invocations. One mechanism that is employed to achieve this is propagat
of the activity priority from the client the server, with the requirement that the serv
side ORB make the up-call at this priority (subject to any priority inheritance protoc
that are in use).

However, in some scenarios, it is sufficient to design the application system by set
the priority of servers, and having them handle all invocations at that priority. Henc
Real-Time CORBA supports two models for the priority at which a server handles
requests from clients:

• Client Propagated Priority Model: in which the server honors the priority of the
invocation, set by the client. The invocation’s Real-Time CORBA Priority is
propagated to the server ORB and the server-side ORB maps this Real-Time
CORBA Priority into its own native priority scheme using its PriorityMapping.

Requests from non-Real-Time CORBA ORBs (i.e. ORB’s that do not propagate
Real-Time CORBA Priority with the invocation) are handled at a priority specifie
by the server.

• Server Declared Priority Model: in which the server handles requests at a Real
Time CORBA Priority assigned on the server side. This model is useful for sett
a boundary where new activities are begun with a CORBA invocation.

3.5.8 Real-Time CORBA Mutexes and Priority Inheritance

The Mutex interface provides the mechanism for coordinating contention for syste
resources. Real-Time CORBA specifies a RTCORBA::Mutex locality constrained
interface, so that applications can use the same mutex implementation as the OR

A conforming Real-Time CORBA implementation must provide an implementation
Mutex that implements some form of priority inheritance protocol. This may includ
but is not limited to, simple priority inheritance or a form of priority ceiling protocol
The mutexes that Real-Time CORBA makes available to the application must have
same priority inheritance properties as those used by the ORB to protect resource
This allows a consistent priority inheritance scheme to be delivered across the wh
system.

3.5.9 Threadpools

Real-Time CORBA uses the Threadpool abstraction to manage threads of executio
the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:
24 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification June 17, 1999
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• preallocation of threads. This helps reduce priority inversion, by allowing the
application programmer to ensure that there are enough thread resources to sat
certain number of concurrent invocations, and also helps reduce latency and
increase predictability, by avoiding the destruction and recreation of threads
between invocations.

• partitioning of threads. Having multiple thread pools, associated with different
POAs allows one part of the system to be isolated from the thread usage of ano
possibly lower priority, part of the application system. This can again be used to
reduce priority inversion.

• bounding of thread usage. A threadpool can be used to set a maximum limit on
number of threads that a POA or set of POAs may use. In systems where the t
number of threads that may be used is constrained, this can be used in conjun
with threadpool partitioning to avoid priority inversion by thread starvation.

• buffering of additional requests, beyond the number that can be dispatched
concurrently by the assigned number of threads.

3.5.10 Priority Banded Connections

To reduce priority inversion due to use of a non-priority respecting transport protoc
RT CORBA provides the facility for a client to communicate with a server via multip
connections, with each connection handling invocations that are made at a differe
CORBA priority or range of CORBA priorities. The selection of the appropriate
connection is transparent to the application, which uses a single object reference
normal.

3.5.11 Non-Multiplexed Connections

Real-Time CORBA allows a client to obtain a private transport connection to a serv
which will not be multiplexed (shared) with other client-server object connections.

3.5.12 Invocation Timeouts

Real-Time CORBA applications may set a timeout on an invocation in order to bou
the time that the client application is blocked waiting for a reply. This can be used
improve the predictability of the system.

3.5.13 Client and Server Protocol Configuration

Real-Time CORBA provides interfaces that enable the selection and configuration
protocols on the server and client side of the ORB.

3.5.14 Real-Time CORBA Configuration

New Policy types are defined to configure the following server-side RT CORBA
features:
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 25
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• server-side thread configuration (through Threadpools)

• priority model (propagated by client versus declared by server)

• protocol selection

• protocol configuration

Which of the CORBA policy application points (ORB, POA, Current) a given policy
may be applied at is given along with the description of each policy.

Real-Time CORBA defines a number of policies that may be applied on the client-s
of CORBA applications. These policies allow:

• the creation of priority-banded sets of connections between clients and servers

• the creation of a non-multiplexed connection to a server.

• client-side protocol selection and configuration.

In addition, Real-Time CORBA uses an existing CORBA policy, to provide invocatio
timeouts.

3.5.15 Scheduling Service

The Scheduling Service provides an abstraction layer to hide the coordination of R
Time CORBA scheduling parameters, e.g. CORBA Priorities and Real-Time POA
Policies. The Scheduling Service uses “names” for activities and for objects.

The developer uses the run-time Scheduling Service by acting on these named
activities and object. The design-time part of the Scheduling Service determines h
each of these named entities can be coordinated, using the interfaces defined for
Real-Time ORB, so that they meet their Real-Time requirements.
26 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification June 17, 1999
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This chapter describes the Real-Time CORBA Extensions. Sections 4.1 and 4.2
introduce the module structure and major interfaces for the Real-Time CORBA
specification. Sections 4.3, 4.4 and 4.5 define the basic priority concepts. Sections
4.7, 4.8 and 4.9 describe the priority models and the interfaces with which to reali
them. Sections 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 describe the management of t
resources (including buffering) and communication resources. Section 4.16
consolidates the changes required of CORBA. Finally, section 4.16 lists the comp
IDL.

4.1 Real-Time ORB

Real-Time CORBA defines an extension to the CORBA::ORB interface,
RTCORBA::RTORB. This interface is not derived from CORBA::ORB as the latter
expressed in pseudo IDL, for which inheritance is not defined. Nevertheless, RTOR
conceptually the extension of the ORB interface.

The RTORB interface provides operations to create and destroy other constituents
Real-Time ORB.

There is a single instance of RTCORBA::RTORB per instance of CORBA::ORB. T
object reference for the RTORB is obtained by calling ORB::resolve_initial_referen
with the ObjectId “RTORB”.

RTCORBA::RTORB is a locality constrained interface. The reference to the RTOR
object may not be passed as a parameter of an IDL operation nor may it be stringi
Any attempt to do so shall result in a MARSHAL system exception (with a Standa
Minor Exception Code of 2).
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 27
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// IDL
module RTCORBA {

// locality constrained interface
interface RTORB {

...

};

};

4.1.1 Real-Time ORB Initialization

Real-Time ORB initialization occurs within the CORBA::ORB_init operation. That i
a Real-Time ORB’s implementation of CORBA::ORB_init shall perform any action
necessary to initialize the Real-Time capability of the ORB.

In order to give the developer some control over a Real-Time ORB’s use of prioriti
the ORB_init operation shall be capable of handling an argv element of the form:

–ORBRTpriorityrange<optional-white-space><short>,<short>

Where <short> is a string encoding of an integer between 0 and 32767. The first
integer should be smaller than the second. If the argv element string does not con
to these constraints then a BAD_PARAM system exception shall be raised.

The two integers represent a range of CORBA Priorities available for use by ORB
internal threads. Note that priority of Real-Time CORBA application threads is
controlled by other mechanisms. If the ORB cannot map these integers onto the n
priority scheme then it shall raise a DATA_CONVERSION system exception.

If the ORB deems the range of priorities to be too narrow for it to function properly
then it shall raise an INITIALIZE system exception (with a Standard Minor Exceptio
Code of 1). For example, an implementation may not be able to function with less
than, say, three distinct priorities without risking deadlock.

4.1.2 Real-Time CORBA System Exceptions

Real-Time CORBA provides a more constraining environment for an application th
the environment provided by CORBA. This is reflected in the additional circumstan
in which system exceptions can be generated. These circumstances need to be
differentiated from the use of the same exception in CORBA.

Real-Time CORBA uses many of the Standard System Exceptions with the same
meaning as applies in CORBA. These uses need no differentiation. Where the use
CORBA Standard System Eception has a meaning particular to Real-Time CORB
Standard Minor Exception Codes are assigned.
28 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification June 17, 1999
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4.2 Real-Time POA

Real-Time CORBA defines an extension to the POA, in the form of the interface
RTPortableServer::POA

// IDL
module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

...

};

};

Conformance to the Real-Time CORBA Extensions, also necessarily implies
conformance to CORBA. In particular, a Real-Time ORB will handle interfaces of ty
PortableServer::POA in accordance with the CORBA specification. For a Real-Tim
ORB all such instances shall be of the subtype RTPortableServer::POA. That is it s
always be possible to treat an instance of PortableServer::POA as an instance of
RTPortableServer::POA, e.g., successfully narrow in some language mappings.

A call to ORB::resolve_initial_references(“RootPOA”) shall return an interface of ty
RTPortableServer::POA. A Real-Time POA will differ from a POA in two ways.
Firstly, it shall provide additional operations to support object level priority settings
(see section 4.7.5). Secondly, its implementation shall understand the Real-Time
Policies defined in this Extension. As the Real-Time POA interface is derived from
POA interface, it shall support all the semantics prescribed for the POA.

