
Design and Implementation of a Realtime
CORBA Event Service with Support for a

Realtime Network

Entwurf und Implementierung eines
echtzeitfähigen CORBA Event Service

mit Unterstützung eines
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Abstract

This thesis focuses on the design of an Event Service complying to the OMG Event Ser-
vice standard. The design and the implementation developed within the scope of this the-
sis provide realtime characteristics. Providing event-driven transfer of messages, support
for realtime traffic and broadcasting as native addressing mode, the CAN bus is used as
the underlying network of choice. A new protocol for the efficient distribution of Events
in a CAN-based distributed control system is developed. The protocol is tailored to the
CAN bus and needs very low overhead by utilising the CAN-specific features. In order to
examine its realtime characteristics, latency measurements have been made.

Diese Diplomarbeit konzentriert sich auf den Entwurf eines zum OMG Event Service
Standard kompatiblen Ereignisdienstes (Event Service). Insbesondere wurde beim En-
twurf und der Implementierung, die im Rahmen dieser Diplomarbeit entwickelt wurde,
auf Aspekte der Echtzeitfähigkeit Wert gelegt. Der CAN Bus als ereignisbasiertes, echt-
zeitfähiges Netzwerk, das Broadcasting als native Addressierung benutzt, dient als Grund-
lage, auf der ein Protokoll zur effizienten Verteilung von Events entwickelt wurde. Das
Protokoll ist auf den CAN Bus zugeschnitten und erzeugt nur einen sehr geringen Over-
head. Um die Echtzeiteigenschaften des Protokolls zu untersuchen, wurden Latenzzeit-
Messungen durchgeführt, deren Ergebnisse abschließend diskutiert werden.
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1. Introduction

Control systems in automotive, manufacturing and aerospace industries have to fulfill
tasks of increasing complexity. All these systems provide growing safety and comfort
functionality. Today, more and more automobiles for example are equipped with safety
systems like ABS (Anti Blocking System), ESD (Electronic Skid Detection), automatic
gearboxes, systems ensuring the correct distance to the surrounding traffic, and comfort
utilities like multimedia systems and air conditioning.

To implement these systems in a cost-effective way, small specialised and inexpensive
functional units, such as sensors, actuators and processing units, are combined into a
distributed system. This distributed approach is furthermore preferred over a setup of a
single highly powerful general purpose computing unit, as it facilitates implementation of
fault tolerance.

Unfortunately, this distribution of functional units comes at a cost: development of
software for distributed systems is inherently more complex than it is for centralised sys-
tems. To cope with this increasing software complexity, and to facilitate programming of
distributed systems in general, middleware has been developed.

General purpose middleware like CORBA, Java/RMI and DCOM has some draw-
backs when used in Distributed Realtime Embedded (DRE) systems [1]: it usually has a
high memory footprint (some ORB implementations require several megabytes of mem-
ory) and offers poor realtime functionality. To address these problems, specialised mid-
dleware for DRE systems has been developed at the Chair of Operating Systems [2].

Communication in distributed systems that most importantly exchange sensor data
is rarely limited to two communication partners. Often, a varying number of functional
units is interested in sensor data from a varying number of sensors. The CORBA ORB
alone only provides point-to-point communication, which badly represents the needs of
the above mentioned DRE systems. A more decoupled communication scheme, where
producers and consumers of data do not have to know about each other, is provided by
the CORBA Event Service [3].

In this diploma thesis, an implementation of the CORBA Event Service specification
is developed, which is optimised for the use over the CAN bus (Controller Area Network
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[4]). The CAN bus is a widely-used realtime control network, that features broadcasting
as its native addressing scheme. This implementation of the Event Service makes exten-
sive use of the CAN bus features in order to provide realtime characteristics and allow
resource conscious delivering of event data from producers to consumers.

The thesis is organised as follows: Chapter 2 briefly introduces the technical back-
ground and terminology. Chapter 3 presents related works and current research projects.
Chapter 4 gives an insight into the software developed within the scope of this thesis.
Preliminary benchmarks are discussed in chapter 5. Chapter 6 concludes the status of the
developed implementation of the Event Service and gives an outlook into future expan-
sions.

Basic knowledge of Object Oriented Programming (OOP) is assumed and is very
helpful for understanding this thesis.
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In this chapter, technical terms are explained, which are necessary to understand the Event
Service. A brief overview of the underlying Common Object Request Broker Architec-
ture (CORBA) and competing systems is given in the first section. The second section
describes the architecture of the CORBA Event Service and the third section shortly in-
troduces the Notification Service as an enhanced Event Service. In the following sections,
a brief insight into realtime issues and the underlying CAN bus is given.

2.1. Distributed Object Systems

Over the last years and continuing in the future, hardware is getting faster. This allows
more and more complex software to run on the hardware. This in turn allows problems of
increasing complexity to be solved.

In order to manage the growing complexity of software projects, several efforts have
been made to modularise them. One technique to simplify programming of complex
problems is Object Oriented Programming (OOP) , which is an attempt to make software
more similar to the environment we are accustomed to. Like in real life, OOP deals
with objects that have properties (e.g. colour, size, age, etc.) and functionality (e.g.
coffee machines make coffee, monitors display pictures, children grow and ask annoying
questions, etc.).

Examples of programming languages that support Object Orientation are: Smalltalk,
C++, Java, etc. These languages offer the use of Objects, which are usually represented
simply as data structures in the main memory of a computer.

Distributed Object Systems (DOS) are an extension of the idea of using software Ob-
jects onto distributed systems. Distributed systems are those, where parts and compo-
nents of an application can be on different computers, which are connected by a network.
DOS therefore provide means for accessing and handling Objects distributed on con-
nected computers.

The next subsections present the major Distributed Object Systems in short form.
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Advantages and disadvantages are presented. Special emphasis is layed on OMA and
CORBA, as the Event Service developed in the scope of this thesis is based on these
technologies.

2.1.1. Object Management Architecture

In this subsection, the Object Management Architecture (OMA) is introduced. The OMA
is a standard developed by the Object Management Group (OMG). CORBA and the Event
Service are part of the OMA.

Applications share a lot of functionality. The OMA is a set of standards defining a
middleware, which aims to provide this functionality: notification of objects, creation
and desctruction of objects, passing object references around, securing operations and
making them transactional, etc. Applications belonging to the same business domain
(e.g. Telecommunication) share even more functionality.

Application
  Objects

       Vertical
CORBA Facilities

     Horizontal
CORBA Facilities

Object Request Broker

CORBA Services

Figure 2.1.: Object Management Group’s Open Management Architecture

As depicted in figure 2.1, the OMA defines Objects on top of CORBA (refer to the
next section for further information on CORBA). These objects are divided into four
categories: (1) CORBAservices, (2) CORBAfacilities, (3) CORBAdomain objects, and
(4) Application Objects.

1. The CORBAservices provide basic functionality, such as Naming Service, Object
Trading Service, Persistant State Service, Notification Service, and – most impor-
tant for this thesis – the Event Service. All these services are closely tied to the
ORB infrastucture.
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2. The Horizontal CORBAfacilities are placed between the basic CORBAservices and
the high level Application Objects (described below). In contrast to the Vertical Do-
main CORBAfacilities (described next), these facilities provide functionality that is
useful across domains.

3. The Vertical Domain CORBAfacilities are the area where most of the current de-
velopment takes place. The OMG together with representatives from each industry
define standard interfaces for standard objects that every company in a particular
industry can share.

4. The Application Objects are objects built on top of the above mentioned services
and facilities. They are typically customised to a specific need and are therefore not
standardised by the OMG.

The services mentioned above are specified in the form of interfaces. These interfaces
are defined in the Interface Definition Language IDL (which is an OMG standard by itself,
belonging to the OMA as well).

The OMG only defines the standards of the OMA. Software vendors implement these
standards and sell the implementations. In addition to commercial implementations, some
are available as open source developments.

2.1.2. CORBA

This section describes the technology that the Event Service (together with all other
CORBA services and facilities) is based on. CORBA is one of the standards of the OMA,
defined by the OMG.

CORBA is the acronym for Common Object Request Broker Architecture, OMG’s
open architecture and infrastructure that computer applications use to work together over
networks. Using the standard protocol IIOP, a CORBA-based program from any vendor,
on almost any computer, operating system, programming language, and network, can
interoperate with a CORBA-based program from the same or another vendor, on almost
any other computer, operating system, programming language, and network.

CORBA applications are composed of Objects. The interfaces – describing the func-
tionality of each object – are defined in IDL, OMG’s Interface Definition Language. These
definitions are programming language independent; IDL is currently mapped via OMG
standards to the following languages: C, C++, Java, COBOL, Smalltalk, ADA, Lisp,
Python and IDLscript.

The strict separation of interface and implementation is the essence of CORBA. The
interface is promoted throughout the system, the implementation, on the other hand, is
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hidden from the rest of the system. Clients access objects only through their advertised
interface.

Client

 IDL
Stub

    IDL
Skeleton

     Servant
     (Object
Implementation)

operation()

Object Request Broker (ORB)

Request

Figure 2.2.: A Request passing from Client to Servant

Figure 2.2 gives an overview about CORBA, the Object Request Broker (ORB) as its
main component, the IDL, and the other components involved in a basic CORBA system:

• The interface definition of a CORBA Object (written in IDL) is compiled into client
stub and object skeleton (in the target programming language) – this is done by the
IDL-compiler, which is delivered with the CORBA implementation.

• The implementation of the Object (called the servant) is programmed using the
object skeleton and the client may use all functionality found in the client stub.

• Stub and skeleton serve as proxies for clients and servants, respectively.

Due to this proxy functionality, client (shown on the left) and servant (shown on the
right) can communicate without problems, even when they are written in different pro-
gramming languages and if they are run on different ORBs from different vendors.

In CORBA every object instance has its own Object Reference (comparable to a
pointer in C/C++, but valid across computer boundaries). Clients use the Object Ref-
erence to direct their invocations to the exact instance they want to invoke. The client
acts, as if it was invoking operations directly on the servant. Instead, it invokes the op-
eration on the IDL stub, which acts as a proxy. The invocation passes through the stub,
continues through the ORB and the skeleton on the implementation side, to get to the
object instance, where it is executed.

Summarising, the process of program creation is based on the following steps:

1. Create the interface definition of an object in the abstract interface definition lan-
guage IDL.
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2. Compile the interface definition into a servant skeleton with the IDL compiler. The
skeleton is compiled into the programming language used for the later implemen-
tation of the servant (i.e. the servant should be programmed in C++, then generate
the skeleton in C++).

3. Implement the servant in the programming language of choice.

4. Compile the interface definition into a client stub with the IDL compiler. The stub
is compiled into the desired programming language for the implementation of the
client. This decision is independent of the language, the servant is implemented in.

5. Implement the client, or even many clients in many different languages.

For a good further introduction to CORBA, see [5]. Even more and more detailed infor-
mation can be found on the OMG home page on the WWW at http://www.omg.org and
in the CORBA specification [6]. Information specific to the implementation of CORBA,
which is used for this Event Service, can be found in [2].

2.1.3. RMI

This section will give a short introduction to Remote Method Invocation (RMI). It will
compare properties and features of RMI with CORBA, the technology that the Event
Service developed in this thesis is based on.

RMI is a technology developed by SUN Microsystems. It is based on Java and extends
the Java object handling principle to allow access to – and manipulation of – remote Java
objects in a very similar manner to local objects.

This tight coupling of RMI with Java has the advantage that programmers, who are fa-
miliar with Java, do not have to learn a new programming language or technology. Learn-
ing to use the distributed extensions of Java is very easy and not very time consuming,
according to David Curtis [7].

Java has the advantage of being (mostly) platform independent, allowing the same
program (in Java Bytecode) to be run on different platforms and under different operating
systems. Being a Java only technology, RMI allows to migrate not only interfaces but
also implementations from one computer to another. This is by design not possible with
CORBA. Imagine a C++ object located on an intel compatible computer with Linux as
the operating system, sent over the wire to a Power PC platform, running MacOS and
continuing to work there.

These advantages of being a Java-only technology have their drawbacks, as well. In-
tegrating and extending existing programs in other languages is not easily possible and
most importantly Java is just one of many languages having its strengths (portability, ease
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of use, and plethora of existing classes for many tasks) and its weaknesses (slow, due
to the high abstraction from the hardware; during automatical garbage collection of un-
used memory, the rest of the system is blocked, making it problematic for time-critical
systems).

Having explained a few difference concerning Java/RMI and CORBA, Curtis sees
these two technologies more as supplementary than as competitors. He describes Java/RMI
as a programming technology and CORBA as an integration technology. Systems pro-
grammed with the former technology, as open as they might seem, are closed to Java and
its properties (positive and negative).

For more information on RMI, see [8]. An in-depth comparison of CORBA, RMI and
DCOM, although from 1998, can be found at [9].

2.1.4. DCOM

This section introduces Microsoft’s Distributed Common Object Model (DCOM).