4.3 Native Thread Priorities

A Real-Time operating system (RTOS) sufficient to use for implementing a Real-Ti
ORB compliant with this specification, will have some discrete representation of a
thread priority. This representation typically specifies a range of values and a direc

Table 4-1 Standard Minor Exception Codes used for Real-Time CORBA

SYSTEM EXCEPTION MINOR
CODE

EXPLANATION

MARSHAL
2 attempt to marshal locality constrained

object

DATA_CONVERSION 1 failure of PriorityMapping object

INITIALIZE 1 Priority range too restricted for ORB

BAD_INV_ORDER 1 attempt to reassign priority

NO_RESOURCES 1 no connection for request’s priority
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 29
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for which values, higher or lower, represent the higher priority. The particular rang
and direction in this priority representation varies from RTOS to RTOS. This
specification refers to the RTOS specific thread priority representation as anative
thread priority scheme. The priority values of this scheme are referred to asnative
thread priorities.

Native thread priorities are used to designate the execution eligibility of threads. T
ordering of native thread priorities is such that a thread with higher native priority
executed at the exclusion of any threads in the system with lower native priorities.

A native thread priority is an integer value that is the basis for resolving competing
demands of threads for resources. Whenever threads compete for processors or O
implementation-defined resources, the resources are allocated to the thread with
highest native thread priority value.

Thebase native thread priorityof a thread is defined as the native priority with which
it was created, or to which it was later set explicitly. The initial value of a thread’s ba
native priority is dependent on the semantics of the specific operating environmen
Hence it is implementation specific.

At all times, a thread also has anactive native thread priority, which is the result of
considering its base native thread priority together with any priorities it inherits fro
other sources (e.g. threads or mutexes). An active native thread priority is set implic
as a result of some other action. Its value is only temporary, at some point it will ret
to the base native thread priority.

Priority inheritanceis the term used for the process by which the native thread prior
of other threads is used in the evaluation of a thread’s active native thread priority
priority inheritance protocolmust be used by a conforming Real-Time CORBA ORB
to implement the execution semantics of threads and mutexes. It is an implementa
issue as to whether the Real-Time ORB implements simple priority inheritance,
immediate ceiling locking protocol, original ceiling locking protocol or some other
priority inheritance protocol.

Whichever priority inheritance protocol is used, the native thread priority ceases to
inherited as soon as the condition calling for the inheritance no longer exists. At th
point when a thread stops inheriting a native thread priority from another source, i
active native thread priority is re-evaluated.

The thread’s active native priority is used when the thread competes for processo
Similarly, the thread’s active native priority is used to determine the thread’s positi
in any queue (i.e., dequeuing occurs in native thread priority order).

Native priorities have an IDL representation in Real-Time CORBA, which is of type
short:

// IDL
module RTCORBA {

typedef short NativePriority;

};
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This means that native priorities must be integer values in the range -32768 to +32
However, for a particular RTOS, the valid range will be a sub-range of this range.

Real-Time CORBA does not support the direct use of native priorities: instead, the
application programmer uses CORBA Priorities, which are defined in the next sect
However, applications will still use native priorities where they make direct use of
RTOS features.

4.4 CORBA Priority

To overcome the heterogeneity of RTOSs, that is different RTOSs having different
native thread priority schemes, Real-Time CORBA defines a CORBA Priority whic
has a uniform representation system-wide. CORBA Priority is represented by the
RTCORBA::Priority type:

//IDL
module RTCORBA {

    typedef short Priority;
    const Priority minPriority =     0;
    const Priority maxPriority = 32767;

};

A signed short is used in order to accommodate the Java language mapping. How
only values in the range 0 (minPriority) to 32767 (maxPriority) are valid. Numerical
higher RTCORBA::Priority values are defined to be of higher priority.

For each RTOS in a system, CORBA priority is mapped to the native thread priori
scheme. CORBA priority thus provides a common representation of priority across
different RTOSs.

4.5 CORBA Priority Mappings

Real-Time CORBA defines the concept of a PriorityMapping between CORBA
priorities and native priorities. The concept is defined as an IDL native type so that
mechanism by which priorities are mapped is exposed to the user. Native is chose
rather than interface (even if locality constrained) because the full capability of the
ORB (e.g. POA policies and CORBA exceptions) are too heavyweight for this use
Furthermore, a CORBA interface would entail the creation and registration of an ob
reference.

// IDL
module RTCORBA {

native PriorityMapping;

};
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Language mapping for this IDL native are defined for C, C++, Ada and Java later
this section.

A Real-Time ORB shall provide a default mapping for each platform (i.e. RTOS) th
the ORB supports. Furthermore, a Real-Time ORB shall provide a mechanism to a
users to override the default priority mapping with a priority mapping of their own.

The PriorityMapping is a programming language object rather than a CORBA Obje
and therefore the normal mechanism for coupling an implementation to the code t
uses it (an object reference) doesn’t apply. This specification does not prescribe a
particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

4.5.1 C Language binding for PriorityMapping

/* C */
CORBA_boolean RTCORBA_PriorityMapping_to_native (

RTCORBA_Priority            corba_priority,
RTCORBA_NativePriority* native_priority );

CORBA_boolean RTCORBA_PriorityMapping_to_CORBA (
RTCORBA_NativePriority native_priority,
RTCORBA_Priority*         corba_priority );

4.5.2 C++ Language binding for PriorityMapping

// C++
namespace RTCORBA {

class PriorityMapping {
public:

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority );

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority );

};
};

4.5.3 Ada Language binding for PriorityMapping
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-- Ada
package RTCORBA.PriorityMapping is

type Object is tagged private;

procedure To_Native (
Self : in Object ;
CORBA_Priority : in RTCORBA.Priority ;
Native_Priority: out RTCORBA.NativePriority ;
Returns : out CORBA.Boolean ) ;

procedure To_CORBA (
Self : in Object ;
Native_Priority: in RTCORBA.NativePriority ;
CORBA_Priority : out RTCORBA.Priority ;
Returns : out CORBA.Boolean ) ;

end RTCORBA.PriorityMapping ;

4.5.4 Java Language binding for PriorityMapping

// Java
package org.omg.RTCORBA;

public class PriorityMapping {

boolean to_native (
short corba_priority,
org.omg.CORBA.ShortHolder native_priority

);
boolean to_CORBA (

short native_priority,
org.omg.CORBA.ShortHolder corba_priority

);
}

4.5.5 Semantics

The priority mappings between native priority and CORBA priority are defined by t
implementations of the to_native and to_CORBA operations of a PriorityMapping
object (note, not a CORBA Object). The to_native operation accepts a CORBA Prio
value as an in parameter and maps it to a native priority, which is given back as an
parameter. Conversely, to_CORBA accepts a NativePriority value as an in parame
and maps it to a CORBA Priority value, which is again given back as an out param

As the mappings are used by the ORB, and may be used more than once in the no
execution of an invocation, their implementations should be as efficient as possibl
For this reason, the mapping operations may not raise any CORBA exceptions,
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including system exceptions. The ORB is not restricted from making calls to the
to_native and/or to_CORBA operations from multiple threads simultaneously. Thu
the implementations should be re-entrant.

Rather than raising a CORBA exception upon failure, a boolean return value is use
indicate mapping failure or success. If the priority passed in can be mapped to a
priority in the target priority scheme, TRUE is returned and the value is returned as
out parameter. If it cannot be mapped, FALSE is returned and the value of the out
parameter is undefined.

to_native and to_CORBA must both return FALSE when passed a priority that is
outside of the valid priority range of the input priority scheme. For to_native this
means when it is passed a short value outside of the CORBA Priority range, 0-32
(i.e. a negative value.) For to_CORBA this means when it is passed a short value
outside of the native priority range used on that RTOS. This range will be platform
specific.

Neither to_native nor to_CORBA is obliged to map all valid values of the input
priority scheme (the CORBA Priority scheme or the native priority scheme,
respectively.) This allows mappings to be produced that do not use all values of th
native priority scheme of a particular scheduler and/or that do not use all values of
CORBA Priority scheme.

When the ORB receives a FALSE return value from a mapping operation that is ca
as part of the processing of a CORBA invocation, processing of the invocation
proceeds no further. A DATA_CONVERSION system exception (with a Standard
Minor Exception Code of 1) is raised to the application making the invocation. Not
that it may not be possible to raise an exception to the application if the failure occ
on a call to a mapping operation made on the server side of an oneway invocation

A Real-Time ORB cannot assume that the priority mapping is idempotent. Users
should be aware that a mapping that produces different results for the same inputs
make the goal of a schedulable system harder to obtain. Users may choose to
implement a priority mapping that changes (through other, user specified interface
Users should however note that post-initialization changes to the mapping may we
compromise the ORB’s ability to deliver a consistently schedulable system.

4.6 Real-Time Current

The RTCORBA::Current interface, derived from CORBA::Current, provides access
the CORBA Priority (and hence indirectly to the native priority also) of the current
thread. The application can obtain an instance of Current by invoking the
CORBA::ORB::resolve_initial_references(“RTCurrent”) operation.