As [10] states, DCOM is the distributed extension to COM (Component Object Model)
that builds an object remote procedure call (ORPC) layer on top of DCE RPC to support
remote objects. A COM object can support multiple interfaces, each representing a differ-
ent view or behaviour of the object. An interface consists of a set of functionally related
methods. A COM client interacts with a COM object by acquiring a pointer to one of the
object’s interfaces and invoking methods through that pointer, as if the object resides in
the client’s address space. COM specifies that any interface must follow a standard mem-
ory layout, which is the same as the C++ virtual function table. Since the specification is
at the binary level, it allows integration of binary components possibly written in different
programming languages such as C++, Java and Visual Basic.

More information can be found on the Microsoft home page [11]. An in-depth com-
parison of CORBA, RMI and DCOM, although from 1998, can be found at [9].

2.2. Event Service

With the Event Service [3], the OMG satisfies the demand for a more decoupled commu-
nication between distributed objects. Standard CORBA requests result in the synchronous
execution of an operation by an object. These requests are directed to a particular object
(see section 2.1.2 on page 5). In contrast to that, the Event Service allows for a looser
binding between senders and receivers of requests. Participants of the Event Service no
longer have to know with how many other objects they communicate, nor where those
other objects are located; even more than that: they do not even have to know if these
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other objects exist at all. They just send their event data to or get it from the Event Chan-
nel – and do not have to care about the rest.

The Event Service defines two roles for objects: the supplier role and the consumer
role. Suppliers produce event data and consumers process event data. These two roles are
both subdivided into an active and a passive model.

• Suppliers (shown on the left-hand side in figure 2.3) can either actively push their
produced event data to the Event Service – this is called the Push-Model, or pas-
sively wait until the Event Service pulls it from them (Pull-Model).

• Consumers (shown on the right-hand side in figure 2.3), on the other hand, can
actively pull event data from the Event Service (Pull-Model), or passively wait until
the Event Service pushes it to them (Push-Model).

Event Service
    Proxy
     Push
Consumer

   Push
Supplier

    Proxy
     Pull
Consumer

   Pull
Supplier

  Proxy
   Push
Supplier

     Push
Consumer

  Proxy
   Pull
Supplier

     Pull
Consumer

  Event
Channel
Factory

Not part of the OMG Standard

Event Flow

Supplier
 Admin

Consumer
   Admin

create()pull()push()

  Event
Channel

Figure 2.3.: General Structure of the Event Service

In the next subsections the components of the Event Service – as shown inside the
grey box in figure 2.3 – are described in greater detail in bottom-up order: Starting with
the Event Channel Factory component, which is first created when setting up an Event
Service, and continuing towards the Proxies, which are created when connecting to a
specific Event Channel.
In section 2.2.6 on page 11, a real-world example demonstrates how all these components
interact.
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2.2.1. Event Channel Factory

The Event Channel Factory is the first object to be created when setting up an Event
Service. Its purpose is to offer an interface for the creation of Event Channels. With
an Event Channel Factory running it is possible for local and remote objects to create
any number of Event Channels. Platform-specific details of Event Channel creation are
hidden from the user of the Event Channel Factory.

2.2.2. Event Channel

The Event Channel is created by the Event Channel Factory. It is the main component
of the Event Service. Responsible for creation of Administration objects, it keeps track
of connected objects and multiplexes event data. All event data sent from suppliers to
consumers passes through the Event Channel.

2.2.3. Administration Objects

There are two Administration objects: one is used by event consuming objects (Con-
sumerAdmin) and one by event producing objects (SupplierAdmin). These Admins are
responsible for creating Proxy objects for the Pull-Model and the Push-Model (i.e. the
SupplierAdmin creates ProxyPushConsumers and ProxyPullConsumers, whereas the Con-
sumerAdmin creates ProxyPushSuppliers and ProxyPullSuppliers). The Administration
object’s only purpose is Proxy-creation, i.e. event data passing from suppliers through the
Event Channel to consumers does not pass through the Admins.

2.2.4. Proxies

Proxies are the last objects created when connecting to the Event Channel. They are
created by the Administration objects. Each supplier and each consumer connects to
exactly one Proxy object. The Proxy objects offer a consumer interface to the supplier and
a supplier interface to the consumer so that each object connecting to the Event Service
has the impression of being connected to and communicating with only one partner.

2.2.5. Event Data

The event data, which is sent by suppliers via the Event Channel to the consumers, has
to be in the form of a CORBA::Any (see figure 2.4 on the next page). This is a standard
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data type, which basically consists of the data itself (a series of bytes) and a Type Code
containing information about how to interpret this data (e.g. as integer, string, character
or any other of the 32 CORBA defined data types).
The Event Service standard also mentions Typed Events; they are not present in most
available Event Service implementations, though.

Data Buffer

Type Code

Figure 2.4.: Structure of the CORBA::Any

2.2.6. Example Scenario

In this section, the following real-world example is used to explain the purpose of the
Event Channel and the interactions between its components:

EC Temperature Display
77°C

Central Computer

. . .

Event Event

Event

Event

Oil Temperature
      Sensor

Figure 2.5.: Oil Temperature Sensor pushing Event Data to Consumers

As depicted in figure 2.5, there is a sensor ready to send the oil temperature of a car
engine to whoever is interested, at a regular interval. Interested components could be the
central computer, a display on the dash board, etc.
As the sensor does not know exactly who the interested components are, how many there
are, or where they are located, it makes use of the Event Service. The sensor wants to
send its data (i.e. the oil temperature) at a regular interval, which means that it has to
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actively push the data. It is therefore called a Push Supplier in contrast to a Pull Supplier,
which passively waits until some interested component pulls the data from it (compare
with figure 2.3 on page 9 and section 2.2.4 on page 10).

When the car is started, there is no Event Channel dedicated to the oil tempera-
ture. Only the Event Service, which provides an Event Channel Factory interface, is
started. The Central Computer uses the Event Channel Factory to create the needed oil-
temperature Event Channel (this could in fact be done by e.g. the sensor, as well).

After the specific Event Channel is set up, any consumer (here the Central Computer,
the display, etc.) or supplier (here the sensor) can connect to it. Connecting is a three-step
process which involves the other components, which are not mentioned by now in this
example (the Administration objects and the Proxies).

This process is described for a sensor representing a Push Supplier (as mentioned
above). A close look onto figure 2.3 on page 9 is helpful to visualise the components
referred to in the following listing.

1. First of all, the Event Channel is called to return a Supplier Admin. The Supplier
Admin is responsible for creating Pull- or PushConsumerProxies.

2. Then the sensor calls the Supplier Admin to create and return a ProxyPushCon-
sumer.

3. As a last step, the sensor (or Push Supplier) connects to the ProxyPushConsumer.
The connection from the supplier to the Event Channel is established.

The Central Computer and display have to perform analogous actions on the consumer
side (obtaining the Admin and Proxy and connecting).

As soon as a consumer (e.g. the display) and a supplier (e.g. the sensor) are connected
to the Event Channel, the first real sending of data (e.g. the oil temperature) from suppliers
to consumers can happen.

The complete way of the Event is as follows (see figure 2.6 on the facing page):

1. The sensor pushes the Event to its associated ProxyPushConsumer.

2. The ProxyPushConsumer sends it to the Event Channel (bypassing the Supplier
Admin).

3. The Event Channel transfers the Event to each registered ProxyPushSupplier (or
ProxyPullSupplier in case there are Pull Consumers connected).

4. From there, the Event is finally pushed to the Push Consumers (or pulled by Pull
Consumers). The Consumer Admin on the consumer side is bypassed, as well.
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2.3. Notification Service

The Notification Service has been developed by the Object Management Group (OMG)
as an enhancement of the Event Service described in section 2.2 on page 8. Improve-
ments and extensions include Structured Events, Sequences of Events, Filtering of Events,
Quality of Service and an Event Domain Service. A brief overview is given in the next
subsections; for details please consult the Notification Service Specification [12].
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Figure 2.7.: General Structure of the Notification Service



14 2 Technical Background

2.3.1. Form of Event Data

While the Event Service only allows to send event data in the form of a CORBA::Any (not
worth mentioning the difficult-to-use and hard-to-implement Typed Events), the Notifica-
tion service offers support for Structured Events (as successor for the Typed Events) and
Sequences of Events, which allow for a series of events to be delivered in one operation.

2.3.2. Filtering of Events

With the Event Service, every event data sent to a specific Event Channel is delivered to
every consumer connected to this Event Channel. Unwanted Events have to be discarded
in the event consuming application. In order to reduce the number of unwanted events
being passed around, the Notification Service introduces filtering. Filters can be applied
at each Proxy or Admin object (see figure 2.7 on the preceding page).

2.3.3. Quality of Service

The Notification Service standardises support for Quality of Service attributes concerning
reliability (of events and connections), queue management (including queuesize, deliver-
ing policy and discarding policy), event management (e.g. start-time, timeout, priority)
and batch handling of events (batch size, pacing interval).

2.3.4. Event Domain Service

Setting up a connection with the Event Service is a rather complicated process involving
many steps (creating an Event Channel, obtaining an Administration object, obtaining a
Proxy object and finally connecting). For each object, which should be connected, all
these steps have to be programmed again and again.
As a consequence, a lot of code is duplicated and exactly that is to be avoided as much as
possible for several reasons: mistakes have to be corrected and the same changes have to
be applied at several places in the code; the code size grows, etc.

Another especially tedious and error prone action is to link several Event Channels
together in order to form a federation of connected Event Channels. For each connection
between two channels, the steps necessary to obtain a ProxySupplier and a ProxyCon-
sumer, and connecting them, have to be performed.

To alleviate these problem, the Notification Service introduces the Event Domain Ser-
vice. This service simplifies the creation and federation of Notification Service Event
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Channels by combining the large number of necessary steps into single, easy-to-use op-
erations. It offers a higher level interface to the Notification Service.

2.4. Realtime Systems

According to [13] and [14], Realtime Systems are computer systems, which must produce
a result within a specified time. The overall correctness of the result is therefore dependent
on the logical correctness of the result and on the time at which the result is produced. A
logically correct result that comes too late, is a wrong result.

Realtime Systems are always surrounded by an environment, whose dynamic deter-
mines the needed behaviour concerning time restrictions. The complete group of Realtime
Systems is divided into hard and soft Realtime Systems.

• Hard Realtime Systems are those, where violation of time constraints can lead to
catastrophic consequences. A violation of time constraints is equally critical as a
logically wrong result. An example is a cardiac pacemaker. Only when the signal to
stimulate the heartbeat is generated at the correct time, the system works correctly.

• Soft Realtime Systems are those, where the potential costs of an error are about the
same as the costs of normal operation. An example is a system for sorting of letters.
If a letter is put into a wrong box due to a violation of timing constraints, no severe
damage is caused.

In addition to timeliness, very important aspects of Realtime Systems are availability,
reliability, fault tolerance and safety.
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• Availabilty is defined as the ratio between the time during which the system is op-
erational and the elapsed time. Ensuring that a system is operational and functional
at a given moment is usually provided through redundancy.

• Reliability is defined as the probability that a given system survives the time interval
[0,t] under the condition that it was operational at the time t = 0.

• Fault tolerance is the ability of a computer system to operate according to the spec-
ification, in spite of a limited amount of faults occurring.

• Safety is defined as freedom from those conditions that can cause death, injury,
occupational illness, damage to or loss of equipment or property, or damage to the
environment.

Realtime systems are comprised of hardware and software components. According to
[13], microprocessors and networks are parts of the hardware, that to a high degree affect
realtime characteristics of a complete system. Important software parts are the operating
system and obviously the application software itself. It is important to note, that a realtime
system can only provide predictability as a whole. Single components that fulfill realtime
demands, can not ensure that the whole system works as expected.

As stated in [14], realtime systems have undergone a lot of changes since the 60’s.
Already at that time, process computers were used to control production machinery. With
prices of computing hardware dropping dramatically and the computing power increasing
at a very high rate, more and more, computer based automation systems are replacing
the old mechanical and hydraulic systems. The same development happens in smaller
and embedded systems: A middle class car is presented as an example of many control
computers (e.g. for engine control, anti blocking system, air condition, airbag control,
etc.) forming a distributed realtime embedded system. These systems are called DRE
systems in [1]. Design and implementation of increasingly complex realtime systems is
thought to be a major concern for computer scientists in the future.

Middleware such as ROFES [2] and the realtime Event Service developed whithin
the scope of this thesis are meant to support system developers in managing these DRE
systems.

2.5. Realtime CORBA

In this section, the Realtime CORBA standard [15], which is part of the CORBA Specifi-
cation [6] is introduced.

The Realtime CORBA standard defines some extensions to CORBA and together with
the Minimum CORBA specification [16], it puts some restrictions on the use of CORBA
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parts, that conflict with realtime predictability.

In [17] Schmidt and Kuhns give a good introduction into the key features of the real-
time CORBA specification.

Extensions are divided into (1) those for management of processor resources and (2)
those for the management of inter-ORB communication. For the management of pro-
cessor resources, RTCORBA specifies (1a) priority mechanisms, (1b) thread pools, (1c)
standard synchronizers and (1d) a global scheduling service. Managing inter-ORB com-
munication comprises (2a) selection and configuration of protocol properties and (2b)
explicit binding.

1. Management of Processor Resources:

• The RTCORBA specification defines native and CORBA priorities. Native
priorities are those supported by the OS, CORBA priorities are used system-
wide and mapped to native OS priorities. Priorities can be server-declared or
client-propagated. In the first case, the server dictates at which priority an in-
vocation is processed, in the latter, the client request’s priority is authoritative.
The priority mechanisms are aimed at fixed-priority systems.

• Threadpools allow for programming threaded CORBA applications using stan-
dard CORBA features. Before the RTCORBA specification, proprietary ORB
extensions had to be used. Threadpools offer the possibility to specify proper-
ties such as maximum number of threads that are created initially, maximum
number of threads that can be created dynamically, and the default priority.

• Introducing standard thread programming features, synchronising has to be
standardised as well. RTCORBA does this by defining a mutex variable.

• The global scheduling service is introduced to simplify the mapping of higher-
level Quality of Service (QoS) parameters to lower-level OS mechanisms. Ap-
plications can specify their high-level scheduling requirements and the global
scheduling service allocates system resources to meet these QoS needs.

2. Management of inter-ORB Communication:

• Selection and configuration of protocol properties is enabled by the RTCORBA
standard. The normal CORBA standard hides all details concerning object lo-
cation and communication. While this ensures location transparency, realtime
systems need more flexible control over these parameters.

• Explicit binding means binding in advance. A connection to a remote ob-
ject is usually established, when the invocation is executed (implicit binding).
Resource allocation then takes place at the time of invocation, leading to a sig-
nificantly increased latency and jitter. To ensure a maximum latency, explicit
binding can be used.
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For more information about the extensions of RTCORBA, see the overview of the
realtime CORBA specification [17] and the RTCORBA specification itself [15].

2.6. CAN Bus

In this section the Controller Area Network (CAN) is introduced. As it plays an important
role in this diploma thesis, even some detail is given. Still, a complete introduction would
go beyond the scope of this document and is left to [18].

The Controller Area Network (CAN) is an ISO defined serial communication bus.
It was originally developed during the 80’s by Robert Bosch GmbH, Stuttgart for the
automotive industry. Main design goals were:

• High bit rate

• Robustness against all electric influences

• Ability to detect any errors

Because of these properties, it is widely used in automotive, manufacturing and aerospace
industries.

The CAN bus works according to the Producer-Consumer-Principle: messages are
not sent to a specific destination address, but rather as a broadcast (aimed at all receivers)
or a multicast (aimed at a group of receivers). A CAN message has a unique identifier,
based on which devices connected to the CAN bus decide whether to process or ignore
the incoming message.

There are two variants of the CAN Protocol. The main difference between CAN 2.0A
and CAN 2.0B is that the former uses 11 bit to uniquely identify each message, while the
latter uses 29 bit identifiers. For correct operation of the CAN bus, the identifiers of two
messages sent at the same time must never be the same.

As Etschberger describes in his introductory paper [18], the CAN bus has the follow-
ing important features:

• Based on CSMA/CA1 as access scheme: Collision of packets is avoided (see be-
low) and not only detected.

• Multi-master capable: Allowing each of the connected nodes to initiate a message
when it recognises the bus as free.

1Carrier Sense Multiple Access/Collision Avoidance
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• Event-driven: Reducing busload as messages will be sent only when there is really
data available.

Access to the CAN bus is granted after an arbitration process. During this process, any
node willing to send a CAN message starts sending bit by bit the 11 or (in case of CAN
2.0B) 29 identifier bits. Each time a bit is applied to the bus, the sending node checks
whether the bus really is at the corresponding voltage level – high for an applied logical
”1” and low for an applied logical ”0”.

If any one of the attached nodes applies a logical ”0”, the whole voltage level of
the bus is drawn to ”low”. I.e. it offers the behaviour of a ”Wired-And”. The CAN
Specification [4] therefore calls the logical ”0” – corresponding to the low voltage level –
the ”dominant” bit and the logical ”1” the ”recessive” bit.

If the sending node detects a difference between the bit it sent and the voltage level of
the bus, it backs off, i.e. loses this arbitration cycle. As soon as the bus is free again, it
retries to send the same message. This arbitration process only works, as messages have
unique identifiers (the CAN Specification ensures this). Two messages sent at the same
time, which had the same identifier, would cause the arbitration process to fail; the system
state would be undefined. Collisions of packets caused by two nodes sending at the same
time are therefore effectively avoided by this arbitration process.

As a consequence of this arbitration scheme, messages with a low identifier (i.e. start-
ing with many ”0”s) have a high priority and are sent before any messages with a lower
priority. At a transfer rate of 1 Mbit/s, this results in a maximum latency of 130 µs for
messages with the highest priority [18]. This, in combination with the maximum payload
of 8 data bytes per message, allows sending of up to 7.200 messages per second (again at
the highest transfer rate of 1 Mbit/s).

Robustness is achieved through a twofold error detection:

• The sender of a message monitors the bus level for every bit it sends and stops on
any difference between target and actual value. As receivers send an error frame
directly after detecting an error, the sender stops and repeats transmission.

• Furthermore, all receivers check each message for correct format and CRC2 sum.
Again, an error frame is sent directly after detection of an error. All receivers dis-
card the corrupted last (or current) message and wait for retransmission.

The total residual error probability for undetected corrupted messages is less than
message error rate × 4.7 × 10

−11 according to the CAN Specification.

2Cyclic Redundancy Check
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The CAN bus is especially suited for the implementation of a realtime Event Service,
because it provides realtime characteristics and because of its broadcasting nature (see
section 4.3.2 on page 30, and especially figure 4.4 on page 32).

More in-depth information can be found in the CAN Specification [4].



3. Related Work

This chapter deals with related projects. Similarities and differences between the ROFES1

Event Service and the Event Services developed for MICO2 and TAO3 are discussed in
the first two sections while the third section introduces two similar projects, which support
the CAN bus.

There are several open source CORBA implementations and some of them deliver an
Event Service. MICO [19] and TAO [20] are among them. Their source code is easily
accessible and there is good documentation readily available.

3.1. MICO Event Service

This section presents the MICO Event Service. MICO is an open source CORBA imple-
mentation originally developed at the University of Frankfurt/Main.

The MICO Event Service is a simple and straightforward implementation of OMG’s
Event Service Specification [3]. In just about 1000 lines of clearly-structured and easy-to-
understand code, they deliver the basic functionality, which is needed for standard compli-
ance. The Event Service code shows very little dependency on a specific implementation
of CORBA. In order to run the MICO Event Service, the ORB has to have support for
Asynchronous Method Invocation (AMI) and the Basic Object Adapter (BOA). In mod-
ern ORB implementation the BOA is often replaced by its successor, the Portable Object
Adapter (POA). Code written for the BOA therefore has to be adapted to the POA.

Being simple and easy to read, MICO’s implementation of the Event Service served
as a starting point for the implementation of the Realtime Event Service developed in the
scope of this thesis.

The MICO Event Service is in no way optimised, though. Independent of the un-
derlying network, the same mechanism for Event distribution is used. The MICO Event

1Realtime ORB For Embedded Systems
2MICO Is COrba
3The ACE Orb
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Service supports only the centralised setup (compare section 4.3.1 on page 28). Support
for easy federation of Event Channels is missing just like support for specification of re-
altime and Quality of Service (QoS) parameters. As a consequence, its memory footprint
is very small.

3.2. TAO Event Service

The TAO Event Service is a very full featured Realtime Event Service. It is based on The
ACE ORB (TAO).

Schmidt and others provide an extensive set of documentation informing about current
and past research (see [21], [1] and many others4). TAO is built upon the ACE toolkit and
the TAO Event Service is built upon TAO. The TAO Event Service is tightly integrated
with the underlying ORB and makes extensive use of proprietary extensions and the ACE
toolkit.

In [1], Schmidt and O’Ryan give an overview of the TAO Realtime Event Service.
Limitations of the OMG Event Service specification [3], that are addressed, include:

1. Low latency/jitter event dispatching – Realtime threads and run-time scheduling are
used to alleviate this problem.

2. Periodic processing is supported by defining event dependency timeouts.

3. Centralised event correlation and filtering is provided in the Event Channel.

4. Efficient use of network and computational resources is tried to be achieved by
using IP broadcast and multicast and support for distributed Event Channels.

Internally the TAO Event Channel is built as an object-oriented framework that con-
tains a series of processing modules, which are linked together. Each of the modules en-
capsulates independent tasks of the channel. The implemented modules are: (1) Supplier
admin module, (2) Dispatching module, (3) Consumer admin module, and (4) Priority
timers proxy. Different setups of this Event Channel are configurable by leaving out some
of the modules, or distributing the Event Service.

The tight integration with TAO and the ACE toolkit and usage of many components
makes the code of the TAO Event Service very hard to read and understand. Providing
many features makes its memory footprint grow, although current research tries to make
most of the feature configurable. This should provide options to use only needed features
and therefore address the footprint problem. Further information can be found in [1].

4They are available from http://www.cs.wustl.edu/ schmidt/TAO.html
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3.3. Publisher/Subscriber Model for the CAN Bus

During the last years, two teams have prominently worked on publisher/subscriber models
for the CAN bus. One of these is a team of the Department of Computer Structures at the
University of Ulm in Germany, which is lead by Jörg Kaiser (see [22] and [23]). The
other is a Korean group around Kimoon Kim, that work at the Seoul National University,
the Hong-Ik University, Seoul, and the Hanyang University in Ansan Kyunggi (see [24]
and [25]).

In his paper [22], Kaiser describes the implementation of a realtime publisher sub-
scriber that exploits the underlying facilities of the CAN bus. He introduces a novel ad-
dressing scheme for publisher/subscriber communication based on the CAN bus address-
ing method. He provides design and implementation details along with some performance
estimations.

To route messages in the network, Kaiser proposes the use of broadcasts, which rep-
resent the native addressing mode of the CAN bus. Based on the CAN bus protocol [4],
additional protocol layers are implemented on top the former. These additional protocols
make extensive use of the CAN message identifier (Kaiser uses CAN 2.0B 29 bit iden-
tifiers) to store the event subject and the priority. An additional field containing a node
number (of the sending node) is used to make sure that the identifier is unique.

The system architecture is based on an Event Channel Handler and an Event Chan-
nel Broker. The Event Channel Handler is a local run-time component, which performs
filtering of messages based on their event tags. As depicted in figure 3.1 on the follow-
ing page, it provides an Event Channel interface to application objects and exploits the
hardware filtering mechanisms of CAN bus interface cards on the receiver side. When
the CAN bus interface card receives a CAN message from the CAN bus, an interrupt is
triggered. The Event Channel Handler

1. handles controller specific issues like reading and resetting the receive register (in
an interrupt handling mode),

2. determines the Event Channel, to which the Event belongs,

3. determines, which objects are subscribed,

4. copies the Event to the respective queues of the objects, and

5. notifies these objects.

The Event Channel Broker implements a configuration and a binding protocol.

When a new node is connected to the bus, it sends a special configuration request mes-
sage to the Event Channel Broker. This request is answered with a unique node identifier
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that is used by the new node for any further messages. As mentioned above, this node
identifier ensures that CAN message identifiers are unique.

When the new node wants to send or receive specific events, it sends a binding request
to the Event Channel Broker. In this request, the new node sends a logical event subject
name (describing the content of the event) and with the answer it receives a short event
tag. Binding therefore associates a specific event subject with an event tag.

Kaiser’s work has to a large extend influenced the implementation of the CAN Event
Broadcast Protocol CEBP, which is described in section 4.4 on page 34.

In their paper [24] Kim and others present their design of CAN-CORBA, an envi-
ronment specific CORBA for CAN-based distributed control systems. Their ORB core
supports the classical connection-oriented point-to-point communication of CORBA and
additionally subscription-based group communication. Subscription-based group com-
munication is similar in functionality to the CORBA Event Service [3], but it features a
different interface.

Main aims of Kim’s research group were (1) to ”lower the amount of message traffic
required for each CORBA method invocation so that even the slow broadcast bus of the
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CAN can tolerate the overhead of CORBA method invocations”, (2) to reduce the static
memory footprint of the system, and – most relevant for this thesis – (3) to design a
transport layer protocol that supports group based communications.

With reference to [26], Kim distinguishes between two research efforts to integrate
group communication into the classical client/server model of CORBA. The first category
offers group communication as an object service on the ORB, while the second category
modifies and extends the ORB itself to incorporate the group communication mechanism.

While the research of Kim belongs to the second category, the Event Service devel-
oped in the scope of this thesis is counted to the first. Nevertheless, the ideas concerning
the network protocol, which is designed on top of the CAN bus protocol, have influenced
the development of the CEBP (described in section 4.4 on page 34).