A Real-Time CORBA Priority may be associated with the current thread, by setting
priority attribute of the RTCORBA::Current object:
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//IDL
module RTCORBA {

interface Current : CORBA::Current {
attribute Priority the_priority;

};

};

A BAD_PARAM system exception shall be thrown if an attempt is made to set the
priority to a value outside the range 0 to 32767.

As a consequence of setting this attribute, a Real-Time ORB shall set the base na
thread priority to the value determined by calling PrioirtyMapping::to_native before
returning from the set attribute call.

If the to_native call returns FALSE or if the returned native thread priority is illegal f
the particular underlying RTOS, then a Real-Time ORB shall raise a
DATA_CONVERSION system exception (with a Standard Minor Exception Code o
1). In this case the priority attribute shall retain its value prior to the set attribute c

Once a thread has a CORBA Priority value associated with it, the behavior when i
makes an invocation upon a CORBA Object depends on the value of the
PriorityModelPolicy of that target object.

4.7 Real-Time CORBA Priority Models

Real-Time CORBA supports two models for the coordination of priorities across a
system. these two models provide two, alternate answers to the question: where d
the priority at which the servant code executes come from? They are:

• Client Propagated Priority Model

• Server Declared Priority Model

These two models are described in section 4.7.3 and section 4.7.4, respectively. T
model to be used is selected by the PriorityModelPolicy described first.

4.7.1 PriorityModelPolicy

The Priority Model is selected and configured by use of the PriorityModelPolicy:
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//IDL
module RTCORBA {

// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED

};

interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

};

When the Server Declared Model is selected for a given POA, the server_priority
attribute indicates the priority that will be assigned by default to CORBA Objects
managed by that POA. This priority can be overridden on a per-Object Reference
basis, as described in a sub-section below.

When the Client Propagated Model is selected, the server_priority attribute indica
the priority to be used for invocations from non-Real-Time CORBA ORBs, i.e. whe
there is no RTCorbaPrioirty ServiceContext on the request.

4.7.2 Scope of PriorityModelPolicy

The PriorityModelPolicy is applied to a Real-Time POA at the time of POA creatio
This is either through an ORB level default having previously been set or by includ
it in the policies parameter to create_POA. An instance of the PriorityModelPolicy
created with the create_priority_model_policy operation. The attributes of the polic
are initialized with the parameters of the same name.

//IDL
module RTCORBA {

interface RTORB {
...
PriorityModelPolicy create_priority_model_policy (

in PriorityModel priority_model,
in Priority server_priority

);
};

};
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The PriorityModelPolicy is a client-exposed policy, that is propagated from the ser
to the client in IORs. It is propagated in a PolicyValue in a TAG_POLICIES Profile
Component, as specified by the CORBA QoS Policy Framework.

When an instance of PriorityModelPolicy is propagated, the PolicyValue’s ptype ha
the value PRIORITY_MODEL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing a RTCORBA::PriorityModel and a RTCORBA::Priority.

Note –Client-exposed policies and the mechanism for their propagation are define
section 5.4 of the CORBA Messaging specification.

The PriorityModelPolicy is propagated so that the client ORB knows which Priority
Model the target object is using. This allows it to determine whether to send the R
Time CORBA priority with invocations on that object, and, in the case that the Ser
Declared model is used in combination with Priority Banded Connections, allows it
select the band connection to invoke over based on the declared priority in the tag
component.

The client may not override the PriorityModelPolicy.

4.7.3 Client Propagated Priority Model

If the target object supports the CLIENT_PROPAGATED value of the
PriorityModelPolicy, the CORBA Priority is carried with the CORBA invocation and i
used to ensure that all threads subsequently executing on behalf of the invocation
at the appropriate priority. The propagated CORBA Priority becomes the CORBA
Priority of any such threads. These threads run at a native priority mapped from th
CORBA Priority. The CORBA Priority is also passed back from server to client, so
that it can be used to control the processing of the reply by the client ORB.

The CORBA Priority is propagated from client to server, and back again, in a COR
Priority service context, which is passed in the invocation request and reply messa

module IOP {

        const ServiceId         RTCorbaPriority = 10;

};

The context_data contains the RTCORBA::Priority value as a CDR encapsulation o
IDL short type.

Note – The RTCorbaPriority const should be added to a future version of GIOP.

The thread that runs the servant code, initially has the CORBA Priority of the invok
thread. Therefore if, as part of the processing of this request it makes CORBA
invocations to other objects, these onward invocations will be made with the same
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CORBA Priority. If the CORBA Priority of the thread running the servant code is
changed by the application, any subsequent onward invocations will be made with
new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS)
whilst the servant code is executing due to priority inheritance.

4.7.4 Server Declared Priority Model

An object using the Server Declared Priority Model will have published its CORBA
Priority in its object reference. When such an object is the target of an invocation
CORBA Priority at which the (remote) servant code will execute is available to the
client-side ORB. The client-side ORB may use this knowledge internally. For examp
in conjunction with priority banded connections.

Note – Client-side ORB execution to support an invocation should run at the priori
of the client making the invocation. The extent to which this is achieved is a matter
implementation.

The client’s Real-Time CORBA Priority value is not passed with the invocation, in
service context, as it is in the Client Priority Propagation Model. A Real-Time CORB
Priority is not passed in a reply message either.

Server-side threads running on behalf of the invocation run at a native priority map
from the Real-Time CORBA Priority associated with that CORBA Object, which is
given in the server_priority attribute of the PriorityModelPolicy used at its creation.

Where an object, S1, using the Server Declared Priority Model makes invocations
its own upon another target object, S2, that uses the Client Propagated Priority Mo
the priority propagated will be that of S1 and not that of S1’s client. If the CORBA
Priority of the thread executing S1’s code is changed by the application, any
subsequent onward invocations will be made with this new priority.

Note that priorities may be changed implicitly, by the platform (RT ORB + RTOS)
whilst the servant code is executing due to priority inheritance.

4.7.5 Setting Server Priority on a per-Object Reference Basis

The server priority assigned under the Server Declared Priority Model, by the
server_priority attribute of the PriorityModelPolicy, can be overridden on a per-Obje
Reference basis. This is achieved by assigning the alternate server priority at the
of Object Reference creation or servant activation, using one of four additional
operations, which are provided by the Real-Time CORBA POA,
RTPortableServer::POA. Thereafter, the ORB shall ensure that the servant code is
at a native thread priority corresponding to the CORBA priority supplied as input t
these operations.
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// IDL
module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, WrongPolicy );

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy );

};

};

If the priority parameter of any of the above operations is not a valid CORBA prior
or if it fails to match the priority configuration for resources assigned to the POA, th
the ORB shall raise a BAD_PARAM system exception.

For each of the above operations, if the POA does not support the
SERVER_DECLARED option for the PriorityModelPolicy then the ORB shall raise
WrongPolicy user exception.

For each of the above operations, if the POA supports the IMPLICIT_ACTIVATION
option for the ImplicitActivationPolicy then the ORB shall raise a WrongPolicy use
exception. This relieves an ORB implementation of the need to retrieve the target
object’s priority from “somewhere” when a request arrives for an inactive object.

If the activate_object_with_id_and_priority operation is invoked with a different
priority to an earlier invocation of one of the create reference with priority operation
for the same object, then the ORB shall raise a BAD_INV_ORDER system except
(with a Standard Minor Exception Code of 1). If the priority value is the same then
ORB shall return SUCCESS.
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In all other respects the semantics of the corresponding (i.e. without the name
extensions “_with_priority” and “_and_priority”) PortableServer::POA operations sh
be observed.

4.8 Priority Transforms

Real-Time CORBA supports the installation of user-defined Priority Transforms, to
modify the CORBA Priority associated with an invocation during the processing of t
invocation by a server. Use of these Priority Transforms allows application designer
implement Real-Time CORBA systems using priority models different from either t
Client Propagated or Server Declared priority models, described above.

There are two points at which a Priority Transform may affect the CORBA Priority
associated with an invocation:

• during the invocation up call (after the invocation has been received at the server
before the servant code is invoked). This is referred to as an ‘inbound’ Priority
Transform, and will occur before the first time the server-side ORB uses the
RTCORBA::Priority value to obtain a native priority value, via a to_native
operation on the Priority Mapping.

• at the time of making an ‘onward’ CORBA invocation, from servant application
code. This is referred to as an ‘outbound’ Priority Transform.

Priority Transforms are user-provided functions that map one RTCORBA::Priority
value to another RTCORBA::Priority value. In addition to the input priority value, th
ObjectId of the target object is made available to the inbound transform. Whilst the
ObjectId of the invoking object is made available to the outbound transform. If the
outbound transform is called outside the context of an invocation then there is no
ObjectId and the ORB shall not invoke the transform function.

A pair of priority transforms, one at each of these two points, may be required to
implement a particular priority protocol. For example, to implement a particular varie
of distributed priority ceiling protocol, the inbound transform could add a constant
offset to the CORBA Priority, and the outbound transform could subtract the same
offset from the CORBA Priority, so that the onward invocation is made with the
original CORBA Priority.

Priority Transforms are presented to the Real-Time ORB as the implementation of
transform_priority operation for an instance of the locality constrained CORBA
interface type RTCORBA::PriorityTransform:

// IDL
module RTCORBA {

native PriorityTransform;

};

Language mapping for this IDL native are defined for C, C++, Ada and Java later
this section.
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A Real-Time ORB shall provide a default transform. Furthermore, a Real-Time OR
shall provide a mechanism to allow users to override the default priority transform w
a priority transform of their own.

The PriorityTransform is a programming language object rather than a CORBA Ob
and therefore the normal mechanism for coupling an implementation to the code t
uses it (an object reference) doesn’t apply. This specification does not prescribe a
particular mechanism to achieve this coupling.

Note – Possible solutions include: recourse to build/link tools and provision of
proprietary interfaces. Other solutions are not precluded.

4.8.1 C Language binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

/* C */
CORBA_boolean RTCORBA_PriorityTransform_inbound (

RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid );

CORBA_boolean RTCORBA_PriorityTransform_outbound (
RTCORBA_Priority* the_priority,
PortableServer_ObjectId oid );

4.8.2 C++ Language binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// C++
namespace RTCORBA {

class PriorityTransform {
public:

virtual CORBA::Boolean inbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid );

virtual CORBA::Boolean outbound (
RTCORBA::Priority &the_priority,
PortableServer::ObjectId oid );

};
};

4.8.3 Ada Language binding for PriorityTransform
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-- Ada
package RTCORBA.PriorityTransform is

type Object is tagged private;

procedure Inbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean ) ;

procedure Outbound (
Self : in Object ;
The_Priority : in out RTCORBA.Priority ;
Oid : in PortableServer.ObjectId ;
Returns : out CORBA.Boolean ) ;

end RTCORBA.PriorityTransform ;

4.8.4 Java Language binding for PriorityTransform

The use of the the_priority parameter is that of an IDL inout parameter.

// Java
package org.omg.RTCORBA;

public class PriorityTransform {

boolean inbound (
org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
boolean outbound (

org.omg.CORBA.ShortHolder the_priority,
org.omg.PortableServer.ObjectId oid

);
}

4.8.5 Semantics

Rather than raising a CORBA exception upon failure, a boolean return value is use
indicate Transform failure or success. If the priority passed in can be transformed
TRUE is returned and the value is returned as the out parameter. If it cannot be
transformed, FALSE is returned and the value of the out parameter is undefined.

Both the inbound and outbound functions must return FALSE when passed a prio
that is outside of the valid priority range for a CORBA Priority, 0-32767 (i.e. a
negative value). If the transform doesn’t recognize the ObjectId then it should retu
FALSE.
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Neither inbound nor outbound is obliged to transform all valid CORBA priroity value
However, users should note that failure to do so will result in invocation at that prior
failing.

When the ORB receives a FALSE return value from a Transform operation that is
called as part of the processing of a CORBA invocation, processing of the invocat
proceeds no further. An ORB that receives a FALSE return from a transform funct
shall, if possible, raise an UNKNOWN system exception on the application invocati
Note that it may not be possible to raise an exception to the application if the failu
occurs on a call to a Transform operation made on the server side of an oneway
invocation.

A Real-Time ORB cannot assume that the priority Transform is idempotent. Users
should be aware that a Transform that produces different results for the same inpu
will make the goal of a schedulable system harder to obtain. Users may choose to
implement a priority Transform that changes (through other, user specified interfac
Users should however note that post-initialization changes to the Transform may w
compromise the ORB’s ability to deliver a consistently schedulable system.

Note that Priority Transforms may be used with either the Client Propagated or th
Server Declared Priority Models. If the Client Propagated model is used, the input
priority to the inbound transform shall be the RTCORBA::Priority propagated from t
client. If the Server Declared model is used, the input priority to the inbound transfo
will be the RTCORBA::Priority assigned to the target object. For the outbound
transform, the input priority shall be the derived CORBA Priority.

4.9 Mutex interface

Real-Time CORBA defines the following Mutex interface

//IDL
module RTCORBA {

// locality constrained interface
interface Mutex     {

void lock( );
void unlock( );
boolean try_lock(in TimeBase::TimeT max_wait);

// if max_wait = 0 then return immediately
};

interface RTORB {

...
Mutex create_mutex();
void destroy_mutex( in Mutex the_mutex );
...

};
};
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A new RTCORBA::Mutex object is obtained using the create_mutex() operation of
RTCORBA::RTORB.

A Mutex object has two states: locked and unlocked. Mutex objects are created in
unlocked state. When the Mutex object is in the unlocked state the first thread to c
the lock() operation will cause the Mutex object to change to the locked state.
Subsequent threads that call the lock() operation while the Mutex object is still in
locked state will block until the owner thread unlocks it by calling the unlock()
operation.

Note – if a Real-Time ORB is to run on a shared memory multi-processor then the
Mutex implementation must ensure that the lock operations are atomic.

The try_lock() operation works like the lock() operation except that if it does not ge
the lock within max_wait time it returns FALSE. If the try_lock() operation does ge
the lock within the max_wait time period it returns TRUE.

The mutex returned by create_mutex must have the same priority inheritance
properties as those used by the ORB to protect resources. If a Real-Time CORBA
implementation offers a choice of priority inheritance protocols, or offers a protoco
that requires configuration, the selection or configuration will be controlled through
implementation specific interface.

While a thread executes in a region protected by a mutex object, it can be preemp
only by threads whose active native thread priorities are higher than either the cei
or inherited priority of the mutex object.

Note – the protocol implemented by the Mutex (which priority inheritance or priorit
ceiling protocol) is not prescribed. Real-Time CORBA is intended for a wide range
RTOSs and the choice of protocol will often be predicated on what the RTOS doe

4.10 Threadpools

Real-Time CORBA Threadpools are managed using the following IDL types and
operations of the Real-Time CORBA RTORB interface:
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//IDL
module RTCORBA {

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority              lane_priority;
unsigned long  static_threads;
unsigned long  dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

interface ThreadpoolPolicy : CORBA::Policy     {
readonly attribute ThreadpoolId threadpool;

};

interface RTORB {
...
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

void destroy_threadpool ( in ThreadpoolId threadpool )
raises (InvalidThreadpool);

};
};
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The create_threadpool and create_threadpool_with_lanes operations allow two
different styles of threadpool to be created : with or without ‘lanes’, or division into
sub-sets of threads at assigned different RTCORBA::Priority values. The two style
require some different parameters to be configured, as described in the two follow
sub-sections.

The configuration of stacksize and request buffering is common to both styles. Th
stacksize parameter is used to specify the stack size, in bytes, that each thread m
have allocated. The configuration of request buffering is described in a sub-sectio
below.

When a threadpool is successfully created, using either operation, a ThreadpoolId
identifier is returned. This can later be passed to destroy_threadpool to destroy th
threadpool. If a threadpool cannot be created because the parameters passed in
specify a valid threadpool configuration, a BAD_PARAM system exception is raise
If a threadpool cannot be created because there are insufficient operating system
resources, a NO_RESOURCES system exception is raised.

An instance of the ThreadpoolPolicy is created with the create_threadpool_policy
operation. The attribute of the policy is initialized with the parameter of the same
name.

The same threadpool may be associated with a number of different POAs, by usin
ThreadpoolPolicy containing the same ThreadpoolId in each POA_create.

4.10.1 Creation of Threadpool without Lanes

To create a threadpool without lanes the following parameters must be configured

• static_threads, which specifies the number of threads that will be pre-created a
assigned to that threadpool at the time of its creation. A NO_RESOURCES
exception is raised if this number of threads cannot be created, in which case n
threads are created and no threadpool is created.

• dynamic_threads, which specifies the number of additional threads that may be
created dynamically (individually and upon demand) when the static threads are
in use and an additional thread is required to service an invocation. Whether a
dynamically created thread is destroyed as soon as it is not in use, or is retaine
forever or until some condition is met is an implementation issue.

If dynamic_threads is zero, no additional threads may be dynamically created,
only the static threads are available. In either case, once the maximum number
threads (static plus any dynamic) has been reached, no additional threads will
added to the threadpool. Any additional invocations will wait for one of the existin
threads to become available.

• default_priority, which specifies the CORBA priority that the static threads will b
created with. (Dynamic threads may be created directly at the priority they are
required to run at to handle the invocation they were created for.)
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4.10.2 Creation of Threadpool with Lanes

To create a threadpool with lanes, a lanes parameter must be configured, instead o
static_threads, dynamic_threads and default_priority parameters. The lanes speci
number of ThreadpoolLanes, each of which must have the following parameters
specified :

• lane_priority, which specifies the CORBA Priority that all threads in this lane (bo
static, and dynamically allocated ones) will run at.

• static_threads, which specifies the number of threads that will be pre-created, b
this case allocated to this specific lane, rather than the pool as a whole.

• dynamic_threads, which specifies the number of dynamic threads that may be
allocated to this lane. The relationship between static and dynamic threads is t
same as in the case of threadpools without lanes : it determines whether and if
how many additional threads may be dynamically created. But in this case the
dynamic threads are specific to this lane and are created with the CORBA Prio
specified by lane_priority.