Like Kaiser in [22], Kim uses the CAN message identifier as header for his protocol.
As Kim strives for the least possible resource requirements, he bases his protocol on ver-
sion 2.0A of the CAN bus protocol, which provides an 11 bit message identifier (compare
section 2.6 on page 18).

The CAN message identifier is subdivided into three fields, 2 bits defining the pro-
tocol, 5 bits for the transmitting node number, and 4 bits for a local port number. The
protocol field allows to specify a binding protocol, a point-to-point protocol used for nor-
mal CORBA invocations, a publisher/subscriber protocol used for group communication,
and a user defined protocol, whose messages are delivered at the highest priority.

More information about Kim’s work can be found in [24].
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4. Architecture, Design and
Implementation

This chapter forms the main part of the thesis. The first two sections describe the hardware
and software environment within which development and testing took place. The follow-
ing section elaborates on the two main setup scenarios. Section four gives an insight into
the CAN Bus Handler and the CAN Event Broadcast Protocol (CEBP). Major internal
design details follow in section five; section six is dedicated to the standard Event Service
API1 and the extensions specific to this implementation. Finally the implementation of
missing basic functionality and solutions for encountered problems are discussed.

4.1. Development Platform

The software created in the scope of this thesis has been developed on standard Personal
Computers running versions 7.3 and 8.0 of SuSE Linux. These distributions both deliver
the GNU C++ compiler gcc in version ”gcc version 2.95.3 20010315 (SuSE)”. For access
to the CAN bus, a library in combination with a kernel driver provided by the manufac-
turer of the chosen CAN PCI card, ESD2, was used.

4.2. Test Environment

Testing has been carried out on the following platforms:

• Personal Computer equipped with an AMD Athlon 1.4 GHz, 512 MB of RAM
and a standard 100 Mbit/s Ethernet network adapter. SuSE Linux 8.0 served as
the operating system. This computer has been used for testing of Event Service
operation on one node only and for testing of Event Service operation over Ethernet.

1Application Programming Interface
2ESD Electronic System Design GmbH
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• Three identical Personal Computers equipped with an INTEL Pentium II 400 MHz
CPU, 128 MB of RAM, a standard 100 Mbit/s Ethernet network adapter and a CAN
PCI C331 controller from ESD. All tests of Event Service operation over CAN bus
were run on these computers.

• SUN Sparc workstation with one 300 MHz CPU, 1024 MB of RAM and a 100
Mbit/s Ethernet network adapter. This computer has been used for portability test-
ing.

Due to the lack of devices, the software has not been tested on small embedded sys-
tems. The small code size mentioned in chapter 5 on page 55 and the low necessary
processing speed (sleep calls had to be inserted into the PushSupplier’s send function to
stop the CAN driver’s send queue from overflowing; see section 4.8 on page 54) allow
results to be transfered to smaller systems. Extensive benchmarking will have to be done
on small embedded devices in the future.

4.3. Setup Scenarios

For the implementation of the Event Service two setups were planned:

• The centralised Event Service was mainly developed as a starting point and is de-
scribed in chapter 4.3.1.

• The main development focus was on the distributed Event Service, described in
chapter 4.3.2 on page 30. Special attention is payed to the role of the CAN bus and
CAN Bus Handler in a distributed setup.

4.3.1. Centralised Event Service for Ethernet

The Centralised Event Service – depicted in figure 4.1 on the facing page – is the simplest
setup. There is only one Event Service for a given network and all Event Channels are
created on this one node only. The address – called IOR (Interoperable Object Reference)
– of each Event Channel is then published by storing it in a file, registering it with a
naming service or any other means.

This setup certainly implies a lot of network communication when sending events.
Each object on a remote node (i.e. not on the same node as the Event Channel), which
connects to the Event Channel, sends its data once over the network on the way to the
channel. If the event consumer is not local to the Event Channel, the event data is sent
over the network again, even if event supplier and consumer are on the same remote node.
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Figure 4.1.: General Setup of the Centralised Event Service for the Ethernet

The number of network transfers for passing an Event (from one supplier through an
Event Channel to one consumer) depends on the location of these components. There is:

• no network transfer only when supplier, consumer and channel are on the same
node,

• one transfer, either when the supplier is remote and the consumer is local to the
Event Channel, or the opposite way round (supplier local and consumer remote),
and

• two transfers, when supplier and consumer are remote to the Event Channel – even
if supplier and consumer are located on the same node.
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In case more (remote) consumers are connected to the Event Channel, each event has
to be sent to each consumer individually, adding substantially to the amount of network
transfers.

4.3.2. Distributed Event Service with Handler for CAN Bus

The Distributed Event Service (compare section Federated Event Channels in [21]) is an
attempt to reduce the high amount of network traffic – seen with the Centralised Event
Service – at the cost of higher setup complexity. Furthermore, it addresses the problem of
unnecessarily high latency for event data sent from a supplier to a consumer on the same
node.

First, advantages and disadvantages of the Distributed Event Service in general are
explained and later the special properties of the setup for the CAN bus are taken into
account.

CAN Bus

Can Bus Handler Can Bus Handler

Node Node

Consumer ConsumerSupplier Supplier

EC EC

Can Bus Handler Can Bus Handler

EC EC

Consumer ConsumerSupplier Supplier

Node Node

Figure 4.2.: Setup of Nodes with Distributed Event Service for the CAN Bus

Figure 4.2 shows that every node in the network has its own Event Service with its
own local Event Channel(s). This has three major advantages over the centralised setup
(compare figure 4.1 on the preceding page):

• Events delivered from suppliers to local consumers (via the local Event Channel)
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do not travel across the network, and

• Events delivered from suppliers to remote consumers only cross the network once.
They travel along the path: Supplier, local Event Channel, Network, remote Event
Channel, Consumer.

• The Centralised Event Service represents a single point of failure for a complete
network, which disappears when setting up one Event Service on each node. In
case of a failure on one node, the faulty Event Service does not send or receive
event data anymore, but communication between the remaining nodes carries on as
if nothing had happened.

There are certainly some disadvantages, too:

• As mentioned at the beginning of this subsection, the setup is more complicated. An
Event Service has to be started on each node, and all corresponding Event Channels
on different nodes have to be connected to each other.

• Each Event Service consumes resources on the node it is started on. With a dis-
tributed setup, these resources have to be sacrificed on every node on which an
Event Service is started.

The preceding is valid for the Distributed Event Service in general – no matter which
network is underlying. The CAN bus, one of these underlying networks, has some prop-
erties which make it particularly suitable for the Event Service. It gives some additional
advantages to the distributed setup.

Consumer 1

Consumer n

Consumer 2

Consumer 3

ECSupplier

1 nMultiplexing

Figure 4.3.: Multiplexing of Event Data

In general, Events have to be multiplexed as soon as there is more than one consumer
connected to any channel. With point-to-point communication, which normalCORBA
operations are based on, this multiplexing has to be performed by the Event Channel. One
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send operation over each point-to-point connection to a consumer has to be performed (see
figure 4.3 on the page before).

With its broadcasting nature described in chapter 2.6 on page 18, the CAN bus auto-
matically multiplexes data: Every event data sent once on the CAN bus is received by the
corresponding Event Channel on all listening nodes at the same time (see figure 4.4).
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Figure 4.4.: Multiplexing of Event Data by CAN Bus

The connection of distributed Event Channels over the CAN bus is simplified in com-
parison to the same action when using standard point-to-point Ethernet communication.
Generally, using the distributed Event Service setup, a particular Event Channel for e.g.
”Oil Temperature” has to be set up on every node.
With point-to-point communication a link between these channels has to be set up explic-
itly: Each channel has to be connected to all the corresponding channels as a supplier of
events and as a consumer, too.
This is not necessary with the CAN bus. Any time an Event Channel sends event data
over the bus, all other Event Channels receive this data automatically, requiring no fur-
ther setup. Details about this mechanism which is implemented in the CAN Bus Handler
follow in section 4.4.1 on page 35.

Figure 4.5 on the next page depicts the components present on every node in the
Distributed Event Service setup for CAN bus (Event Channel Factory, CAN Bus Handler
and CAN Gateway, Event Channel, and consumers and suppliers).

Their purpose is as follows:
When starting the Event Service on this node, the Event Channel Factory and the CAN
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Bus Handler are created and the Event Channel Factory is ready to serve requests. The
CAN Bus Handler is the component which is responsible for sending and receiving data
over the CAN bus and for binding an Event Channel to an Event Channel ID3 (ECID) –
see section 4.4.1 for further detail.
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Figure 4.5.: Components of Distributed CAN Event Service and their Interactions

With help of the factory, a specific Event Channel (e.g. for ”Oil Temperature” again)
and a corresponding CAN Gateway are created. Each Event Channel has exactly one
CAN Gateway attached to it, which is responsible for transferring event data via the CAN
Bus Handler to any other Event Service listening on the CAN bus. After having created
channel and gateway, any number of consumers and suppliers can connect to the channel
locally and send or receive event data.

3Identification number
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4.4. CAN Event Broadcast Protocol and CAN Bus
Handler Implementation

In this section, the CAN Event Broadcast Protocol (CEBP) and the CAN Bus Handler,
which is the software class implementing the CEBP, are described.

The CEBP resides on top of the CAN Protocol (see section 2.6 on page 18). It makes
extensive use of the CAN identifier, which is described in section 4.4.2 on page 37 and
imposes a particular format on the data bytes carried by each CAN packet (see sec-
tion 4.4.5 on page 41). The protocol is completely implemented in the CAN Bus Handler,
illustrated in section 4.4.1 on the next page.

5. Session

6. Presentation

7. Application

3. Network

2. Datalink

1. Physical

4. Transport

Provided by Hardware
and ESD Library

Aspects of each layer
integrated into one
Application layer
called Can Event
Broadcast Protocol
(CEBP)

Figure 4.6.: ISO OSI 7 Layer Model with CAN Event Broadcast Protocol (CEBP)

Considering the ISO4 OSI5 model of layered network protocols, the lowest two layers
– Physical and Datalink Layer – are already implemented in hardware and the library
provided by ESD GmbH.

The CEBP implements functionality from layers three to seven of the ISO OSI Net-
work Layer model, depicted in figure 4.6:

• Fragmentation and Reassembly (see section 4.4.4 on page 40) represent functional-
ity found in the Network and Transport Layers.

• Error checking at the packet level (see section 4.4.6 on page 42) relates to the Trans-
port Layer.

• Definition of the network data format (see section 4.4.5 on page 41) and the ab-
straction of the network data representation from the local counterpart (see sec-
tion 4.4.3 on page 39) is functionality of the Session and Presentation Layers.

4International Standards Organisation
5Open Systems Interconnection
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• The Application Layer providing high-level network services to the end-user is not
currently represented in the CEBP.

4.4.1. CAN Bus Handler

The CAN Bus Handler is the part of the Event Service that provides the link between
the Event Channel and the CAN bus (compare [22]). Its send() and listen() functions
implement the CAN Event Broadcast Protocol. Figure 4.7 shows the CAN Bus Handler
together with the components it interacts with.

EC1

EC2

CAN Bus

Node

CAN Bus Handler

listen() − Thread

listen() send()

CAN_gw

CAN_gw

Supplier Consumer

Figure 4.7.: The CAN Bus Handler in its Environment

The CAN Bus Handler is created when the Event Service is started. Each time an
Event Channel is created, a CAN Gateway is created simultaneously and connected to the
Event Channel. Figure 4.7 depicts a situation where two channels have been created.
When the Event Channel pushes event data to the CAN Gateway, the gateway calls the
send() function of the CAN Bus Handler – delivering the Event Channel ID (ECID)6 as

6The ECID uniquely identifies an Event Channel inside a node.
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an additional argument. The CAN Bus Handler finally broadcasts the event data (together
with the information, to which channel the data belongs) over the CAN bus.

Figure 4.7 on the page before furthermore shows that the CAN Bus Handler has two
threads of execution. The main thread executes the send() function and the other admin-
istrative functions, while the listen()-thread blocks listening on the bus until event data is
available.

The left part of the figure illustrates what happens when event data from other nodes
is received by the CAN Bus Handler: The listen()-thread of the CAN Bus Handler awakes
from its blocked state, analyses the data to obtain the ECID, and pushes the event data to
the corresponding Event Channel.

As figure 4.7 on the preceding page shows, without any further means, this creates a
loop in which an event received from the bus is directly sent to the bus again. This very
same event is received and resent by another node, received and resent by the first node
again, and so on. There are two ways to solve this problem:

1. The CAN Bus Handler’s listen()-thread could call a different Event Channel func-
tion (e.g. transfer from extern()) than the proxies (e.g. transfer()). This other func-
tion would ensure that the Event is not forwarded to the CAN Gateways again, or

2. The Event itself could carry information telling the Event Channel to forward it to
the CAN Gateways or not to do so.

The implementation developed in this diploma thesis chooses the second approach.
There are reasons (explained below) to extend the event data being passed along, any-
way. Furthermore, having only one transfer() function instead of transfer() and trans-
fer from extern() is just consequent with the intention to avoid duplication of code.