Additionally, to create a threadpool with lanes, the allow_borrowing boolean param
must be configured to indicate whether the borrowing of threads by one lane from
lower priority lane is permitted or not.

If thread borrowing is permitted, when a lane of a given priority exhausts its maxim
number of threads (both static and dynamic) and requires an additional thread to
service an additional invocation, it may "borrow" a thread from a lane with a lower
priority. The borrowed thread has its CORBA Priority raised to that of the lane tha
requires it. When the thread is no longer required, its priority is lowered once again
its previous value, and it is returned to the lower priority lane. The thread will be
borrowed from the highest priority lane with threads available. If no lower priority
lanes have threads available, the lane wishing to borrow a thread must wait until o
becomes free (which may be one of its own.)

More generally, for both threadpools with and without lanes, if the priority of a thre
is changed whilst dispatching an invocation, it is restored to its original priority befo
returning it to the threadpool.

4.10.3 Request Buffering

A Threadpool can be configured to buffer requests. That is when all of the availab
thread concurrency (static plus dynamic threads) is in use and when any capabilit
borrow threads has been exhausted then additional requests received are buffere

If request buffering by the Threadpool is not required, the boolean parameter
allow_request_buffering is set to FALSE, and the values of the max_buffered_requ
and max_request_buffer_size parameters are disregarded. If request buffering is
required, allow_request_buffering is set to TRUE, and the max_buffered_requests
max_request_buffer_size parameters are used as follows:
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max_buffered_requests indicates the maximum number of requests that will be
buffered by this Threadpool. max_request_buffer_size indicates the maximum am
of memory, in bytes, that the buffered requests may use. Both properties of a
Threadpool are evaluated to determine the number of requests that will be buffered
incoming request is not buffered by the Threadpool if either the number of buffere
requests reaches max_buffered_requests or buffering the request would take the
amount of buffer memory used past max_request_buffer_size.

Either parameter may be set to zero, to indicate that that property is to be taken a
unbounded. Hence, just the number of requests or just the maximum amount of bu
memory can be used to limit the buffering.

If, at the time of Threadpool creation, the ORB can determine that it does not have
resources to support the requested configuration, the Threadpool creation operati
will fail with a NO_RESOURCES system exception.

4.10.4 Scope of ThreadpoolPolicy

The ThreadpoolPolicy may be applied at the POA and ORB level. A POA may only
associated with one threadpool, hence only one ThreadpoolPolicy should be inclu
in the PolicyList specified at POA creation.

A ThreadpoolPolicy may be applied at the ORB level, where it assigns the indicat
threadpool as the default threadpool to use in the subsequent creation of POAs, u
the default is again changed. The default is used if a ThreadpoolPolicy is not spec
in the polices used at the time of POA creation.

4.11 Implicit and Explicit Binding

Real-Time CORBA makes use of the CORBA::Object::validate_connection operatio
allow client applications to control when a binding is made on an object reference

Note – validate_connection and the definition of binding that it uses are defined in
section 5.2 of the CORBA Messaging specification.

Using validate_connection on a currently unbound object reference causes bindin
occur. Real-Time CORBA refers to the use of validate_connection to force a binding
be made as ‘explicit binding’. If an object reference is not explicitly bound, binding
will occur at an ORB specific time, which may be as late as the time of the first
invocation upon that object reference. This is referred to as ‘implicit binding’, and
the default CORBA behaviour unless an explicit bind is performed.

Real-Time applications may wish to use explicit binding to force any binding relate
overhead (including the passing of messages between the client and server) to be
incurred ahead of the first invocation on an object reference. This can impove the
performance and predictability of the first invocation, and hence the predictability o
the application as a whole. The explicit bind may, for example, be performed durin
system initialization.
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Once an explicit binding has been set up, via validate_connection, it is possible tha
underlying transport connection (or other associated resources) may fail or may b
reclaimed by the ORB. Rather than mandate that this shall not happen, it is left as
Quality of Implementation issue as to what guarantees of enduring availability an
explicit binding provides.

The client-side applicable Real-Time CORBA policies are applied to a binding in t
same way as any other client-side applicable CORBA policies: using the
set_policy_overrides operations at the ORB, Current or Object scope (as defined in
CORBA QoS Policy Framework.)

The client-side applicable Real-Time CORBA policies have the same effect wheth
they are applied to an implicit or explicit bind.

4.12 Priority Banded Connections

Priority banded connections are administered through the use of the Real-Time
CORBA PriorityBandedConnectionsPolicy Policy type:

// IDL
module RTCORBA {

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

interface PriorityBandedConnectionPolicy : CORBA::Policy {

readonly attribute PriorityBands priority_bands;

};

interface RTORB {
...
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
};

};
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An instance of the PriorityBandedConnectionPolicy is created with the
create_priority_banded_connection_policy operation. The attribute of the policy is
initialized with the parameter of the same name.

The PriorityBands attribute of the policy may be assigned any number of
PriorityBands. PriorityBands that cover a single priority (by having the same priori
for their low and high values) may be mixed with those covering ranges of prioritie
No priority may be covered more than once. The complete set of priorities covered
the bands do not have to form one contiguous range, nor do they have to cover a
CORBA Priorities. If no bands are provided, then a single connection will be
established.

Once the binding has been successfully made, an attempt to make an invocation w
Real-Time CORBA Priority which is not covered by one of the bands will fail. The
ORB shall raise a NO_RESOURCES system exception (with a Standard Minor
Exception Code of 1). Hence, a policy specifying only one band can be used to res
a client’s invocations to a range of priorities

Note that the origin of the Real-Time CORBA Priority value that is used to select
which banded connection to use depends on the Priority Model of the target objec
When invoking on an Object that is using the Client Propagated Priority Model, th
client-set Real-Time CORBA Priority is used to choose the band. Whereas, invoki
on an Object that is using the Server Declared Priority Model, the server priority is
used, as published in the IOR.

4.12.1 Scope of PriorityBandedConnectionPolicy

The PriorityBandedConnectionPolicy is applied on the client-side only, at the time
binding to a CORBA Object. However, the policy may be set from the client or serv
side. On the server, it may be applied at the time of POA creation, in which case t
policy is client-exposed and is propagated from the server to the client in interopera
Object References. It is propagated in a PolicyValue in a TAG_POLICIES Profile
Component, as specified by the CORBA QoS Policy Framework.

When an instance of PriorityBandedConnectionPolicy is propagated, the PolicyVal
ptype has the value PRIORITY_BANDED_CONNECTION_POLICY_TYPE and the
pvalue is a CDR encapsulation containing a RTCORBA::PriorityBands type, which i
sequence of instances of RTCORBA::PriorityBand. Each RTCORBA::PriorityBand is
turn represented by a pair of RTCORBA::Priority values, which represent the low an
high values for that band.

If the PriorityBandedConnectionPolicy is set on both the server and client-side an
attempt to bind will fail with an INV_POLICY system exception. The client
application may use validate_connection to establish that this was the cause of bin
failure and may set the value of its copy of the policy to an empty PriorityBands an
attempt to re-bind using just the configuration from the server-provided copy of the
policy.
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4.12.2 Binding of Priority Banded Connection

Whether bands are configured from the client or server-side, the banded connectio
always initiated from the client-side.

In order to allow the server-side ORB to identify the priority band that each connect
is associated with, information on that connection’s band range is passed with firs
request on each banded connection. This is done by means of a RTCorbaPriorityR
service context:

// IDL
module IOP {

const ServiceId RTCorbaPriorityRange = 11;

};

The context_data contains the CDR encapsulation of two RTCORBA::Priority valu
(two short types.) The first indicates the lowest priority and the second the highes
priority in the priority band handled by the connection.

Once a priority band has been associated with a connection it cannot be reconfigu
during the life-time of the connection. If an ORB receives a second, or subsequen
RTCorbaPriorityRange service context containing a different priority band definitio
then it shall raise a BAD_INV_ORDER system exception (with a Standard Minor
Exception Code of 1). If the priority band is the same as the connection’s configura
then processing shall proceed.

In case of an explicit bind (via validate_connection), this service context is passed
request message for a ‘_bind_priority_band’ implicit operation. This implicit operati
is defined for Real-Time CORBA only at this time. It is possible that non-Real-Tim
ORB might receive such a request message. If so it is anticipated (but not prescri
that it will reply with a BAD_OPERATION system exception. A future version of IIOP
should formalize Real-Time CORBA’s use of the ‘_bind_priority_band’ operation
name in a GIOP Request message. Note that there is no API exposed for this imp
operation (unlike, for example, ‘_is_a’).

When sending a ‘_bind_priority_band’ request, a Real-Time ORB shall marshall n
parameters and the object key of the object being bound to shall be used as the re
‘target’. The request shall be handled by the ORB, no servant implementation of t
implicit operation will be invoked.

When a Real-Time-ORB receives a _bind_priority_band Request it should allocate
resources to the connection and configure those resources appropriately to the pr
band indicated in the ServiceContext. Having done this the ORB shall send a
"SUCCESS" Reply message. If the priority band passed is not well-formed (i.e. it
contains a negative number or the first value is higher than the second) then the O
shall raise a BAD_PARAM system exception. If either of the priorities cannot be
mapped onto native thread priorities (i.e. to-native returns FALSE) then the ORB s
raise a DATA_CONVERSION system exception (with a Standard Minor Exception
Code of 1). If the priority band is inconsistent with the ORB’s priority configuration
June 17, 1999 ptc/99-06-02: Real-Time CORBA 1.0 Adopted Specification 51



4

nd
ons,
hen

all

e

t a
and
n
t

n
n
ing.

on
then the ORB shall raise a INV_POLICY system exception. If the server-side ORB
cannot configure resources to support a well-formed band specification then a
NO_RESOURCES exception shall be returned.

A _bind_priority_band request message is sent on the connection for each band a
must complete successfully (i.e. yield a SUCCESS Reply message) for all connecti
before validate_connection returns success. If any one _bind_priority_band fails, t
the entire banded connection binding fails. In this way, validate_connection sets up
the banded connections at time of binding.

If the service context is omitted on a _bind_priority_band request message then th
ORB shall raise a BAD_PARAM system exception.

A bind_priority_band is not performed in the case of an implicit bind, as it occurs a
time when a request is about to sent on the connection representing the priority b
that covers the current invocation priority. There is no point delaying the applicatio
request. Instead, the ‘RTCorbaPriorityRange’ service context is passed on this firs
invocation request.

Thus, the implicit binding of a banded connection has the behavior that each band
connection is only set up the first time an invocation is made from the client with a
invocation priority in that band. This behavior offers consistency: the first invocatio
made on each band incurs any latency and predictability cost associated with bind
If no invocations are ever made in the priority range of a given bands, its connecti
will never be established.

4.13 PrivateConnectionPolicy

This policy allows a client to obtain a private transport connection which will not be
multiplexed (shared) with other client-server object connections.

// IDL
module RTCORBA {

// Private Connection Policy

const CORBA::PolicyType
PRIVATE_CONNECTION_POLICY_TYPE = 44;

interface PrivateConnectionPolicy : CORBA::Policy {};

interface RTORB {
...
PrivateConnectionPolicy create_private_connection_policy (
);

};

};

An instance of the PrivateConnectionPolicy is created with the
create_private_connection_policy operation. The policy has no attributes.
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Note that it is not possible to explicitly request a multiplexed connection. Whether
multiplexing is appropriate or not is a protocol specific issue, and hence an ORB
implementation issue. By not requesting a private connection the application indic
to the ORB that a multiplexed connection would be acceptable. It is up to the ORB
implementation to make use of this indication.

4.14 Invocation Timeout

Real-Time CORBA uses the existing CORBA timeout policy,
Messaging::RelativeRoundtripTimeoutPolicy, to allow a timeout to be set for the
receipt of a reply to an invocation. The policy is used where it is set, to set a timeo
in the client ORB. If a timeout expires, the server is not informed. Real-Time CORB
does not require the policy to be propagated with the invocation, which the
RelativeRoundtripTimeoutPolicy specification allows in support of message routers

Note – The RelativeRoundtripTimeoutPolicy is specified in section 5.3.4.6 of the
Messaging specification.

4.15 Protocol Configuration

Real-Time CORBA uses two Policy types, based on a common protocol configura
framework, to enable the selection and configuration of protocols on the server an
client side of the ORB.

4.15.1 ServerProtocolPolicy

The ServerProtocolPolicy policy type is used to select and configure communicati
protocols on the server-side of Real-Time CORBA ORBs.

// IDL
module RTCORBA {

// Locality Constrained interface
interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;
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// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;

};

interface RTORB {
...
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ServerProtocolPolicy is created with the
create_server_protocol_policy operation. The attribute of the policy is initialized w
the parameter of the same name.

A ServerProtocolPolicy allows any number of protocols to be specified and, optiona
configured at the same time. The order of the Protocols in the ProtocolList indicat
the order of preference for the use of the different protocols. Information regarding
protocols must be placed into IORs in that order, and the client should take that o
as the default order of preference for choice of protocol to bind to the object via.

The type of protocol is indicated by an IOP::ProfileId (from the specification of the
IOR), which is an unsigned long. This means that a protocol is defined as a speci
pairing of an ORB protocol (such as GIOP) and a transport protocol (such as TCP
Hence IIOP would be selected, rather than GIOP plus TCP being selected separa
IIOP in particular is represented by the value TAG_INTERNET_IIOP (or the value
that it is defined as.)

A Protocol type contains a ProfileId plus two ProtocolProperties, one each for the O
protocol and the transport protocol.

The properties are provided to allow the configuration of protocol specific configura
parameters. Specific protocols have their own protocol configuration interface that
inherits from the RTCORBA::ProtocolProperties interface. A nil reference for eithe
ProtocolProperties indicates that the default configuration for that protocol should
used. (Each protocol will have an implementation specific default configuration, th
may be overridden by applying the ServerProtocolPolicy at ORB scope. See the Po
Scope sub-section, below.)
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//IDL
module RTCORBA {

interface TCPProtocolProperties : ProtocolProperties {
attribute long     send_buffer_size;
attribute long     recv_buffer_size;
attribute boolean  keep_alive;
attribute boolean  dont_route;
attribute boolean  no_delay;

};

interface GIOPProtocolProperties : ProtocolProperties {
};

};

TCP is the only protocol that RT CORBA specifies a ProtocolProperties interface f
An empty interface is specified for GIOP, as GIOP currently has no configurable
properties.

ProtocolProperties should be defined for any other protocols useable with an RT
CORBA implementation, but unless they are standardized in an OMG specification
their name and contents will be implementation specific. ProtocolProperties for oth
protocols may be standardized in the future, and a ProtocolProperties interface sh
be specified in the standardization of any other protocol, if it is to be useable in a
portable way with RT CORBA.

4.15.2 Scope of ServerProtocolPolicy

Applying a ServerProtocolPolicy to the creation of a POA controls the protocols th
references created by that POA will support (and their configuration if non- nil
ProtocolProperties are given.) If no ServerProtocolPolicy is given at POA creation,
POA will support the default protocols associated with the ORB that created it. (N
that supplying a ServerProtocolPolicy overrides, rather than supplementing or sub
setting, the default selection of protocols associated with the ORB.)

The ORB’s default protocols, and their order of preference, are implementation
specific. The default may be overridden by applying a ServerProtocolPolicy at the
ORB level. As a consequence, portable applications must override this Policy (and
other defaults) to ensure the same behavior between ORB implementations.

Only one ServerProtocolPolicy should be included in a given PolicyList, and includ
more than one will result in a INV_POLICY system exception being raised.

4.15.3 ClientProtocolPolicy

The ClientProtocolPolicy policy type is used to configure the selection and
configuration of communication protocols on the client-side of Real-Time CORBA
ORBs. It is defined in terms of the same RTCORBA::ProtocolProperties type as th
ServerProtocolPolicy:
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// IDL
module RTCORBA {

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

// Locality Constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;

};

interface RTORB {
...
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);

};

};

An instance of the ClientProtocolPolicy is created with the
create_client_protocol_policy operation. The attribute of the policy is initialized wit
the parameter of the same name.

When applied to a bind (implicit or explicit), the ClientProtocolPolicy indicates the
protocols that may be used to make a connection to the specified object, in order
preference. If the ORB fails to make a connection because none of the protocols
available on the client ORB, a INV_POLICY system exception is raised. If one or
more of the protocols is available, but the ORB still fails to make a connection a
COMM_FAILURE system exception is raised. In both cases no binding is made.

If it is necessary to know which protocol a binding was successfully made via, a sin
protocol should be passed into each of a succession of explicit binds until one of th
is successful.

If no ClientProtocolPolicy is provided, then the protocol selection is made by the O
based on the target object’s available protocols, as described in its IOR, and the
protocols supported by the client ORB.

4.15.4 Scope of ClientProtocolPolicy

The ClientProtocolPolicy is applied on the client-side, at the time of binding to an
Object Reference. However, the policy may be set on either the client or server-si
On the server-side, it may be applied at the time of POA creation, in which case th
policy is client-exposed and is propagated from the server to the client in interopera
Object References. It is propagated in a PolicyValue in a TAG_POLICIES Profile
Component, as specified by the CORBA QoS Policy Framework.
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When an instance of ClientProtocolPolicy is propagated, the PolicyValue’s ptype h
the value CLIENT_PROTOCOL_POLICY_TYPE and the pvalue is a CDR
encapsulation containing a RTCORBA::ProtocolList, which is a sequence of instance
RTCORBA::Protocol. Each RTCORBA::Protocol is in turn represented by an
IOP::ProfileId and two RTCORBA::ProtocolProperties representing the ORB and
transport ProtocolProperties.

The on the wire representation of each ProtocolProperties type is protocol specific.
representation of the TCPProtocolProperties type is the CDR encoding of two long
followed by three booleans, to represent the send_buffer_size, recv_buffer_size,
keep_alive, dont_route and no_delay attributes respectively.