In section 2.2.5 on page 10 the general form of the event data (as required by the Event
Service Standard) is explained. This form does not carry enough information for an Event
Channel providing realtime characteristics.

As explained in section 4.5.1 on page 44 each Event is sent with a certain priority.
To accommodate this priority, instead of the simple CORBA::Any an event struct is used
(see figure 4.8 on the next page).

Using an Event struct has the additional advantage, that extensions at a later point in
time are very easy to implement. Properties can be added to the Event struct at any time,
without changing any other code using it.
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Priority

from_extern

CORBA::
Any

Event

Figure 4.8.: The Event Struct

4.4.2. Protocol Information in CAN Message Identifier

In this section, the CAN message identifier is introduced. The identifier is a part of the
CAN message header and plays a very important role in the CAN Event Broadcast Proto-
col (CEBP).

Describing the details of the CAN messages header is beyond the scope of this thesis,
as they are only interesting for the lower two ISO OSI layers. Important for the pro-
tocols in the ISO OSI layers three to seven (Network Layer to Application Layer; cp.
figure 4.6 on page 34), which are the layers, in which the CEBP resides, is only the CAN
message identifier.

Protocol (2)Priority(2) Node(4) Port(3)

11 Bit Identifier

(x) Bitlength

Data  (0−8 Byte)

Figure 4.9.: Identifier of a CAN Packet (Version 2.0A)

Figure 4.9 depicts the CAN message identifier for version 2.0A of the CAN bus pro-
tocol. The 11 bits are divided into the following four fields (from left to right):
2 bits for the protocol (fixed to 012 for the CEBP), 2 bits for the priority, 4 bits for the
node number, and 3 bits for the port number7.

The purpose of these four fields is as follows:

1. The protocol field is always set to 012 for the CAN Event Broadcast Protocol. To
give an overview of the other possible values, all four protocols are noted below:

7Another name for the port number is Event Channel ID, or shorter: ECID
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• A value of 112 chooses the binding protocol, which is not yet implemented.
This protocol should later be used by a binding daemon, which makes the
binding of event names to ECIDs easier and more dynamic. (More about this
in section 6 on page 63.)

• A value of 102 selects the point-to-point protocol CANIOP, which is used for
standard CORBA communication over the CAN bus.

• A value of 012 selects the CAN Event Broadcast Protocol, which is defined in
this thesis, and is used to send Events to all listening receivers at once.

• A value of 002 finally is reserved for system designers to implement their own
functionality. CAN messages sent with this protocol have a higher priority
then those of other protocols, thus giving system designers the highest flexi-
bility.

2. The priority field offers four possible priority levels for Events: Starting from the
highest level, 002, over 012 and 102, to the level with the lowest priority, 112. The
message with the highest priority wins the bus arbitration cycle (as described in
section 2.6 on page 18) and is sent first.

3. The node field stores the node number of the sending node. Four bits support a
maximum of 2

4
= 16 different nodes. The node number serves two purposes:

• It guarantees that the same Event sent from different nodes never has the same
identifier. As mentioned in section 2.6 on page 18, this is a prerequisite for
the correct operation of the CAN bus.

• It allows the CAN Bus Handler to determine where a received Event comes
from. This could later be used for filtering.

4. The port field8 or ECID allows to distinguish the subject of an Event. At the mo-
ment, system designers have to decide at setup time, which subject (e.g. oil temper-
ature, or the amount of petrol in the tank) corresponds to which ECID. Later this
binding of subjects should be performed by a binding daemon.

Protocol (2) Priority(8) Node(7) Port(12)

29 Bit Identifier

(x) Bitlength

Data  (0−8 Byte)

Figure 4.10.: Identifier of a CAN Packet (Version 2.0B)

Providing only 11 bits for higher layer protocols, version 2.0A of the CAN bus proto-
col imposes severe constraints on system resources (i.e. the number of priorities, nodes,
and different Events). This problem is overcome when using version 2.0B.

8named in analogy to the TCP/IP protocol
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Version 2.0B provides 29 bits, which are used by the CEBP as depicted in figure 4.10 on
the preceding page. It supports 2

8
= 256 different priorities, 2

7
= 128 nodes, and

2
12

= 4096 different Events.

4.4.3. Endianness Issues

In this section the implementation of byte-order handling in the CEBP is discussed.

Different computer architectures store multi-byte data types in memory in two differ-
ent orders:

• In little-endian architectures, data is stored with the most significant byte at the
highest address.

• In big-endian architectures, data is stored with the most significant byte at the lowest
address.

Imagining the word UNIX stored in a four-byte data type, it would have the following
order in memory:

Address Little-Endian Big-Endian
00 X U
01 I N
02 N I
03 U X

Table 4.1.: Little-Endian vs. Big-Endian

Why is all this important for a network protocol?

Whenever data is exchanged over a network, there is the possibility of a little-endian
sender and a big-endian receiver (or vice versa). Somewhere the byte-order of multi-byte
data types has to be converted to the byte-order that the receiver understands.

There are two possibilities to solve endianness problems:

1. Data sent on the network can have a defined endianness. That means: at the time
the network protocol is defined, the person doing this decides whether data sent on
the network has to be in little- or big-endian byte-order, or

2. Data sent on the network has the byte-order of the sender and carries additional
information about its byte-order (i.e. a bit indicating if it is little- or big-endian).
The receiver then has to take care of converting.
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The design of the CEBP follows the second approach: Data is sent in the byte-order of
the sender and the LE9 bit (described in section 4.4.5 on the facing page) gives information
about little-endian or big-endian format.

This approach has two advantages:

• The maximum number of conversions is one (i.e. no conversion if sender and re-
ceiver have the same endianness and one if it is different).

• In constellations where sender and receiver share the same endianness, but the pro-
tocol needs another byte-ordering, data has to be converted twice with the first
approach. With the second, no conversion has to be performed.

4.4.4. Fragmentation and Reassembly

In this section the CEBP’s handling of large data types (i.e. exceeding the length of 7
bytes10) is described.

The CAN bus protocol allows a maximum of 8 data bytes in a single CAN message.
In order to be able to send larger types, a higher layer protocol has to split them into a
series of CAN messages at the sender and rejoin these messages on the receiving side.
The splitting is called Fragmentation in network terminology and rejoining is called Re-
assembly.

CORBA::Any (35 Byte)

CAN Packet (8 Byte) 8 Byte 8 Byte 8 Byte 8 Byte

CAN Bus

7 Byte

7 Byte

Sender

Figure 4.11.: Fragmentation of CORBA::Anys longer than 7 Bytes

9Little-Endian
101 of the allowed 8 data bytes is used for packet information as explained in 4.4.5 on the next page
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Figure 4.11 on the facing page sketches this process for the CEBP. The sender passes
the large data type to the CAN Bus Handler, which splits the data into 7 byte long units.
Each of these units is accompanied by an information byte and then sent over the CAN
bus. The information byte is described in section 4.4.5.

At the side of the receiver, the whole process is inverted. The CAN message, which is
marked as containing the first packet of a series, is received and joined with the following
messages, which belong to the same data type. The reassembled data is then passed to the
Event Channel.

More details about the information byte and the typecode are given in the next section.

4.4.5. Protocol Information in CAN Message Body

In this section the additional CEBP protocol information, which is stored (mainly) in the
first data byte of each CAN message, is described.

Data  (0−6 Byte)Data Length / Data Byte 7
0567

FP = First Packet

LE = Little Endian

FP LE TypeCode

Byte 2 Byte 3−8Byte 1

Identifier (11 / 29 Bit)

Figure 4.12.: Usage of Data Bytes in a CAN Message

Figure 4.12 shows the CAN message identifier on the left, and the 8 data bytes, which
each CAN message can transport, on the right. Of particular interest is the left-most of
the 8 data bytes. It contains the 2 bits FP and LE, and the TypeCode of the sent CORBA
data type:

• FP means First Packet and indicates whether this packet is the first in a series of
CAN messages. Whenever a message is received, in which this bit is set, a new
buffer is allocated on the receiver for concatenating the following messages, in order
to reassemble the CORBA data type (see section 4.4.4 on the preceding page). This
field is also used in the detection of corrupted data, as explained in section 4.4.6 on
the following page.

• LE stands for Little-Endian. This bit is set, when the sender’s processor architecture
is little-endian (see section 4.4.3 on page 39). It is used at the receiver to decide
whether the reassembled data has to be converted.

• The TypeCode is a unique identifier defined in the CORBA Specification [6]. Up to
version 2.6 of the CORBA Specification there are 34 different CORBA TypeCodes
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defined. This implementation of the CEBP provides a 6 bit field, supporting up to
2

6
= 64 different TypeCodes.

For most of the CORBA data types, the TypeCode already is information enough to
know the length of the data type (i.e. a CORBA::Long is 4 bytes long). Having received
the first CAN message, the receiver knows the total length of the data type and can calcu-
late the number of CAN messages needed to reassemble the original CORBA data type.

An exception to this rule are the string data types (CORBA::String and CORBA
WString): A string can have an arbitrary length. The TypeCode does not provide any
information about the data length, in this case. Hence, for strings, the second byte in the
first CAN message is used to store the data length. In subsequent messages this informa-
tion is not needed anymore and the second byte is used to carry part of the actual data,
again.

As only one byte is used to store the length of a string, in this implementation the
length of string data types is limited to 255 bytes. This does not comply with the CORBA
standard. It has nevertheless been implemented this way for two reasons: (1) The CEBP
loses complexity, and (2) this implementation of CORBA and the implementation of the
Event Service is aimed at embedded systems, to which this should constitute a minor
problem.

Should it prove to be necessary to transfer strings longer than 255 bytes, in the future,
this scheme could easily be extended. The value of 255 in the length field (second data
byte) could be used to indicate that the string is longer than 254 bytes and the third byte
could contain the additional number of bytes. The following bytes (and bytes of subse-
quent CAN messages) could be used in a similar manner, to allow for unlimited string
lengths.

By now it should be clear, how CORBA data types are sent over the CAN bus with the
CEBP. It is still to be described, what happens if one (or more) of those CAN messages
is lost somehow. Although this is extremely unlikely, as explained in section 2.6, provi-
sions for detecting this have been made. These provisions are explained in the following
section.

4.4.6. Detection of Corrupted Data

This section describes the CEBP’s abilities to detect corruption of data due to message
loss on the CAN bus. It will furthermore show the protocol’s reaction to such a loss.

During development of the protocol, there were problems with corrupted data at the
side of the receiver. Reasons for this were (1) lost CAN messages (as explained in sec-
tion 4.8 on page 54), and (2) the simple fact that a node, which connects to the CAN bus
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during the transfer of a long data type, receives only subsequent messages (missing the
first one).

The solution for synchronising the sending and receiving of Events, which is imple-
mented in the CEBP, is based on the FP bit described in section 4.4.5 on page 41. When
a long CORBA data type (i.e. spanning multiple CAN messages) is split into several
CAN messages, the FP bit of the first message is set to ”1”; for the subsequent messages
belonging to that same data type, it is set to ”0”.

The FP bit is used as follows in the two error scenarios:

• When a node is connected to the CAN bus in the middle of a data transfer, it receives
only CAN messages with FP = 0. The node discards all messages with FP = 0 and
waits until a new transfer is initiated (indicated by FP = 1). The error scenario is
over and normal operation starts.

• In case of a packet loss during transmission of a longer data type, the receiver does
not get the expected number of CAN messages needed to reassemble the CORBA
data type. At transmission of the next message from the same sender, the receiver
gets a CAN message with FP = 1, while still expecting a subsequent message with
FP = 0. The receiving node handles this scenario by resetting the receive buffer
allocated for the specific sender, thereby discarding the corrupted CORBA data
type, and it starts to reassemble the new CORBA data type. Normal operation
continues.

Summarising, corrupted data is not detected until the next data type is transmitted by
the same sender and it is then simply discarded.

4.5. Event Service Design Details

This section gives insight into implementation details of the Event Service. First, Events
and their prioritisation are explained. Then, the priority queue inside the Event Channel
and the different possibilities of event dispatching are shown. Subsections 4.5.3 and 4.5.4
introduce two other configurable options concerning the Pull-Model usage of the Event
Channel. The last subsection, finally, gives details about how the ESD NTCan library and
the corresponding driver are used.

This implementation of the CORBA Event Service is based on ROFES [2]. It should
be easy, though, to adapt it to other ORB implementations.
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4.5.1. Prioritisation of Events

In this subsection, the usage of priorities for sending Events and the mapping of these
priorities to the CEBP priorities are explained. Furthermore, questions are answered con-
cerning the API and the effect that priorities have on handling of Events.

The OMG Event Service standard [3] does not provide priorities at all. All Events are
treated with the same priority. This is acceptable only for non-realtime systems. When
time is critical, more important events have to be handled first; even under high load. In a
car, the delivery of information about a critical situation (such as a loss of pressure in the
breaking system) may not be deferred by routine information about the water temperature
or the air conditioning. This implementation of the Event Service, therefore, assigns
priorities to Events.