If the ClientProtocolPolicy is set on both the server and client-side an attempt to b
will fail with an INV_POLICY system exception. The client application may use
validate_connection to establish that this was the cause of binding failure and may
the value of its copy of the policy to an empty ProtocolList and attempt to re-bind
using just the configuration from the server-provided copy of the policy.

4.15.5 Protocol Configuration Semantics

Note that the above API only allows policies to be set at POA creation time on the
server-side, and object bind time on the client-side. No API is defined to allow
(re)configuration of any policy after these times.

The protocol configuration selected at the time of POA creation is used to determi
the server-side configuration that is to be used by the protocol in question for all
connections from clients to objects that have references created by that POA.

However, as the configuration semantics of a protocol (such as whether a particul
property can be configured on a per-connection basis or only globally for that insta
of the protocol) are protocol specific, the exact semantics of protocol configuration
ProtocolProperties are not specified by Real-Time CORBA, and must be specified
per-protocol basis.

If a protocol offers a configurable property that can only be configured at some sc
wider than that of the individual POA (say at the scope of the ORB instance), it ca
choose either to:

• change that property at the wider scope when a different value is requested for
creation of a new POA. This will ensure that the new POA gets the configuratio
requested, but will also affect the configuration of new and possibly existing
connections made to other CORBA Objects via the same protocol. The exact sc
and semantics of the property change must be given as part of the documentatio
the ProtocolProperties interface for that protocol.

• not change the property, but instead raise an INV_POLICY exception and fail to
create the new POA. In this way, the original value of the property is preserved
the existing references that use it. Once again, this behavior must be covered in
documentation of the ProtocolProperties interface for that protocol.

Which of the two strategies a protocol uses is an implementation issue.
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4.16 Consolidated IDL

// IDL
module IOP {

const ServiceId         RTCorbaPriority = 10;

const ServiceId         RTCorbaPriorityRange = 11;

};

//File: RTCORBA.idl
#ifndef _RT_CORBA_IDL_
#define _RT_CORBA_IDL_
#include <orb.idl>
#include <iop.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"
// IDL
module RTCORBA {

typedef short NativePriority;

typedef short Priority;

const Priority minPriority = 0;
const Priority maxPriority = 32767;

native PriorityMapping;

native PriorityTransform;

// Threadpool types
typedef unsigned long ThreadpoolId;

struct ThreadpoolLane {
Priority              lane_priority;
unsigned long  static_threads;
unsigned long  dynamic_threads;

};

typedef sequence <ThreadpoolLane> ThreadpoolLanes;

// Priority Model Policy
const CORBA::PolicyType

PRIORITY_MODEL_POLICY_TYPE = 40;

enum PriorityModel {
CLIENT_PROPAGATED,
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SERVER_DECLARED
};

interface PriorityModelPolicy : CORBA::Policy {

readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;

};

// Threadpool Policy
const CORBA::PolicyType THREADPOOL_POLICY_TYPE = 41;

interface ThreadpoolPolicy : CORBA::Policy     {
readonly attribute ThreadpoolId threadpool;

};

// Locality Constrained interface
interface ProtocolProperties {};

struct Protocol {
IOP::ProfileId          protocol_type;
ProtocolProperties orb_protocol_properties;
ProtocolProperties transport_protocol_properties;

};

typedef sequence <Protocol> ProtocolList;

// Server Protocol Policy
const CORBA::PolicyType SERVER_PROTOCOL_POLICY_TYPE = 42;

// locality constrained interface
interface ServerProtocolPolicy : CORBA::Policy     {

readonly attribute ProtocolList protocols;
};

// Client Protocol Policy
const CORBA::PolicyType CLIENT_PROTOCOL_POLICY_TYPE = 43;

// locality constrained interface
interface ClientProtocolPolicy : CORBA::Policy {

readonly attribute ProtocolList protocols;
};

// Private Connection Policy
const CORBA::PolicyType

PRIVATE_CONNECTION_POLICY_TYPE = 44;

// locality constrained interface
interface PrivateConnectionPolicy : CORBA::Policy {};
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interface TCPProtocolProperties : ProtocolProperties {
attribute long     send_buffer_size;
attribute long     recv_buffer_size;
attribute boolean  keep_alive;
attribute boolean  dont_route;
attribute boolean  no_delay;

};

interface GIOPProtocolProperties : ProtocolProperties {
};

struct PriorityBand {
Priority low;
Priority high;

};

typedef sequence <PriorityBand> PriorityBands;

// PriorityBandedConnectionPolicy
const CORBA::PolicyType

PRIORITY_BANDED_CONNECTION_POLICY_TYPE = 45;

interface PriorityBandedConnectionPolicy : CORBA::Policy {
readonly attribute PriorityBands priority_bands;

};

interface Current : CORBA::Current {
attribute Priority the_priority;

};

// locality constrained interface
interface Mutex     {

void lock( );
void unlock( );
boolean try_lock ( in TimeBase::TimeT max_wait );
// if max_wait = 0 then return immediately

};

// locality constrained interface
interface RTORB {

Mutex create_mutex( );
void destroy_mutex( in Mutex the_mutex );

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
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in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size );

void destroy_threadpool ( in ThreadpoolId threadpool )
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy (
in PriorityModel priority_model,
in Priority server_priority

);
ThreadpoolPolicy create_threadpool_policy (

in ThreadpoolId threadpool
);
PriorityBandedConnectionPolicy

create_priority_banded_connection_policy (
in PriorityBands priority_bands

);
ServerProtocolPolicy create_server_protocol_policy (

in ProtocolList protocols
);
ClientProtocolPolicy create_client_protocol_policy (

in ProtocolList protocols
);
PrivateConnectionPolicy create_private_connection_policy (
);

}; // End interface RTORB

}; // End module RTCORBA
#endif // _RT_CORBA_IDL_

//File: RTPortableServer.idl
#ifndef _RT_PORTABLE_SERVER_IDL_
#define _RT_PORTABLE_SERVER_IDL_
#include <orb.idl>
#include <PortableServer.idl>
#include <RTCORBA.idl>
#pragma prefix "omg.org"
// IDL
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module RTPortableServer {

// locality constrained object
interface POA : PortableServer::POA {

Object create_reference_with_priority (
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

Object create_reference_with_id_and_priority (
in PortableServer::ObjectId oid,
in CORBA::RepositoryId intf,
in RTCORBA::Priority priority )

raises ( WrongPolicy );

ObjectId activate_object_with_priority (
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive, WrongPolicy );

void activate_object_with_id_and_priority (
in PortableServer::ObjectId oid,
in PortableServer::Servant p_servant,
in RTCORBA::Priority priority )

raises ( ServantAlreadyActive,
ObjectAlreadyActive, WrongPolicy );

};

};
#endif // _RT_PORTABLE_SERVER_IDL_
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5.1 Introduction

This section describes the Real-Time CORBA Scheduling Service. The Schedulin
Service uses the primitives of the Real-Time ORB to facilitate enforcing various fix
priority Real-Time scheduling policies across the Real-Time CORBA system in a w
that abstracts away from the application some of the low-level Real-Time construc
The Scheduling Service does not impose any new requirements on Real-Time or
Real-Time ORBs beyond what appears in the RT CORBA specification or CORBA
specification respectively.

The Scheduling Service makes use of the detailed information available at design-
regarding the associations between activities, objects, resources and priorities. Th
information may be placed in the run-time Scheduling Service either by build tools
through proprietary, initialisation-time interfaces.

The primitives added in Real-Time CORBA to create a Real-Time ORB are sufficie
to achieve Real-Time scheduling, but effective Real-Time scheduling is complicate
For applications to ensure that their execution is scheduled according to a uniform
policy, such as global Rate Monotonic Scheduling, requires that the RT ORB
primitives be used properly and that their parameters be set properly in all parts of
CORBA system.

Not only is determining the proper use and correct parameters difficult, but once it
done, the application code becomes substantially more complex - making analysis
modification very difficult. The Scheduling Service specified in this section address
these problems because an instance of the Scheduling Service embodies a unifor
scheduling policy, and because the simple Scheduling Service interface abstracts
much of the complexity from application code.

An application that uses an implementation of the Scheduling Service is assured o
having a uniform Real-Time scheduling policy, such as global rate-monotonic
scheduling with priority ceiling, enforced in the entire system. That is, a Schedulin
Service implementation will choose CORBA priorities, POA policies, and priority
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mappings in such a way to realize a uniform Real-Time scheduling policy. Differen
implementations of the Scheduling Service can provide different Real-Time schedu
policies.

The Scheduling Service abstraction of scheduling parameters (such as CORBA
Priorities) is through the use of "names". The application code uses names (string
specify CORBA Activities and CORBA objects. The Scheduling Service internally
associates those names with scheduling parameters and policies for the named Ac
or the named CORBA object. This abstraction improves portability with regard to
Real-Time features, eases uses of the Real-Time features, and reduces the chanc
errors.