Within this implementation of the Event Service, two kinds of priorities are used:

1. CORBA priorities, introduced in the Realtime CORBA standard (see section 2.5 on
page 16), are used inside a node. That is, as long as the Event does not travel across
the network. The data type RTCORBA::Priority is used to store the priority. It is
mapped to a CORBA::Short, which has a length of two bytes. ”0” is defined as the
minimum CORBA priority and ”32767” as the maximum.

2. The CEBP priority is used as soon as an Event is sent on the CAN bus. As described
in section 4.4.2 on page 37, depending on the CAN bus protocol version, 2 bit
(2.0A) or 8 bit (2.0B) fields are provided for storing the priority inside a CAN
message.

Whenever an Event is sent to the CAN bus, the priority has to be mapped from a
CORBA priority to a CEBP priority. At the receiver this CEBP priority has to be mapped
to a CORBA priority again.

Assigning priorities to Events has two effects:

1. Inside a node, the CORBA priority is used to enqueue the Event inside a prior-
ity queue (described in section 4.5.2 on the facing page). Events with the highest
priority are then dispatched (i.e. delivered to consumers) first.

2. When sending the Event on the CAN bus, the message with the highest CEBP
priority wins the bus arbitration cycle (compare section 2.6 on page 18 and 4.4.2 on
page 37); it has precedence over lower priority messages sent from other nodes.

Using the prioritisation enhancements of this implementation is only possible through
some extensions to the Event Service standard interface. These extensions are described
in section 4.6 on page 49.
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4.5.2. Priority Queueing and Threaded Dispatching of Events

In this section the optional priority queueing and dispatching of Events with several
threads is explained; implementation and usage details are given.

As mentioned in section 4.5.1 on the facing page, for operation under low or medium
loads, no additional provisions are necessary for correct operation of the Event Service.
Under high loads, though, time critical Events have to be delivered first.

Therefore, the Event Channel features a built-in priority queue. Figure 4.13 depicts
the internals of the Event Channel. As in all the other illustrations, Events come in to the
Event Channel from the left. They are queued in the order of their priority and then Event
Dispatch Threads (EDT) take care of delivering them to each consumer.
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Figure 4.13.: Main Event Queue with Threaded Dispatching

Usage of the priority-based queueing mechanism is optional. At the time of creation,
an Event Channel can be configured with or without it. The Event Dispatch Threads make
use of a RTCORBA::Threadpool.
Hence, the following parameters can be configured: Stack size, the number of statically
and dynamically created threads, the default thread priority, if request buffering is al-
lowed, the maximum number of buffered requests, and finally the maximum size of the
request buffer. Refer to the RTCORBA Standard, which is part of the CORBA Specifica-
tion [6], for an in-depth explanation of all the parameters.

4.5.3. Polling or Thread Blocking in ProxyPullSuppliers

This section explains the implementation of the pull() operation inside the ProxyPullSup-
plier (see figure 2.3 on page 9 for an overview of the Event Service components).
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Figure 4.14.: The ProxyPullSupplier and its pull() Operation

When a Pull Consumer is connected to a ProxyPullSupplier, and calls the pull() func-
tion, it is blocked until a new Event is available at the ProxyPullSupplier. Inside of the
Event Service, the ProxyPullSupplier features two possible ways to realise this blocking:

• The thread which executes the pull() operation blocks itself and waits until an Event
is in the queue. It is then woken up and delivers the Event. In this configuration
the processing load is lower, as the thread sleeps. The time to wake up the sleep-
ing thread has to be considered as an additional penalty, though. The overhead of
putting a thread to the sleeping state and reawaking it, is only worthwhile if the
expected rate in which Events are available is low.

• The pull() thread constantly polls the queue if an Event has arrived. The polling
interval is configurable. If the polling interval is well tuned to the expected rate, in
which Events are available, this configuration delivers fast response time at the cost
of higher CPU load.

At creation of the ProxyPullSupplier, an optional parameter decides about which of
the two aforementioned implementations of the pull() operation is used.

4.5.4. Polling or Thread Blocking in ProxyPullConsumers

When a Pull Supplier connects to a ProxyPullConsumer, it passively waits until its coun-
terpart pulls for Events. Just like the pull-thread in the ProxyPullSupplier, there are two
possibilities again.

The pull thread can either:

• call the Pull Supplier’s pull operation, which blocks until the Pull Supplier has event
data available (see figure 4.15 on the next page), or

• check for the presence of a new Event at regular intervals using the Pull Supplier’s
try pull operation (see figure 4.16 on the facing page).
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Figure 4.15.: The ProxyPullConsumer in Blocking Mode
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Figure 4.16.: The ProxyPullConsumer in Polling mode



48 4 Architecture, Design and Implementation

At creation of the ProxyPullConsumer, it is possible to decide about the blocking or
polling operation, and in the second case, the polling interval can be specified.

Again, if very fast response times are necessary, if the CPU overhead is tolerable, and
if most likely there are a lot of Events coming from this supplier, polling is the better
solution. Blocking is better for sporadic Events, where CPU load is more important than
very fast response times.

4.5.5. Usage of ESD Library and Driver for the CAN Bus

The Event Service is constructed in layers of abstraction. This section gives an overview
of these layers and explains which layers interact. Furthermore, information is given about
which layers of the system are developed in the scope of this thesis and which existing
layers were integrated.

  CAN
Gateway

Software (developed)
Software (provided)
Hardware

Event Channel

CAN Bus Handler

CAN Bus

CAN Bus Interface Card

ESD CAN Driver

Suppliers and Consumers

ESD CAN Library

Thesis

ESD GmbH

Bosch GmbH

Figure 4.17.: Interfaces between Components including ESD CAN Library and Driver

Figure 4.17 shows the Event Service in a layered view. The bottommost layer is the
CAN bus in form of a cable and the CAN bus protocol specification provided by Bosch
[4].

The CAN interface card, the corresponding kernel driver and user space library, are
provided by ESD. The interface card physically interacts with the bus. It is controlled
by the kernel driver. The library offers the functionality of kernel driver to user space
programs.

The topmost three layers are developed within the scope of this thesis. The CAN Bus
Handler is the only component, which interacts with the CAN layers mentioned above. As
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described in section 4.4.1 on page 35, the CAN Bus Handler implements the CAN Event
Broadcast Protocol (CEBP) and thereby provides higher level functionality to the Event
Channel and the CAN Gateway. The Event Channel in turn provides the standard CORBA
Event Service interface [3] to suppliers and consumers. For demonstration purposes, test
suppliers and consumers have been developed.

4.6. API

In this section, the extensions to the Standard CORBA Event Service API [3] are listed. A
very short summary of the standard API is given together with a reference where to find
more information.

4.6.1. Standard API

A listing of all standard API functions is beyond the scope of this document. Refer to
chapter 2 ”Modules and Interfaces” of the Event Service Specification [3] for an in-depth
presentation.

A very short overview is given, nevertheless:
There are two modules that specify the standard funtionality implemented in this version
of the Event Service: (1) CosEventComm.idl and (2) CosEventChannelAdmin.idl. In
these modules simple push/pull functions and connect/disconnect functions are specified.
A specification of an Event Channel Factory is missing.

4.6.2. Extensions to the standard Event Service API

This Event Service can be operated using only the standard API. The extensions explained
in this subsection can be used to specify realtime priorities and to allow creation of Event
Channels from remote nodes.

When the Event Service is started, the Event Channel Factory provides the following
interface to any clients:

module ExtendedEventChannelAdmin {
interface EventChannelFactory {

CosEventChannelAdmin::EventChannel create_channel ();
CosEventChannelAdmin::EventChannel create_channel_can (

in CORBA::Short ec_id);
CosEventChannelAdmin::EventChannel
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create_channel_with_parms (
in CORBA::Boolean direct_transfer,
in CORBA::ULong edt_stacksize,
in CORBA::UShort edt_static_threads,
in CORBA::UShort edt_dynamic_threads,
in RTCORBA::Priority edt_default_priority,
in CORBA::Boolean edt_allow_request_buffering,
in CORBA::UShort edt_max_buffered_requests,
in CORBA::UShort edt_max_request_buffer_size

);
CosEventChannelAdmin::EventChannel
create_channel_can_with_parms (

in CORBA::Short ec_id,
in CORBA::Boolean direct_transfer,
in CORBA::ULong edt_stacksize,
in CORBA::UShort edt_static_threads,
in CORBA::UShort edt_dynamic_threads,
in RTCORBA::Priority edt_default_priority,
in CORBA::Boolean edt_allow_request_buffering,
in CORBA::UShort edt_max_buffered_requests,
in CORBA::UShort edt_max_request_buffer_size

);
};

};

As the above excerpt shows, the Event Channel Factory allows to create standard
Event Channels and those for the CAN bus, which use the CEBP. Furthermore, it allows
to specify realtime parameters for these Event Channels.

Apart from the Event Channel Factory, functions have been added to the interfaces
of (1) the SupplierAdmin, (2) the ConsumerAdmin, (3) the ProxyPushSupplier, (4) the
ProxyPullConsumer, and (5) the PushConsumer. They are shown in the following listing:

1. The SupplierAdmin provides the possibility to specify realtime parameters when
creating a ProxyPullConsumer (compare section 4.5.4 on page 46):

module CosEventChannelAdmin {
interface SupplierAdmin {
ProxyPullConsumer obtain_pull_consumer_with_parms(

in CORBA::Boolean poll_while_pulling,
in CORBA::ULong polling_interval

);
};

};
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2. The ConsumerAdmin offers two new functions allowing to specify realtime param-
eters again and to obtain a ProxyPushSupplier that does not deliver Events using
the standard push function, but rather the push with priority function. This is im-
portant if Event Channels should be federated (see figure 2.8 on page 15) and still
pass along the Event’s priority:

module CosEventChannelAdmin {
interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier_with_priority();
ProxyPullSupplier obtain_pull_supplier_with_parms(
in CORBA::Boolean poll_while_pulling,
in CORBA::ULong polling_interval,
in CORBA::ULong max_queue_size

);
};

};

3. The ProxyPushSupplier’s interface is extended by two functions. These allow the
PushConsumer, which is connected to it, to temporarily refrain from accepting
events without having to disconnect and reconnect:

module CosEventChannelAdmin {
interface ProxyPushSupplier: CosEventComm::PushSupplier {

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

};
};

4. The ProxyPullConsumer offers the same new functions explained above. A con-
nected PullSupplier can temporarily stop the ProxyPullConsumer from pulling for
new events:

module CosEventChannelAdmin {
interface ProxyPullConsumer: CosEventComm::PullConsumer {

void suspend_connection()
raises(ConnectionAlreadyInactive, NotConnected);

void resume_connection()
raises(ConnectionAlreadyActive, NotConnected);

};
};
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5. The PushConsumer, finally, is extended by a function, which allows it to specify
the priority of the Event it pushes:

module CosEventComm {
interface PushConsumer {
void push_with_priority (

in any data,
in RTCORBA::Priority priority)

raises(Disconnected);
};

};

4.7. Implementation of Basic Functionality

In this section, basic functionality necessary for the implementation of the ROFES Event
Service is described.

4.7.1. Priority Queue

The main component inside the Event Channel is the Event Queue. When using the real-
time features of this Event Service, incoming Events are first stored in the Event Queue
and then forwarded to all subscribed consumers.
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Figure 4.18.: The Priority Queue
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For queueing Events in the order of their priority, a priority queue is needed. The
priority queue implemented here, is based on a doubly linked list. That is a data structure,
in which each element contains a link to the next and the previous element, thus forming
a bidirectional linked list (see figure 4.18 on the preceding page).

This implementation of a priority queue inserts the incoming Event at the correct
place. Later, the Event with the highest priority can be easily dequeued by taking the last
element. Comparison of elements is done by the > operator, which can be overloaded to
compare any types of elements.

The data stored in each element is an Event Struct (see figure 4.8 on page 37) and the
> operator is overloaded to compare the priorities inside the struct.

4.7.2. Readers/Writer Locks

When different threads access the same data structures, these structures have to be pro-
tected from concurrent accesses. The usual technique used in this case is a mutex (variable
for mutual exclusion). The mutex guarantees that exactly one thread can access (read from
or write to) a data structure at a given time.

Inside the Event Channel there are lists for keeping track of consumers and suppliers,
which are connected to the channel. Most of the time (i.e when Events are sent through the
Event Channel), these lists only have to be read in order to determine, which consumers
to forward Events to. Writing is only needed when new consumers or suppliers connect
to the Event Channel.

With mutexes, only a single thread would be allowed to access a list; the other threads
would have to wait until the first one granted access again. No difference would be made
between threads requiring read access only (as is the case with the sending threads) and
threads requiring write access (threads executing the connect function). Access would be
granted to one thread after the other, only.

For optimisation purposes, in this implementation of the Event Service, another means
of protection was needed. One, that granted read access to many threads and write access
to one thread exclusively. The readers/writer lock, implemented in this thesis, provides
the necessary functionality.