Each name used by the Scheduling Service method invocations must be unique.
Scheduling Service is designed to work in a "closed" CORBA system where fixed
priorities are needed for a static set of clients and servers. Therefore, it is assumed
the system designer has identified a static set of CORBA Activities, the CORBA
objects that the Activities use, and has determined scheduling parameters, such a
CORBA priorities, for those Activities and objects. In that process, names are
uniquely assigned to those Activities and Objects and the names are associated t
scheduling parameters. This association of names to scheduling parameters is th
used to configure the Scheduling Service.

The capabilities provided by the Scheduling Service are not orthogonal to the
primitives provided by the Real-Time ORB. In fact, most of the capabilities provide
by the Scheduling Service are expected to be implemented by the Scheduling Se
invoking the Real-Time CORBA primitives in a way that ensures a uniform Real-Tim
scheduling policy is enforced.
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5.2 IDL

//File: RTCosScheduling.idl
#ifndef _RT_COS_SCHEDULING_IDL_
#define _RT_COS_SCHEDULING_IDL_
#include <orb.idl>
#include <PortableServer.idl>
#pragma prefix "omg.org"
// IDL
module RTCosScheduling {

exception UnknownName {};

// locality constrained interface
interface ClientScheduler {

void schedule_activity(in string name)
raises(UnknownName);

};

// locality constrained interface
interface ServerScheduler {

PortableServer::POA create_POA (
in PortableServer::POA parent,
in string adapter_name,
in PortableServer::POAManager a_POAManager,
in CORBA::PolicyList policies)

raises ( PortableServer::POA::AdapterAlreadyExists,
PortableServer::POA::InvalidPolicy );

void schedule_object(in Object obj, in string name)
raises(UnknownName);

};
};
#endif // _RT_COS_SCHEDULING_IDL_

5.3 Semantics

A CORBA client obtains a local reference to a ClientScheduler object. Whenever
client begins a region of code with a new deadline or priority (indicating a new
CORBA Activity), it invokes "schedule_activity" with the name of the new activity.
The Scheduling Service associates a CORBA priority with this name (assuming th
name is valid--otherwise an exception is thrown), and it invokes appropriate RT O
and RTOS primitives to schedule this activity.

The "create_POA" method accepts parameters allowing it to create a POA. This P
will enforce all of the non-Real-Time policies in the Policy List input parameter. A
Real-Time policies for the returned POA will be set internally by this scheduling
service method. This ensures a selection of Real-Time policies that is consistent w
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the scheduling policy being enforced by the Scheduling Service implementation.
Scheduling Service implementation should clearly document what POA RT policie
will use under various conditions.

"Schedule_object" is provided to allow the Scheduling Service to achieve object-le
control over scheduling of the object. RT POA policies in the RT ORB allow some
control over the scheduling of object invocations, but must do so for all objects
managed by each POA. Some Real-Time scheduling, such as priority ceiling
concurrency control, requires object-level scheduling. The "schedule_object" call w
install object-level scheduling with scheduling parameters, for example, the priorit
ceiling for the object. These scheduling parameters are derived internally by the
Scheduling Service using the name passed into the call.

5.4 Example

The following example use of the Scheduling Service, in C++, uses two CORBA
object each supporting two operations: "method1" and "method2". A client wishes
call method1 on both objects under one deadline and subsequently call method2
both objects under a different deadline.

For both client and server it is assumed that the relevant Scheduling Service is sta
and that Scheduling Service instance is available and that an appropriate
PriorityMapping has overridden the ORB vendor’s default.

The use of names instead of actual CORBA priorities in application code has two
major advantages.

First, the use of names instead of priority numbers allows changing of scheduling
policy (e.g. from Deadline Monotonic to Rate Monotonic) without changing or re-
compiling application code. If the chosen Scheduling Service was enforcing Dead
Monotonic Scheduling it might, for instance, internally use CORBA priority 10 for
"activity1" and CORBA priority 12 for "activity2". If a different implementation of the
Scheduling Service were being used, it might internally use completely different
CORBA priorities for these two CORBA activities to realize a different scheduling
policy (e.g. Rate Monotonic Scheduling).

Second, the use of names instead of priority numbers allows changing *any* COR
priority without having to find and possibly re-order CORBA priority numbers in
application code. The Scheduling Service is the central place to change CORBA
priorities. Again, changes in priority can be made without re-compiling application
code.
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5.4.1 Server C++ Example Code

// SERVER C++
// Initialise ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Get Root POA

CORBA::Object_var rpoa = orb ->
resolve_initial_references("RootPOA");

PortableServer::POA_var rootPOA =
PortableServer::POA::_narrow(rpoa);

//  create some policies

CORBA::PolicyList policies(2);
policies[0] = rootPOA -> create_thread_policy(

PortableServer::ThreadPolicy::ORB_CTRL_MODEL);
policies[1] = rootPOA -> create_lifespan_policy(

PortableServer::LifespanPolicy::TRANSIENT);

// create my RT scheduling POA.

RTCosScheduling::ServerScheduler_var server_sched ;

PortableServer::POA_var RTPOA =
server_sched -> create_POA(

rootPOA,
"my_RT_POA",
PortableServer::POAManager::_nil(),
policies ) ;

// create object references and then schedule the objects

CORBA::Object_var obj1 = RTPOA -> create_reference (
"IDL:Object1:1.0" ) ;

CORBA::Object_var obj2 = RTPOA -> create_reference (
"IDL:Object2:1.0" ) ;

...

server_sched -> schedule_object ( obj1, "Object1" ) ;
server_sched -> schedule_object ( obj2, "Object2" ) ;

...

5.4.2 Client C++ Example Code
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// CLIENT C++
// Initialise ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// create the instance of the client scheduler.

RTCosScheduler::ClientScheduler_var client_sched ;

// get and bind Objects

object1_var obj1 = /* something */
object1_var obj1 = /* something */

// invoke methods

client_sched -> schedule_activity ("activity1") ;

obj1 -> method1 () ;

obj2 -> method1 () ;

...

client_sched -> schedule_activity ("activity2") ;

obj1 -> method2 () ;

obj2 -> method2 () ;

...

5.4.3 Explanation of Example

The PriorityMapping is consistent with the policy being enforced by the
implementation of the Scheduling Service. For instance, a priority mapping for an
analyzable Deadline Monotonic policy might be different than the priority mapping f
an analyzable Rate Monotonic policy. Thus the Scheduling Service will have
determined the appropriate PriorityMapping prior to run-time.

Note that there are no calls to the Real-Time CORBA APIs (RTORB,
RTCORBA::Current, RTPortableServer::POA etc.) in the example. The Scheduling
Service shall be capable of makling all the necessary calls from with the
implementation of its own operations.

Note that there are no CORBA priorities specified only names for the two CORBA
Activities in the client. This facilitates plugging in different fixed priority scheduling
policies by choosing a implementation of the Scheduling Service. Recall that the
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server in the example has two Scheduling Service calls. The first call accepts the
normal parameters to create a POA. The Scheduling Service is capable of creatin
the necessary Real-Time policies therefore only non-Real-Time policies need by
provided by the developer. The Scheduling Service creates the POA itself within t
provided wrapper. It coordinated the POA with other aspects of the system. For
example, it can select Real-Time policies (thread pools, protocols, concurrency, se
priority, etc) that make sense under the uniform scheduling policy being enforced.
also relieves the application programmer from having to determine all of those
(relatively complicated) policies themselves.

The Scheduling Service calls to "schedule_object" allow the Scheduling Service to
associate a name with the object. Any Real-Time scheduling parameters for this ob
such as the priority ceiling for the object, are assumed to be internally associated
the object's name by the Scheduling Service implementation. Thus, the call assoc
the scheduling parameters (e.g. priority ceiling) with the object reference, perhaps
enforce priority ceiling concurrency control on that object.

Scheduling Service implementation associates the names "activity1" and "activity2
the schedule_activity calls in the client with CORBA priorities. This association wa
made prior to run-time. The sched_activity calls allow the users code to be configu
correctly for performing activity1 (or activity2). When the client invokes the server,
either the client priority is propagated (implicitly) or there is declared priority at the
server for the target object. The server-side ORB will always make a call to the
inbound PriorityTransform and with the ObjectId the available the transform is capa
of retrieving the name “object1” and, primed by the SchedulingService, returning a
priority for the upcall appropriate to the scheduling policy being enforced.
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6.1 Introduction

This section specifies the points that must be met for a compliant implementation
Real-Time CORBA. Real-Time CORBA is an extension of CORBA. Conformance ca
only be claimed in conjunction with conformance to CORBA. Note that, Real-Time
CORBA Extension is not necessary for conformance to CORBA.

6.2 Compliance

An ORB implementation compliant with Real-Time CORBA must implement all of
Real-Time CORBA, as defined in chapter 4. Hence there is a single mandatory
compliance point.

The Real-Time CORBA Scheduling Service, as defined in chapter 5, is a separate
optional compliance point. An ORB implementation compliant with Real-Time
CORBA may or may not choose to offer an implementation of the Real-Time CORB
Scheduling Service.
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