In this specific implementation, writers have precedence over readers. This means
that, whenever a writer tries to acquire a write-lock to a data structure, readers trying
to acquire a read-lock will be queued behind the writer. The writer has to wait until
any readers already holding a read-lock give back the lock, then it gets the write-lock.
New readers, are not allowed to enter the restricted area and read together with the other
readers; they have to let the writer enter and leave first.
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4.8. Problems and Solutions

There were a lot of problems particularly during the implementation phase of this project.
Some of them, that costed especially much time, are presented below.

A big problem was that of lost CAN messages on the CAN bus. After some exper-
imenting, the problem was tracked down to node on the bus (which was not currently
involved in testing), whose CAN bus interface card was not initialised at all. Instead of
doing nothing, it seemed to be the reason of the packet loss. Removing the node solved
the problem.

The means for detection of corrupted data (described in section 4.4.6 on page 42) were
introduced in this context.

The Event Queue (depicted in figure 4.13 on page 45) and especially the send queue of
the CAN bus driver overflow when sending Events to them at a very high rate. Connecting
many PushSuppliers to the Event Channel, their sending rate had to be reduced.

The debugger (gdb) presented another very time consuming problem. On the devel-
opment systems (described in section 4.1 on page 27), it did not work together with the
pthreads library, when the latter was dynamically linked. For debugging with the gdb, the
whole project had to be recompiled as a static version. This is a time consuming process,
which is otherwise avoided.

Last but not least, the underlying ROFES implementation of CORBA, is under heavy
development. Additional functionality had to be implemented during the development of
the Event Service and sometimes the CORBA implementation still had some incorrect-
nesses detected during tests with the Event Service.



5. Benchmarks – Latency
Measurement

In this chapter the Software designed and implemented within the scope of the diploma
thesis is put under test. Different setups are measured for latency. Furthermore, the code
size as one of the major design goals is presented.

All the following benchmarks have been run on the three computers (described in
section 4.2 on page 27), which are equipped with a CAN bus interface card. The code of
the benchmarks conducted for the Event Channel with priority queueing enabled can be
found in the Appendix A on page 65.

For measurement over the Ethernet, three computers were used.

PC1 PC3PC2
Ethernet

Setup 1:

Setup 3:

Setup 2:

Supplier, Channel, Consumer

Supplier

Supplier Channel

Channel, Consumer

Event Flow

Consumer

Figure 5.1.: Setup of Components for the first two Benchmarks

As figure 5.1 shows, the three setups differ in the placement of components (supplier,
channel, consumer) on the three computers.

• In setup 1, all three components are located on one computer. The Event does not
have to cross the network on the way to the consumer.

• In setup 2, the supplier is located on one computer, channel and consumer are lo-
cated on another. One network transfer is necessary.
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• In setup 3, all components are located on different nodes. The Event has to cross
the network twice.

For the next benchmarks, the Event Channel has been compiled without support for
the CAN bus, with queueing disabled. The ProxyPushConsumer’s push() function, which
is executed by the supplier, returns only after the Event is delivered to the consumer (with
queueing enabled, it returns already after the Event is delivered to the channel).

5.1. Priority Queueing disabled

The first benchmark investigates, how different numbers of network transfers influence
the latency of Event passing.
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Figure 5.2.: Latency over Ethernet with Direct Transfer enabled

Figure 5.2 shows the average latency for the ProxyPushConsumer’s push() function.
A CORBA::Any is sent containing a CORBA::Short. The numbers represent the aver-
age of 1000 runs, which were executed in order to minimise the effect of temporary and
sporadic delays. Time is measured between the execution and returning of the Proxy-
PushConsumer’s push() function. Here, the push() function returns, when the Event is
delivered to every connected PushConsumer.

Setup 1 delivers the smallest latency, as all communication is local. In setup 2, the sup-
plier sends its request together with the event data to the Event Channel over the network.
Calling the consumer’s push() function is a local operation. The acknowledgement sent
back to the supplier has to travel over the network again. Hence, two network transfers
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are necessary: the first one with event data and the second one only with the acknowl-
edgement. This explains the increased latency. In setup 3, four network transfers are
necessary: two on the way to the consumer and two acknowledgements on the way back.
Again, latency increases.

The next diagram (figure 5.3) examines the effect, which different data sizes have on
the latency.
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Figure 5.3.: Latency over Ethernet for different Data Sizes

Events with growing length were sent using the three setups described above. For the
purpose of constructing event data of arbitrary lengths, CORBA::Strings have been used.
Figure 5.3 nicely shows three effects:

1. As expected, latency for setup 1 (which requires the smallest number of network
transfers) is always smaller than latency for setup 2 (with setup 3 resulting in the
highest latency values). This effect is independent of the data size.

2. With data sizes between 128 bytes and 8192 bytes, latency increases linearly with
the number of bytes. This happens for all three setups.

3. For data sizes smaller than 128 bytes, other factors are dominant. There is no
measurable difference in latency between sending of a two-byte data type, and a
128-byte data type.

Figure 5.4 on the following page shows effects of the underlying ORB implemen-
tation. The expected results are yielded for data sizes smaller than 16kB. If data sizes
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Figure 5.4.: Latency comparison for different Data Sizes, other Effects

greater than 16kB are sent, the underlying CORBA heavily influences latency. Further
investigation showed that the ORB was configured with an IIOP message buffer size of
16kB. As soon as the size of an Event exceeds this length, it has to be split into sev-
eral messages before sending, and must be reassembled on the side of the receiver. This
explains the big increase of latency, when crossing the 16kB boundary.

When larger Events are sent, the three graphs converge. It does not make any differ-
ence anymore, if the data is sent over the network once or twice. That means that the
time, which is spent sending data over the network becomes negligible in comparison to
the time spent in fragmentation and reassembly. Calculation demands move the bottle
neck from the network onto the processing power of attached nodes. Note, that ROFES
and the ROFES Event Service are designed for embedded systems and are therefore not
optimised for sending huge messages.

5.2. Priority Queueing enabled

The following benchmarks were run using a version of the Event Channel with enabled
priority queueing and threaded dispatching of Events. A measurement as in the previous
subsection is not possible, because the priority queue introduces an asynchrony. When a
supplier executes the push() function of the ProxyPushConsumer, the function call returns
as soon as the Event is queued in the Event Channel. As explained above, with priority
queueing disabled, it returned after the Event had been delivered to every connected Push-
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Consumer.
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Figure 5.5.: Setup of Components for Benchmarks with Queueing enabled

For the above reasons, the following setup was chosen (see figure 5.5). The Push-
Supplier and PushConsumer on the left hand side, which execute the time measurement
functions are implemented in one small program (i.e. they are always on the same node).
The same applies to the PushConsumer and PushSupplier on the right hand side and to
the two Event Channels.

As depicted in figure 5.5, the clock for latency measurement is started before the
PushSupplier on the left hand side executes the push() function; it is stopped, when the
push() function of the PushConsumer on the left is executed. This determines a round-trip
time. To obtain the latency, which is shown in figure 5.6 on the following page, this value
has to be divided by two. Due to the different methods used for calculating the latency,
figure 5.3 on page 57 and figure 5.6 on the following page can not be directly compared.

Figure 5.6 on the next page shows latency values measured with Event Channels with
queueing enabled. As mentioned above, queueing introduces an asynchrony. A sup-
plier executing the proxy’s push() function is no longer (synchronously) blocked, until
the Event has reached its final destination(s) (i.e. all consumers connected to the Event
Channel). The function call returns after the Event has been queued in the Event Channel.
This has two effects:

• The supplier is not blocked for an equally long period as it was with the Event
Channel configured for direct transfer. It is free to continue with other operations
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Figure 5.6.: Measurement of Latency with Queueing enabled

or push the next event after a shorter time of blocking, enabling it to send a series
of Events at a higher rate.

• The supplier is no longer (synchronously) informed if the initiated operation (push-
ing the Event to consumers) succeeded completely. That is, if the Event is correctly
received by all connected consumers. If this functionality is required, the Event
Channel should be configured for synchronous delivery. As an alternative, this
can easily be achieved by setting up a second Event Channel for acknowledgement
messages.

Figure 5.6 yields some interesting results. For data sizes below 256 bytes, no differ-
ence in latency between setup 1, setup 2 and setup 3 can be measured. The influence
that the number of network transfers has on latency seems to be rather small when send-
ing small data sizes (compared to the synchronous setup, where more network transfers
meant higher latency even for small data sizes – compare figure 5.3 on page 57). This can
be explained as follows:
In contrast to the synchronous benchmark, acknowledgement transfers do not delay the
transfer of Events to consumers, as they happen in parallel to forwarding of Events. Ac-
knowledgement times therefore do not add to the measured latency. For small data sizes,
acknowledgement messages are almost as big as the event data itself. The number of
messages that add to the measured latency are therefore halved. This is a bit complicated
and will therefore be explained in greater detail.

With queueing disabled, event data is sent from the supplier to the Event Channel,
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and from the Event Channel to the consumer. Then, the acknowledgement has to be sent
the same way back (consumer, Event Channel, supplier). All this happens sequentially;
especially sending of acknowledgements adds to the latency measured in section 5.1.

In contrast to that, with the asynchronous setup, event data is sent from the supplier
to the Event Channel, and while the Event Channel forwards the data to the consumer,
the acknowledgement is already sent back to the supplier. The same happens on the way
back: The supplier of the Pong component (refer to figure 5.5 on page 59) forwards the
event data in parallel to Pong’s consumer returning an acknowledgement message to the
first event channel.

We can conclude that with priority queueing enabled, the influence that network trans-
fers have on latency are negligible, when transferring small data sizes.

As can be seen on the right hand side of the diagram, the number of network transfers
regains importance when sending data sizes of 1024 bytes and above. There is a big
difference in latency between sending an Event of the same size with setup 1, with setup
2, or with setup 3.
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6. Conclusions and Outlook

Within the scope of this thesis, a light-weight implementation of the CORBA Event Ser-
vice has been developed. It provides realtime extensions and is largely configurable.

The Event Channel, which is the heart of the Event Service can be configured to queue
Events, making communication even more decoupled. Suppliers of data can not only be
ignorant of any consumers interested in their data (which is the main aim of the Event
Service in general), they do not even have to wait until delivery of event data has been
completed (compare section 5.2 on page 58). This ensures very short times, in which
suppliers are blocked for sending of data.

When the additional transactional acknowledgement is needed, the Event Service can
be configured for direct transfer of Events. Then, the push() function issued by a supplier
does not return until the Event is delivered to every connected consumer.

A protocol for the effective distribution of event data over the CAN bus has been
developed and implemented. Event multiplexing, which is conventionally done by Event
Channels only, is complemented with multiplexing of Events by the CAN bus. This has
the advantage that Events directed to any number of consumers on other nodes have to be
sent only once over the bus, thus reducing bus load and allowing other Events to be sent
during the gained idle time.

The CAN Event Broadcast Protocol CEBP as it is called makes extensive use of the
CAN bus features for multiplexing and prioritisation of Events. Using two bits of the CAN
message identifier to distinguish it from other higher level protocols on the CAN bus, the
CEBP cooperates flawlessly with ongoing efforts to develop a standardised version of IOP
for the CAN bus.

Together with ROFES [2], a realtime ORB for embedded systems, which is developed
at the Chair of Operating Systems at the University of Technology Aachen, this imple-
mentation of the Event Service provides a platform for the growing market of so called
Distributed Realtime Embedded (DRE) systems. Small code size and fine-grained control
of many realtime parameters are prominent features.

To make the Realtime Event Service for the CAN bus even more flexible and to make
systems developed on top of it easier to use and maintain, a binding daemon should be
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implemented that dynamically maps logical node and channel names to physical ones, as
proposed in [22]. Definition of the CEBP already assigns two bits of the CAN message
identifier to such a binding protocol (compare [24]).

The OMG is in the process of specifying a Realtime Notification Service. This is an
enhanced version of the Notification Service [12] as described in section 2.3 on page 13. It
offers a superset of the functionality provided by the Event Service and should yield even
better manageability for more complex communication scenarios. This implementation
of a Realtime CORBA Event Service can be used as basis for the construction of such a
service.



A. Appendix – Source Code of
Benchmarks

A.1. Source of the Channelserver

After the Event Service is started, the channelserver is run to set up an Event Channel.
The channelserver is used in all benchmarks and demonstrates usage of the Event Channel
Factory, which is the interface that the started Event Service provides.

/*********************** project headers **********************/
#include <CosEventChannelAdmin.h>
#include <CosEventComm.h>
#include <CosNaming.h>
#include <stdio.h>
#include <stdlib.h>

const char* ecf_filename = "ecf.ior";
const char* ec_filename = "ec.ior";
CORBA::ULong channel_number = 3;

/*! WHAT THIS FILE DOES:
* The ChannelServer sets up the EventChannel. If there is no
* EventChannel, it locates the EventChannelFactory, creates
* an EventChannel, and saves its reference to a file.
*/

// ----------------------- The Main Program --------------------
extern "C" int main(int argc, char* argv[]) {
ExtendedEventChannelAdmin::EventChannelFactory_var factory;
CosEventChannelAdmin::EventChannel_var channel;

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "orb");
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// Get reference to the EventChannelFactory object
// (The Event Channel Factory is the primary interface of
// the Event Service)
fprintf(stderr, "Getting reference to

EventChannelFactory.\n");
char buf[1024];

FILE* ecf_fd = fopen(ecf_filename, "r");
if (ecf_fd == NULL)
{
perror("fopen");
exit(1);

}
fscanf(ecf_fd, "%s", buf);
fclose(ecf_fd);

CORBA::String_var ecf_ref((const char *) buf);
CORBA::Object_var ecf_obj = orb->string_to_object(ecf_ref);
factory = ExtendedEventChannelAdmin::

EventChannelFactory::_narrow(ecf_obj);

// Create EventChannel
fprintf(stderr, "Creating EventChannel.\n");
//channel = factory->create_channel();
channel = factory->create_channel_can(channel_number);
printf("Creating IOR\n");
// ... and save the reference to file
CORBA::String_var ec_ior = orb->object_to_string (channel);
printf("Writing IOR to file\n");

FILE* ec_fd = fopen(ec_filename, "w");
if (ec_fd == NULL)
{
perror("fopen");
exit(1);

}
fprintf(stderr, "ec_ior = %s\n\n", (char*) ec_ior);
fprintf(ec_fd, "%s", (char*) ec_ior);
fclose(ec_fd);

fprintf(stderr, "EventChannel up and running.\n");

// ... or register channel with a naming service
}
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A.2. Source of the Asynchronous Ping Example

This is a complete version of the source code for the Ping component (depicted in 5.5 on
page 59). It contains all steps necessary to connect to an existing Event Channel and may
therefore serve as a reference. Moreover, it shows exactly how latency measurement is
done.

/******************* project headers **************************/
#include <CosEventChannelAdmin.h>
#include <CosEventComm.h>
#include <CosNaming.h>
#include <hrtime.h>
#include <stdio.h>
#include <stdlib.h>

const char* result_filename = "latency_ping_pong_times_n_nodes";
const char* ec_filename = "ec.ior";
const char* ec_back_filename = "ec_back.ior";
sem_t send_sem; // Ensure next sending is after receiving
hrtime_t t1 = 0; // send time
hrtime_t t2 = 0; // receive time
hrtime_t average = 0; // average time of ping-pong

const int number_of_runs = 10000;

/*! WHAT THIS FILE DOES:
Ping pushes data to the Event Channel, waits until Pong sends
data back. When data is received, it calculates the round trip
time and divides it by 2 to get the latency.
*/

/* PING */
class Ping : public CosEventComm::POA_PushSupplier {
public:
Ping() {}
void disconnect_push_supplier();

};

void Ping::disconnect_push_supplier() {
fprintf(stderr, "Ping::disconnect_push_supplier() called");

}

/* PONGRECEIVER */
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class PongReceiver : public CosEventComm::POA_PushConsumer {
public:

PongReceiver() {}
void push(const CORBA::Any& data);
void disconnect_push_consumer();

private:
CosEventChannelAdmin::ProxyPushSupplier_var supplier;

};

void PongReceiver::push(const CORBA::Any& data) {
t2 = gethrtime();
average += (t2-t1)/1000;
sem_post(&send_sem);

}

void PongReceiver::disconnect_push_consumer() {
fprintf(stderr, "PongReceiver::disconnect_push_consumer()

called");
}

// ----------------------- The Main Program --------------------
extern "C" int main(int __argc, char* __argv[]) {

CosEventChannelAdmin::EventChannel_var channel;
CosEventChannelAdmin::EventChannel_var channel_back;
CosEventChannelAdmin::SupplierAdmin_var supp_admin;
CosEventChannelAdmin::ConsumerAdmin_var cons_admin_back;
CosEventChannelAdmin::ProxyPushConsumer_var consumer;
CosEventChannelAdmin::ProxyPushSupplier_var supplier_back;

// Initialise the Semaphore
sem_init(&send_sem, 0, 0);

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv, "orb");

// open output file for results
FILE* result_fd = fopen(result_filename, "w");

// Get reference to the EventChannel object
char buf[1024];
FILE* ec_fd = fopen(ec_filename, "r");
if (ec_fd == NULL) {

perror("fopen");



A.2 Source of the Asynchronous Ping Example 69

exit(1);
}
fscanf(ec_fd, "%s", buf);
fclose(ec_fd);

CORBA::String_var ec_ref((const char *) buf);
CORBA::Object_var ec_obj = orb->string_to_object(ec_ref);
channel = CosEventChannelAdmin::EventChannel::_narrow(ec_obj);

// Get reference to the EventChannel_back object
FILE* ec_back_fd = fopen(ec_back_filename, "r");
if (ec_back_fd == NULL) {

perror("fopen");
exit(1);

}
fscanf(ec_back_fd, "%s", buf);
fclose(ec_back_fd);

CORBA::String_var ec_back_ref((const char *) buf);
CORBA::Object_var

ec_back_obj = orb->string_to_object(ec_back_ref);
channel_back = CosEventChannelAdmin::

EventChannel::_narrow(ec_back_obj);

// Finally start the first server/supplier
fprintf(stderr, "PushSupplier wird gestartet.\n");

supp_admin = channel->for_suppliers();
fprintf(stderr, "SupplierAdmin obtained.\n");

cons_admin_back = channel_back->for_consumers();
fprintf(stderr, "ConsumerAdmin obtained from

return channel.\n");

consumer = supp_admin->obtain_push_consumer();
fprintf(stderr, "ProxyPushConsumer obtained.\n");

supplier_back = cons_admin_back->obtain_push_supplier();
fprintf(stderr, "ProxyPushSupplier obtained from

return channel.\n");

// Obtain a reference to the RootPOA and its Manager
CORBA::Object_var

poaobj = orb->resolve_initial_references("RootPOA");
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PortableServer::POA_var
poa = PortableServer::POA::_narrow(poaobj);

PortableServer::POAManager_ptr mgr = poa->the_POAManager();

// Create a Ping object
Ping ping;
fprintf(stderr, "Ping created.\n");

// Create a PongReceiver object
PongReceiver pong;
fprintf(stderr, "Pong created.\n");

// Activate the Servants
PortableServer::ObjectId oid = poa->activate_object(&ping);
fprintf(stderr, "Ping activated:

ObjectId = %u\n", (unsigned) oid);
oid = poa->activate_object(&pong);

fprintf(stderr, "Pong activated:
ObjectId = %u\n", (unsigned) oid);

// Register Ping
consumer->connect_push_supplier((&ping)->_this());
fprintf(stderr, "Ping connected to the

channel as Supplier...\n\n");
supplier_back->connect_push_consumer((&pong)->_this());
fprintf(stderr, "PongReceiver connected to the

return channel as Consumer...\n\n");

// Activate the POA and start running
mgr->activate();
fprintf(stderr, "Objects ready to service requests:

mgr->activate()...\n\n");

// Start pushing event
fprintf(stderr, "Ping starts pushing event.\n\n");
CORBA::Any data;
CORBA::Short Short_data = 0;
data <<= (CORBA::Short) 10;
for (int i = 0; i < number_of_runs; i++) {

t1 = gethrtime();
consumer->push(data);
sem_wait(&send_sem);

}
//t2 = gethrtime();
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average /= number_of_runs;
fprintf(stderr, "\n\nThe average time for a ping-pong is:

t = %f us (measured with %d runs)\n",
(float) average, number_of_runs);

fprintf(result_fd, "1 %f\n", (float) average);
fclose(result_fd);

}

A.3. Source of the Asynchronous Pong Example

This is the source code of the Pong component depicted in figure 5.5 on page 59. Steps
that are equivalent to those in the Ping component, are left out and replaced with a short
comment.

const char* ec_filename = "ec.ior";
const char* ec_back_filename = "ec_back.ior";

/*! WHAT THIS FILE DOES:
Pong receives an Event from the Event Channel and directly
pushes it back through the return channel.
*/

/* PONG */
class Pong : public CosEventComm::POA_PushSupplier {
public:
Pong() {}
void disconnect_push_supplier();
void send(const CORBA::Any& data);
CosEventChannelAdmin::ProxyPushConsumer_var consumer_back;

};

void Pong::disconnect_push_supplier() {
fprintf(stderr, "Pong::disconnect_push_supplier() called\n");

}

void Pong::send(const CORBA::Any& data) {
//fprintf(stderr, "Pong sending data back to Initiator...\n");
consumer_back->push(data);

}

// Create a Pong object
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Pong pong;

/* PINGRECEIVER */
class PingReceiver : public CosEventComm::POA_PushConsumer {
public:

PingReceiver() {}
void push(const CORBA::Any& data);
void disconnect_push_consumer();

private:
CosEventChannelAdmin::ProxyPushSupplier_var supplier;
CORBA::Short Short_data;

};

void PingReceiver::push(const CORBA::Any& data) {
//fprintf(stderr, "Ping received, pushing back\n");
pong.send(data);

}

void PingReceiver::disconnect_push_consumer() {
fprintf(stderr, "PingReceiver::disconnect_push_consumer()

called\n");
}

// ----------------------- The Main Program --------------------
extern "C" int main(int __argc, char* __argv[]) {

CosEventChannelAdmin::EventChannel_var channel;
CosEventChannelAdmin::EventChannel_var channel_back;
CosEventChannelAdmin::ConsumerAdmin_var cons_admin;
CosEventChannelAdmin::SupplierAdmin_var supp_admin_back;
CosEventChannelAdmin::ProxyPushSupplier_var supplier;
CosEventChannelAdmin::ProxyPushConsumer_var consumer_back;

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv, "orb");

// Get reference to the EventChannel object
// (parts left out; see ping.cpp for details)
channel = CosEventChannelAdmin::EventChannel::_narrow(ec_obj);

// Get reference to the EventChannel_back object
// (parts left out; see ping.cpp for details)
channel_back = CosEventChannelAdmin::

EventChannel::_narrow(ec_back_obj);
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// Finally start the first server/supplier
fprintf(stderr, "Pong wird gestartet.\n");

// Create a PingReceiver object
PingReceiver ping;
fprintf(stderr, "PingReceiver created.\n");

cons_admin = channel->for_consumers();
fprintf(stderr, "ConsumerAdmin obtained.\n");

supp_admin_back = channel_back->for_suppliers();
fprintf(stderr, "SupplierAdmin obtained for

return channel.\n");

supplier = cons_admin->obtain_push_supplier();
fprintf(stderr, "ProxyPushConsumer obtained.\n");

pong.consumer_back = supp_admin_back->obtain_push_consumer();
fprintf(stderr, "ProxyPushConsumer obtained for

return channel.\n");

// Obtain a reference to the RootPOA and its Manager
CORBA::Object_var

poaobj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var

poa = PortableServer::POA::_narrow(poaobj);
PortableServer::POAManager_ptr mgr = poa->the_POAManager();

// Activate the Servants
PortableServer::ObjectId oid = poa->activate_object(&ping);
fprintf(stderr, "PingReceiver activated:

ObjectId = %u\n", (unsigned) oid);
oid = poa->activate_object(&pong);

fprintf(stderr, "Pong activated:
ObjectId = %u\n", (unsigned) oid);

// Register Pong
pong.consumer_back->connect_push_supplier((&pong)->_this());
fprintf(stderr, "Pong connected as Supplier...\n\n");
supplier->connect_push_consumer((&ping)->_this());
fprintf(stderr, "PingReceiver connected as Consumer...\n\n");
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// Activate the POA and start running
mgr->activate();
fprintf(stderr, "Pong ready to service requests:

mgr->activate()...\n\n");

// Give control of the process to the orb
fprintf(stderr, "Pong Running...\n\n");
orb->run();

}
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ACE Adaptive Communication Environment

AMI Asynchronous Method Invocation

BOA Basic Object Adapter

Broadcast Sending of a message addressed to all connected nodes

CAN Controller Area network

CEBP CAN Event Broadcast Protocol

COM Common Object Model

CORBA Common Object Request Broker Architecture

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CSMA/CD Carrier Sense Multiple Access/Collision Detection

DCOM Distributed Common Object Model

DOS Distributed Object Systems

DRE Systems Distributed Real-time Embedded Systems

EC Event Channel

ECF Event Channel Factory

EDT Event Dispatch Thread

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol
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MICO MICO is COrba – Open source implementation of the CORBA specifi-
cation, which has originally been developed at the University of Frank-
furt/Main

Multicast Sending of a message addressed to a group of connect nodes

OMA Object Management Architecture

OMG The Object Management Group is an open membership, not-for-profit
consortium that produces and maintains computer industry specifications
for interoperable enterprise applications

OOP Object Oriented Programming

ORB Object Request Broker

OS Operating System

POA Portable Object Adapter

QoS Quality of Service

RMI Remote Method Invocation

ROFES Realtime ORB For Embedded Systems

RTCORBA Realtime CORBA

TAO The ACE ORB – Open source implementation of the CORBA specifica-
tion developed at the Washington University St. Louis
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